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Abstract
Background  This study aimed to evaluate the efficacy of radiomics signatures derived from polyenergetic images 
(PEIs) and virtual monoenergetic images (VMIs) obtained through dual-layer spectral detector CT (DLCT). Moreover, 
it sought to develop a clinical-radiomics nomogram based on DLCT for predicting cancer stage (early stage: stage I-II, 
advanced stage: stage III-IV) in pancreatic ductal adenocarcinoma (PDAC).

Methods  A total of 173 patients histopathologically diagnosed with PDAC and who underwent contrast-enhanced 
DLCT were enrolled in this study. Among them, 49 were in the early stage, and 124 were in the advanced stage. 
Patients were randomly categorized into training (n = 122) and test (n = 51) cohorts at a 7:3 ratio. Radiomics features 
were extracted from PEIs and 40-keV VMIs were reconstructed at both arterial and portal venous phases. Radiomics 
signatures were constructed based on both PEIs and 40-keV VMIs. A radiomics nomogram was developed by 
integrating the 40-keV VMI-based radiomics signature with selected clinical predictors. The performance of the 
nomogram was assessed using receiver operating characteristic (ROC) curves, calibration curves, and decision curves 
analysis (DCA).

Results  The PEI-based radiomics signature demonstrated satisfactory diagnostic efficacy, with the areas under the 
ROC curves (AUCs) of 0.92 in both the training and test cohorts. The optimal radiomics signature was based on 40-keV 
VMIs, with AUCs of 0.96 and 0.94 in the training and test cohorts. The nomogram, which integrated a 40-keV VMI-
based radiomics signature with two clinical parameters (tumour diameter and normalized iodine density at the portal 
venous phase), demonstrated promising calibration and discrimination in both the training and test cohorts (0.97 and 
0.91, respectively). DCA indicated that the clinical-radiomics nomogram provided the most significant clinical benefit.
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Background
Pancreatic cancer remains a highly lethal digestive sys-
tem disease, with a 5-year survival rate of under 10%. 
It ranks as the seventh leading cause of cancer-related 
mortality worldwide [1–3]. Pancreatic ductal adenocarci-
noma (PDAC), originating from pancreatic intraepithelial 
neoplasia, accounts for approximately 90% of pancreatic 
malignancies [4, 5].

The advanced-stage diagnosis is common in PDAC 
due to the absence of prominent symptoms in the early 
stages leading to a delayed diagnosis and treatment ini-
tiation [6]. Surgical resection is feasible in early-stage 
PDAC, offering a five-year survival rate of approximately 
20% [7]. However, a majority of patients present with 
advanced disease, missing the window for surgery [8]. 
Consequently, primary treatment options involve adju-
vant therapies such as radiation and chemotherapy, with 
a dismal five-year survival rate of approximately 2.9% 
[6]. Accurate PDAC staging is crucial for assessing dis-
ease progression and predicting patient prognosis. How-
ever, achieving precise PDAC staging frequently requires 
invasive operations such as surgical resection and explor-
atory laparotomy. Endoscopic ultrasound-guided fine-
needle aspiration (EUS-FNA) facilitates the acquisition 
of histological specimens for accurate pathological diag-
nosis, aiding in determining tumour T staging and peri-
pancreatic lymph node metastasis. However, it entails 
invasiveness and its accuracy significantly hinges on 
the operator’s technical proficiency and experience [6]. 
Therefore, a non-invasive and reliable modality must be 
developed to differentiate PDAC stages accurately.

While PET-CT and PET-MRI offer advantages in 
detecting extrapancreatic metastases and assessing 
overall tumour burden, their high cost diminishes their 
favourability. Multi-detector computed tomography 
(MDCT) emerges as the preferred modality for preop-
erative diagnosis and staging of PDAC due to its cost-
effectiveness, and widespread availability [9]. However, 
the pancreas’ deep-seated location within the abdomen, 
closely bordered by organs such as the stomach and 
duodenum, poses challenges for conventional preopera-
tive CT imaging in evaluating occult lesions due to its 
restricted resolution and assessment parameters [10]. 
Radiomics has garnered significant attention because it 
uses advanced image analysis techniques and machine 
learning algorithms to extract quantitative features 
from voluminous medical images [11]. In recent years, 
radiomics has been extensively used in pancreatic tumour 

diagnosis, preoperative staging, pathological grading, 
treatment evaluation, and prognosis projection [12–17]. 
However, these studies primarily rely on conventional CT 
or MRI images. The advent of spectral CT has brought 
about a surge in radiomics research rooted in this tech-
nology. Dual-layer spectral detector CT (DLCT), a novel 
form of spectral CT capable of separating low- and high-
energy photons, produces more precise images and fur-
nishes more comprehensive energy-related data than 
conventional CT [18]. Integrating DLCT and radiomics 
holds significant promise for enhancing the diagnostic 
and predictive capabilities of radiomic images.

Radiomics utilizing spectral CT demonstrates poten-
tial in predicting lymph node metastases in gastric and 
colorectal cancer, and evaluating gastric cancer response 
to neoadjuvant therapy [19–21]. However, research on 
radiomics studies focusing on PDAC rooted in spec-
tral CT remains limited. In this study, our objective was 
to construct a clinical-radiomics nomogram based on 
DLCT, providing a non-invasive method to differentiate 
early- and advanced-stage PDAC.

Methods
Participants
Ethical approval was obtained from the ethical com-
mittee of Tongji Medical College, Huazhong University 
of Science and Technology, following the Declaration 
of Helsinki. Due to the retrospective design, informed 
consent was waived. Between June 2020 and November 
2022, 173 consecutive patients with pathologically con-
firmed PDAC were enrolled in this study. The inclusion 
criteria were as follows: (a) pathologically confirmed 
PDAC diagnosis; (b) ability to stage patients based on 
Union for American Joint Committee on Cancer (AJCC) 
Tumour-Nodal involvement-Metastasis (TNM) stag-
ing (eighth edition) [10]; and (c) patients with PDAC 
who underwent preoperative DLCT scanning within 2 
weeks. The exclusion criteria were as follows: (a) preop-
erative chemotherapy or radiotherapy; (b) inadequate CT 
quality; (c) pancreatic cancer lesions too small for accu-
rate evaluation; and (d) incomplete clinical information. 
The flow diagram illustrating PDAC patient enrolment 
is depicted in Fig.  1. Clinical data, including age, gen-
der, comorbidities, tumour diameter, tumour number, 
tumour location, levels of carbohydrate antigen 19 − 9 
(CA19-9), carbohydrate antigen 12 − 5 (CA12-5), and car-
cinoembryonic antigen (CEA), were collected from elec-
tronic medical records. The training group was utilized 

Conclusions  The radiomics signature derived from 40-keV VMI and the clinical-radiomics nomogram based on 
DLCT both exhibited exceptional performance in distinguishing early from advanced stages in PDAC, aiding clinical 
decision-making for patients with this condition.
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to construct the model and fine-tune parameters during 
cross-validation. In contrast, the test group evaluated the 
model’s generalization performance without involvement 
in feature selection, feature standardization, and model 
construction.

CT image acquisition
Details of the DECT scan technique are provided in 
Supplementary Material 1. Polyenergetic images (PEIs) 
were generated using an iterative reconstruction algo-
rithm (iDose 4, level 3; Philips Healthcare) to represent 
conventional CT image sets and then transferred to the 
picture archiving and communication system. Further-
more, 40-keV virtual monoenergetic images (VMIs) [22–
24] and other spectral-based imaging datasets, including 
material-decomposition maps of iodine density (ID) and 
effective atomic numbers (Zeff) maps, were generated 

using the postprocessing workstation (IntelliSpace Portal 
9.0, Philips Healthcare).

CT spectral parameters measurement
In the Philips ISP postprocessing workstation, spectral 
parameters were assessed by placing a region of interest 
(ROI) within the tumour lesion. Two abdominal radi-
ologists, each with 5 and 7 years of post-training experi-
ence (L.W. and C.C.), independently reviewed the DLCT 
examinations for each patient. Axial 40-keV VMI images 
at both the arterial and portal venous phases were cho-
sen, and a manually delineated ROI was positioned 
within the tumour lesion, following these guidelines: (1) 
The ROI was positioned to exclude necrotic areas, large 
blood vessels, and dilated pancreatic ducts. (2) The ROI 
area should have exceeded two-thirds of the maximum 
area of the tumour lesion on the axial image. (3) The 

Fig. 1  Flow chart of the patient selection process
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ROI’s shape, size, and position for the lesion within the 
same patient should have remained consistent between 
the 40-keV VMI and PEI. For each tumour, three ROIs 
were positioned: at the lesion’s superior margin, the level 
of its maximum axial diameter, and its inferior margin. 
Subsequently, the delineated ROI was replicated on other 
spectral images to measure the CT values, Zeff, and ID 
values.

The mean values of the three ROIs were recorded to 
obtain overall measurements for each lesion. ID values 
were measured in the abdominal aorta at the same posi-
tion as the lesions during the arterial and portal venous 
phases. Subsequently, the normalized ID (NID) was cal-
culated using Formula (1) [21] as the ratios of these val-
ues between the tumour and the abdominal aorta during 
the specific phase. The slope of the attenuation curve 
(K-slope) was determined by utilizing the arterial and 
portal venous phase VMIs within the energy range of 
40-keV to 100-keV, as demonstrated in Formula (2) [25]. 
Interobserver agreement was assessed for the quantita-
tive spectral parameters (Supplementary Table 1). The 
mean values of the measurements from both readers 
were then used for all subsequent analyses.

	
NID =

tumor lesions ID
same level aorta ID

� (1)

	
K − slope =

HU 40keV − HU100keV

100 − 40
� (2)

Final diagnosis of TNM stage
The TNM staging for all patients was assessed follow-
ing the guidelines outlined in the eighth edition of the 
AJCC TNM staging. According to this criterion and 
studies focusing on the survival outcomes of patients 
PDAC patients at various stages [10, 26], the mortal-
ity rates associated with stage I or II disease were lower 
than those correlated with stage III or IV disease. There-
fore, the TNM staging of PDAC was aimed to be simpli-
fied into early-stage (stages I and II) and advanced-stage 
(stages III and IV) disease.

The final diagnoses of TNM stage and each category 
were reached by consensus at the multi-disciplinary 
treatment (MDT) board conference attended by diag-
nostic radiologists, pathologists, and pancreatic surgeons 
with extensive experience ranging from 17 to 26 years.

Tumour segmentation, image preprocessing, and 
radiomics feature extraction
The workflow of the radiomics analysis is illustrated in 
Supplementary Fig. 1.

The three-dimensional (3D) ROI of the tumour was 
manually delineated slice-by-slice on arterial phase (AP) 

and portal venous phase (PVP) CT images (40-keV VMI 
and PEI) using ITK-SNAP software (www.itksnap.org). 
The ROIs of all patients with PDAC were segmented by 
two radiologists, each with over 5 years of experience in 
abdominal imaging diagnosis; both were blinded to the 
corresponding pathological results.

Despite originating from DLCT, all images underwent 
preprocessing to enhance the model’s generalization per-
formance. Before feature extraction, images were resam-
pled with a voxel size of 1 × 1 × 1 mm³. Moreover, all CT 
images were normalized to a scale of 500. Grey-level dis-
cretization was performed on the original intensities and 
resampled to 25 bins with a fixed number of bins (more 
details in Supplementary Material 1).

Subsequently, using the Python package “PyRadiomics” 
in Anaconda Prompt software (version 4.2.0) (github.
com/Radiomics/PyRadiomics), radiomics features were 
extracted for each 3D ROI. Both intraobserver and 
interobserver analyses were conducted to evaluate the 
reproducibility of radiomics features. This assessment 
was accomplished using the intra- and interclass corre-
lation coefficients (ICCs). Specifically, these coefficients 
were employed to gauge the agreement between the fea-
tures generated by X.Y. (first time) and those generated 
by L.W. Furthermore, the agreement between features 
generated twice by L.W. was also evaluated. ICCs were 
classified as: <0.50, poor agreement; 0.50–0.75, moderate 
agreement; 0.75–0.90, good agreement; and > 0.90, excel-
lent agreement [27].

Feature selection and radiomics signature construction
All feature selection processes were conducted in the 
training dataset. Maximum relevance minimum redun-
dancy (mRMR) methods and the Least absolute shrink-
age and selection operator (LASSO) logistic regression 
were applied to the training cohort to identify the most 
stable and predictive features. Features with nonzero 
coefficients were selected to construct the radiomics 
signature. A linear combination of these features and 
their corresponding weight coefficients established the 
radiomics signature, and the radiomics score (Radscore) 
for each patient was computed.

Clinical model and clinical-radiomics model construction
Clinical model construction: Univariate and stepwise 
regression analyses were applied, and based on the prin-
ciple of minimizing the Akaike information criterion 
(AIC), essential clinical factors associated with the PDAC 
stage were identified to establish a clinical model.

Construction of the clinical-radiomics model con-
struction: Multivariable logistic regression analysis was 
conducted to ascertain independent predictors, and the 
radiomics signature (Radscore) was considered an inde-
pendent risk factor. It was combined with crucial clinical 

http://www.itksnap.org
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features to construct a clinical-radiomics model. Vari-
ance inflation factors of the predictors were computed to 
diagnose collinearity.

Model validation and evaluation
The constructed radiomics, clinical, and clinical-
radiomics models were evaluated in terms of diagnos-
tic performance, goodness of fit, and clinical utility. 
A receiver operating characteristic (ROC) curve was 
employed to assess the discriminative ability of the three 
models, and the area under the ROC curve was calcu-
lated separately in the training and test cohorts. Cali-
bration curves were plotted to determine the agreement 
between prediction and observation in the three models. 
Clinical decision curve analysis (DCA) was used to deter-
mine the net benefit rate of the three models.

Statistical analysis
All statistical analyses were conducted with R software, 
version 4.2.0 (The R Foundation for Statistical Comput-
ing; http://www.r-project.org). Quantitative data were 
presented as mean ± standard deviation (X ± SD) or 
median and quartiles [M(P25, P75)]. Qualitative data are 
expressed as percentages (%). Comparisons between the 
two groups were performed using the t-test or the Mann-
Whitney U test for quantitative variables, and the χ2 or 
Fisher’s test for qualitative variables. All statistical tests 
were two-sided, and statistical significance was set at 
p < 0.05.

The R packages used in this study comprised “tidy-
verse”, “caret”, “pROC”, “glmnet”, “rmda”, “gpub”, “Mod-
elGood”, “DMwR2”, “mRMRe”, “DescTools”, “mRMRe”, 
“DescTools” and “Publish”.

Results
Patient demographics
Among the 173 patients enrolled in this study, 106 were 
men and 67 were women, with an average age of 61 ± 9 
years. According to the AJCC eighth edition pancreatic 
cancer staging criteria, the patients with PDAC were 
classified as early-stage (49 cases, stages I: 20 and stage 
II: 29) and advanced-stage (124 cases, stages III: 72 and 
stage IV: 52) groups. The patient cohort was further 
divided into a training (n = 122) and a test cohort (n = 51) 
at a ratio of 7:3. The baseline characteristics of patients in 
the training and test cohorts are summarized in Supple-
mentary Table 2, with no significant differences observed 
in the baseline data between the training and test cohorts 
(p > 0.05). Table 1 illustrates the variations in clinical fea-
tures and CT spectral parameters between patients at 
early and advanced stages within the training and test 
cohorts.

Extraction of radiomics features and calculation of 
Radscore
A total of 1,218 features were extracted from the ROI 
based on arterial and portal venous CT images. Detailed 
radiomics features are provided in Supplementary 
Fig.  2. A random selection of 30 patients was made for 
intraobserver analysis, resulting in ICCs of 0.94 ± 0.10 
and 0.92 ± 0.10 for 40-keV VMI-based and PEI-based 
radiomics features, respectively. For interobserver anal-
ysis, the results were 0.86 ± 0.15 and 0.85 ± 0.19, respec-
tively. Features with intra- and interobserver ICCs > 0.75 
(indicating good stability) were selected. Subsequently, 
the mRMR algorithm and LASSO regression were 
employed for further feature selection (Fig. 2). Ultimately, 
19 optimal radiomics features were chosen to construct 
the 40-keV VMI-based radiomics model. In comparison, 
11 optimal radiomics features were selected for the PEI-
based model. The selected features and their correspond-
ing coefficients are presented in Supplementary Fig.  3. 
Equations for the two radiomics models are presented in 
Supplementary Material 2. The Radscore for the 40-keV 
VMI-based and PEI-based models were calculated 
separately utilizing the screened features and the corre-
sponding coefficients. To differentiate between the two 
Radscores, the one derived from the 40-keV VMI model 
was designed as Radscore40keV and the one from the PEI 
model as RadscorePEI.

Performance of the Radscore
Using the optimal cutoff values (Radscore40keV, − 0.008; 
RadscorePEI, 0.651) determined from the training cohort 
based on the maximum Youden index, the test cohort 
underwent dichotomous classification. Substantial dif-
ferences in Radscore40keV and RadscorePEI were observed 
between early-stage and advanced-stage patients with 
PDAC in both the training and test cohorts (p < 0.001) 
(Supplementary Fig. 4). Radscore40keV exhibited a favour-
able AUC of 0.96 (95% CI, 0.87–0.96) in the training 
cohort and 0.94 (95% CI, 0.87-1.00) in the test cohort 
(Fig.  3A and B). RadscorePEI yielded an AUC of 0.92 
(95% CI, 0.86–0.98) in the training cohort and 0.92 (95% 
CI, 0.82–1.00) in the test cohort (Fig.  3C and D). The 
sensitivity (training cohort: 0.95; test cohort: 0.97) and 
accuracy (training cohort: 0.93; test cohort: 0.92) of Rad-
score40keV surpassed those of RadscorePEI (sensitivity: 
training cohort: 0.91, test cohort: 0.86; accuracy: train-
ing cohort: 0.88, test cohort: 0.86) (Table 2). While both 
models demonstrated good diagnostic performance, 
Radscore40keV outperformed RadscorePEI.

Clinical-radiomics model
Utilizing the minimum AIC principle (AIC min = 102.42), 
stepwise regression analysis identified independent clini-
cal risk factors influencing PDAC staging. Finally, two 

http://www.r-project.org


Page 6 of 13Wu et al. Cancer Imaging           (2024) 24:55 

clinical features, namely, tumour diameter and NID at 
the portal venous phase (NID-PVP), were selected to 
construct the clinical model. The variance inflation fac-
tors (VIFs) of the two clinical variables were less than 
five, indicating no collinearity.

Compared with the PEI-based radiomics model, the 
40-keV VMI-based radiomics model demonstrated 
potentially superior performance. Therefore, the 40-keV 
VMI-based radiomics model was chosen to construct 
the clinical-radiomics model. An integrated diagnostic 
model was developed by incorporating clinical variables 
using logistic regression. Tumour diameter and NID-PVP 

emerged as independent factors in the clinical-radiomics 
model through multivariate logistic regression. The VIFs 
for the three factors were 1.477, 1.396 and 1.691, respec-
tively. The nomogram incorporating clinical factors and 
Radscore40keV is shown in Fig. 4.

Model evaluation
Optimal cutoff values of 1.175 and 0.625 were selected 
as the stratification thresholds for the clinical model and 
clinical-radiomics model, respectively. Significant differ-
ences were observed between the early- and advanced-
stage groups of the clinical-radiomics model in both the 

Table 1  Baseline characteristics of the PDAC stage model
Characteristics Training cohort (n = 122) p value Test cohort (n = 51) p value

Early stage
(n = 35)

Advanced stage
(n = 87)

Early stage
(n = 14)

Advanced stage
(n = 37)

Age (y) 60.9 ± 6.1 61.9 ± 9.4 0.570 63.2 ± 5.6 58.3 ± 10.8 0.107
Gender 0.380 0.912
  Male 18 (51.4) 54 (62.1) 10 (71.4) 24 (64.9)
  Female 17 (48.6) 33 (37.9) 4 (28.6) 13 (35.1)
BMI 22.5 ± 3.3 22.0 ± 3.1 0.420 23.2 ± 2.5 22.2 ± 3.6 0.322
Smoking 7 (20.0) 20 (23.0) 0.906 3 (21.4) 6 (16.2) 0.981
Diabetes 11 (31.4) 15 (17.2) 0.137 1 (7.1) 5 (13.5) 0.886
Tumour location 0.037* 0.052
  Head and neck 26 (74.3) 45 (51.7) 11 (78.6) 16 (43.2)
  Body and tail 9 (25.7) 42 (48.3) 3 (21.4) 21 (56.8)
Tumour diameter < 0.001* 0.004*
  ≤ 2 cm 8 (22.9) 4 (4.6) 1 (7.1) 1 (2.7)
  > 2–4 cm 24 (68.6) 36 (41.4) 12 (85.7) 14 (37.8)
  > 4 cm 3 (8.5) 47 (54.0) 1 (7.2) 22 (59.5)
CA19-9 0.644 0.244
  < 37 U/ml 8 (22.9) 15 (17.2) 6 (42.9) 8 (21.6)
  ≥ 37 U/ml 27 (77.1) 72 (82.8) 8 (57.1) 29 (78.4)
CA12-5 0.002* 0.937
  < 35 U/ml 27 (77.1) 39 (44.8) 10 (71.4) 26 (70.3)
  ≥ 35 U/ml 8 (22.9) 48 (55.2) 4 (28.6) 11 (29.7)
CEA 0.086 0.608
  < 5 ug/L 22 (62.9) 38 (43.7) 9 (64.3) 19 (51.4)
  ≥ 5 ug/L 13 (37.1) 49 (56.3) 5 (35.7) 18 (48.6)
CTHu-AP (Hu) 107.0 ± 36.5 76.0 ± 23.1 < 0.001* 102.5 ± 40.8 78.7 ± 24.5 0.011*
CTHu-PVP (Hu) 145.9 ± 44.5 105.4 ± 24.4 < 0.001* 138.4 ± 56.0 105.3 ± 26.8 0.004*
ID-AP (mg/ml) 0.8 ± 0.5 0.5 ± 0.3 < 0.001* 0.8 ± 0.4 0.5 ± 0.3 0.010*
ID-PVP (mg/ml) 1.4 ± 0.6 0.9 ± 0.3 < 0.001* 1.2 ± 0.6 0.9 ± 0.3 0.006*
NID-AP 0.09 ± 0.05 0.05 ± 0.03 < 0.001* 0.07 ± 0.03 0.05 ± 0.03 0.028*
NID-PVP 0.3 ± 0.1 0.2 ± 0.1 < 0.001* 0.3 ± 0.1 0.2 ± 0.1 0.010*
IDD (mg/ml) 1.0 ± 0.6 0.8 ± 0.5 0.014* 0.9 ± 0.8 0.7 ± 0.4 0.218*
K-slope-AP 1.1 ± 0.6 0.6 ± 0.3 < 0.001* 1.0 ± 0.6 0.7 ± 0.4 0.006*
K-slope-PVP 1.6 ± 0.6 1.1 ± 0.4 < 0.001* 1.6 ± 0.9 1.1 ± 0.4 0.005*
Zeff-AP 7.8 ± 0.3 7.6 ± 0.2 < 0.001* 7.8 ± 0.3 7.6 ± 0.2 0.008*
Zeff-PVP 8.1 ± 0.3 7.8 ± 0.2 < 0.001* 8.0 ± 0.4 7.8 ± 0.2 0.011*
Note Data are n (%) or mean (standard deviation); data in parentheses are percentages

Abbreviation AP, arterial phase; PVP, portal venous phase; ID, iodine density; NID, normalized iodine density; IDD, Iodine density difference (ID-AP-ID-PVP); CT, 
computed tomography; CA 19–9, carbohydrate antigen 19–9; CA 12–5, carbohydrate antigen 12–9; CEA, carcinoembryonic antigen. K-slope, slope of the attenuation 
curve; Zeff, effective atomic number

*p value < 0.05
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training and test cohorts (p < 0.001). ROC analysis indi-
cated that the AUC of the clinical-radiomics model in the 
training cohort (Fig.  5A) was 0.97 (95% CI: 0.95–1.00), 
and in the test cohort (Fig. 5B), it was 0.91 (95% CI: 0.83–
1.00). In contrast, the AUC of the clinical model in the 
training cohort was 0.87 (95% CI: 0.80–0.95), and in the 
test cohort was 0.76 (95% CI: 0.60–0.93). The sensitivity, 
specificity, and accuracy of the three models are detailed 
in Table 3.

Calibration curves exhibited satisfactory calibration 
capacity for all three models in both the training and 
test cohorts (Supplementary Fig.  5). Results from the 
Hosmer‒Lemeshow test indicated no significant dif-
ferences between the diagnoses from the radiomics 
model (p = 0.905), clinical model (p = 0.606), and clinical-
radiomics model (p = 0.741) in the training cohort, or 
between the radiomic model (p = 0.154), clinical model 
(p = 0.187), and clinical-radiomics model (p = 0.513) in the 
test cohort when compared with the actual results.

Decision curves revealed that the net benefit corre-
sponding to the clinical-radiomics and radiomics models 
significantly exceeded that of the clinical model at differ-
ent threshold probabilities (Fig. 6).

Discussion
This study aimed to develop a non-invasive clinical-
radiomics model based on DLCT for preoperative pre-
diction of the PDAC stage. The spectral DLCT-based 
nomogram integrated a 19-feature radiomics signature 
and clinical factors, including tumour diameter and 
NID-PVP. Our findings demonstrated that the clinical-
radiomics nomogram demonstrated favourable perfor-
mance and might be an effective tool for PDAC staging 
and clinical decision-making.

Spectral CT allows simultaneous acquisition of images 
using two different reconstruction methods, the mixed 
energy image (PEI) generated by iDose4 iterative recon-
struction technology and the single-energy image (VMI) 
obtained from the spectral-based imaging data packet 
(SBI). Low-energy level VMI from DLCT provides supe-
rior image quality, particularly for PDAC evaluation. 
Specifically, the 40-keV VMI offers the most precise 
depiction of tumour lesions and surrounding pancre-
atic vessels without an increase in image noise [22–24]. 
Therefore, the utility of a 40-keV VMI-based radiomics 
model was investigated to assess the PDAC stage, dem-
onstrating promising diagnostic performance. Further-
more, a PEI-based radiomics model was constructed and 
compared with the 40-keV VMI-based radiomics model. 

Fig. 2  Radiomics features selection with the LASSO logistic regression model. (A). 40-keV VMI-based and (B). PEI-based radiomics features selection used 
LASSO with 10-fold cross-validation by the minimum criteria. (C). 40-keV VMI-based and (D). PEI-based radiomics features of the LASSO coefficient pro-
files. Y-axis indicates binomial deviances. The upper x-axis indicates the average number of radiomics features. The lower x-axis indicates the log(λ) value
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Our results revealed that the diagnostic performance of 
the 40-keV VMI-based radiomics model (training cohort 
AUC = 0.96; test cohort AUC = 0.94) surpassed that of the 
PEI-based radiomics model (training cohort AUC = 0.92; 
test cohort AUC = 0.92). The sensitivity (0.95, 0.97) and 

accuracy (0.93, 0.92) of the former were superior to those 
of the latter (sensitivity: 0.91, 0.86; accuracy: 0.88, 0.86) in 
both the training and test cohorts.

A previous DLCT imaging study for PDAC high-
lighted significantly lower image noise in VMI than in 

Table 2  The performance of Radscore40keVand RadscorePEI

Radscore40keV RadscorePEI

Training cohort Test cohort Training cohort Test cohort
AUC 0.96 (0.94–0.99) 0.94 (0.87-1.00) 0.92 (0.86–0.98) 0.92 (0.82-1.00)
ACC 0.93(0.86–0.97) 0.92(0.81–0.98) 0.88 (0.81–0.93) 0.86(0.74–0.94)
SENS 0.95 (0.89–0.99) 0.97 (0.86–0.99) 0.91 (0.83–0.96) 0.86 (0.71–0.96)
SPEC 0.86 (0.70–0.95) 0.79 (0.49–0.95) 0.80 (0.63–0.92) 0.86 (0.57–0.98)
PPV 0.94 (0.88–0.97) 0.92 (0.82–0.97) 0.92 (0.85–0.96) 0.94 (0.82–0.98)
NPV 0.88 (0.74–0.95) 0.92 (0.61–0.99) 0.78 (0.64–0.87) 0.71 (0.51–0.85)
Note The numbers in parentheses are the 95% confidence interval. The bold values represent the optimal value

Abbreviation AUC, areas under receiver operating characteristic curve; ACC, accuracy; SENS, sensitivity; SPEC, specificity; PPV, positive predictive value; NPV, negative 
predictive value

Fig. 3  The performance of the radiomics signature for preoperative diagnosis of PDAC stage. ROC curve of the 40-keV VMI-based radiomics signature in 
(A). the training cohort and (B). the test cohort. ROC curve of the PEI-based radiomics signature in (C). the training cohort and (D). the test cohort
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PEI. Moreover, VMI’s contrast-to-noise ratios (CNRs) 
exhibited a notable increase relative to PEI, with CNRs 
progressively rising with energy decrease. Subjective 
visual assessment scores peaked at 40-keV VMI, fol-
lowed by 50-keV and 60-keV VMIs, all significantly out-
performing PEI [24]. Furthermore, other studies have 
corroborated that VMI at 40  keV offers superior lesion 
detectability compared to conventional PEI [28, 29]. 

These findings provide a theoretical basis for the excep-
tional performance of the 40-keV VMI-based model in 
this study compared to the PEI-based model.

An increasing number of model development 
approaches are moving beyond pure radiomics model 
studies. Instead, they incorporate clinical features along-
side radiology to construct combined clinical-radiomics 
models, enhancing diagnostic or predictive performance 

Fig. 5  Diagnostic performance of clinical-radiomics model for differentiation of early and advanced stage PDAC. The ROC curves of Radscore40keV, clinical 
model and clinical-radiomics model in (A) the training cohort and (B). the test cohort. The red line represents the clinical-radiomics model, the blue line 
represents the Radscore40keV and the yellow line represents the clinical model

 

Fig. 4  Development of the 40-keV VMI-based radiomics nomogram and its performance. Mapping a line upwards based on the actual values of each 
variable onto the Points scale is performed to determine the score for each variable. The scores for all variables are then summed, and a line is drawn 
downwards to establish the overall score on the column chart, denoted as the Total Points. This process is used to predict the Risk probability of a patient 
having advanced-stage pancreatic cancer
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[30–32]. Hence, this study employed multivariable logis-
tic regression to identify the most valuable clinical fac-
tors for PDAC staging. By integrating clinical factors 
with the radiomics signature, a comprehensive model 
with higher predictive efficacy was constructed. The piv-
otal factors selected in this study were tumour diameter 
and NID-PVP. This selection was consistent with previ-
ous research; for instance, Cen et al. identified tumour 
diameter as a crucial clinical factor for PDAC staging, 
reaffirming its significance [33]. Moreover, various stud-
ies have found that iodine density values (ID), especially 
NID, hold substantial value in the early diagnosis of pan-
creatic cancer, differential diagnosis with mass-forming 
chronic pancreatitis, evaluation after chemoradiotherapy, 
recognition of lymph node metastasis, and prediction 
of postoperative recurrence [34–38]. Given the superior 

performance of the 40-keV VMI-based radiomics model, 
it was deemed an independent predictive factor. It 
was combined with NID-PVP and tumour diameter to 
develop a comprehensive clinical-radiomics model, to 
enhance diagnostic accuracy. The results demonstrated 
satisfactory performance with an AUC of 0.97 in the 
training cohort and 0.91 in the test cohort, surpassing 
those of the pure clinical model (training cohort: 0.87, 
training cohort: 0.76). Previous studies integrated tumour 
location, tumour size, CEA, and radiomics features to 
construct a clinical-radiomics model for PDAC staging, 
achieving AUCs of 0.92 in the training cohort and 0.83 
in the test cohort [33]. Our findings outperformed these 
results, possibly attributed to the marginally inferior dis-
play of PDAC lesions in conventional CT images com-
pared to that of spectral CT mono-energy images, which 

Table 3  The performance of different models based on 40 keV VMI
Models AUC SENS SPEC ACC
Radiomics model
Training cohort 0.96 (0.94–0.99) 0.95 (0.89–0.99) 0.86 (0.70–0.95) 0.93 (0.86–0.97)
Test cohort 0.94 (0.87-1.00) 0.97 (0.86–0.99) 0.79 (0.49–0.95) 0.92 (0.81–0.98)
Clinical model
Training cohort 0.87 (0.80–0.95) 0.79 (0.69–0.87) 0.89 (0.73–0.97) 0.82 (0.74–0.88)
Test cohort 0.76 (0.60–0.93) 0.70 (0.53–0.84) 0.71 (0.42–0.92) 0.71 (0.56–0.83)
Clinical-radiomics model
Training cohort 0.97 (0.95-1.00) 0.93 (0.86–0.97) 0.91 (0.77–0.98) 0.93 (0.86–0.98)
Test cohort 0.91 (0.83-1.00) 0.89 (0.75–0.97) 0.71 (0.42–0.92) 0.84 (0.71–0.93)
Note The numbers in parentheses are the 95% confidence interval. The bold values represent the optimal value

Abbreviation VMI, virtual monoenergetic image; AUC, areas under receiver operating characteristic curve; ACC, accuracy; SENS, sensitivity; SPEC, specificity

Fig. 6  Decision curves for Radscore40keV, clinical model and clinical-radiomics model in (A). the training cohort and (B). the test cohort. The red line rep-
resents the clinical-radiomics model. The blue line represents the Radscore40keV and the yellow line represents the clinical model. The X-axis means the 
threshold probability, Y-axis shows the model benefit
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affects accurate identification and delineation [39]. In 
contrast, the 40-keV VMI offers a more precise visualiza-
tion of PDAC lesions and surrounding vessels, facilitating 
accurate ROI delineation and improving the accuracy of 
lesion segmentation. NID-PVP enables quantitative anal-
ysis of lesion enhancement levels, which is more precise 
and objective than traditional visual observation.

Another vital aspect to consider in clinical predic-
tion models is their clinical utility. Calibration curves 
and DCA were employed to assess the performance of 
the DLCT-based clinical-radiomics nomogram [40]. 
The results indicate that the clinical-radiomics nomo-
gram outperforms the pure clinical model in the training 
and test cohorts. Moreover, the two predictive indica-
tors integrated into the combined nomogram are read-
ily obtainable from routine examinations. Therefore, 
the CT-based nomogram can be a non-invasive, conve-
nient, and accessible tool for preoperative differentiation 
between early- and advanced-stage PDAC.

In current clinical practice, aside from TNM (AJCC) 
staging, the preoperative staging system commonly used 
to aid clinicians in decision-making includes resectability 
assessment. The most widely-used National Comprehen-
sive Cancer Network (NCCN) guideline classifies PDAC 
resectability into three groups based on the degree of 
tumour vascular contact: resectable, borderline resect-
able, and locally advanced disease, as determined by 
preoperative enhanced CT [9]. However, assessment 
based on CT of significant vascular invasion is highly 
subjective and dependent on experienced radiologists 
[41]. A prospective multicentre study reported signifi-
cant interobserver variability, with an agreement of only 
0.55 in determining vascular involvement by CT [42]. 
Furthermore, some patients initially considered ideal 
for resection are postoperatively confirmed to have 
advanced-stage disease, resulting in poor prognoses [43]. 
The assessment of resectability solely involves a morpho-
logical evaluation of the extent of vascular involvement 
by tumours, failing to identify patients with occult metas-
tases and aggressive biology [44, 45]. For these patients, 
surgical resection entails uncertain benefits. Therefore, 
ensuring precise preoperative staging of patients is essen-
tial for clinicians, complementing resectability assess-
ments and guiding clinical decisions. For patients with 
early-stage disease who are deemed, suitable for surgical 
resection, it suggests the necessity for prompt surgical 
intervention. However, for patients with advanced-stage 
disease who are still considered candidates for surgical 
resection, it underscores the importance of active par-
ticipation in MDT to carefully deliberate the decision 
for surgical intervention, given the typically poor sur-
vival outcomes observed post-surgery in these patients. 
Therefore, a preoperative staging model for pancreatic 
cancer was developed based on relatively objective and 

readily accessible indicators. The objective was to assist 
clinicians in accurately determining tumour progression 
stages and effectively predicting prognosis.

There were some limitations to our study. Firstly, the 
sample size was relatively small, warranting further stud-
ies with a larger cohort of patients to validate our find-
ings. Secondly, this study was conducted at a single 
centre without external or independent validation. Future 
research initiatives will involve collaborative efforts 
across multiple centres to augment the model’s stability 
and robustness. Thirdly, manual tumour segmentation 
proved time-consuming, highlighting the need to develop 
automatic segmentation methods in future studies.

Conclusions
A nomogram approach was developed and validated 
based on spectral CT imaging. This approach integrates 
radiomics features with CT spectral parameters (NID-
PVP) and clinical factors (tumour diameter), assisting cli-
nicians in preoperatively predicting the PDAC stage. This 
approach represents a non-invasive, efficient, and feasible 
tool for PDAC staging, assisting in clinical decision-mak-
ing for patients with PDAC.
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