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Abstract 

Objectives  Tumor spread through air spaces (STAS) is associated with poor prognosis and impacts surgical options. 
We aimed to develop a user-friendly model based on 2-[18F] FDG PET/CT to predict STAS in stage I lung adenocarci-
noma (LAC).

Materials and methods  A total of 466 stage I LAC patients who underwent 2-[18F] FDG PET/CT examination 
and resection surgery were retrospectively enrolled. They were split into a training cohort (n = 232, 20.3% STAS-
positive), a validation cohort (n = 122, 27.0% STAS-positive), and a test cohort (n = 112, 29.5% STAS-positive) according 
to chronological order. Some commonly used clinical data, visualized CT features, and SUVmax were analyzed to iden-
tify independent predictors of STAS. A prediction model was built using the independent predictors and validated 
using the three chronologically separated cohorts. Model performance was assessed using ROC curves and calcula-
tions of AUC.

Results  The differences in age (P = 0.009), lesion density subtype (P < 0.001), spiculation sign (P < 0.001), bronchus 
truncation sign (P = 0.001), and SUVmax (P < 0.001) between the positive and negative groups were statistically signifi-
cant. Age ≥ 56 years [OR(95%CI):3.310(1.150–9.530), P = 0.027], lesion density subtype (P = 0.004) and SUVmax ≥ 2.5 g/ml 
[OR(95%CI):3.268(1.021–1.356), P = 0.005] were the independent factors predicting STAS. Logistic regression was used 
to build the A-D-S (Age-Density-SUVmax) prediction model, and the AUCs were 0.808, 0.786 and 0.806 in the training, 
validation, and test cohorts, respectively.

Conclusions  STAS was more likely to occur in older patients, in solid lesions and higher SUVmax in stage I LAC. The 
PET/CT-based A-D-S prediction model is easy to use and has a high level of reliability in diagnosing.
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Introduction
Lung cancer is a deadly disease with the second high-
est incidence and the highest mortality among all 
cancers worldwide, and lung adenocarcinoma (LAC) 
is the most common histological subtype of lung can-
cer [1, 2]. Spread through air spaces (STAS) which is 
defined as “micropapillary clusters, solid nests, or sin-
gle tumor cells within airspaces beyond the edge of 
the main tumor”, as a new pathologic feature of tumor 
invasion, was formally proposed by the World Health 
Organization (WHO) classification of lung cancer in 
2015 [3, 4]. In accordance with most literature reports, 
the incidence of STAS is approximately 15–40% [5]. 
Poor prognosis in lung cancer can be attributed to 
this important risk factor [6–8]. For stage I-III LAC, 
patients without STAS have significantly better recur-
rence-free survival (RFS) and overall survival (OS) 
compared to those with STAS [9]. This observation 
suggests that STAS-positive patients might warrant 
closer clinical follow-up. A retrospective study found 
that, for patients with STAS-positive stage I LAC, the 
risk of 5-year recurrence-free probability (RFP) after 
sublobar resection was significantly higher than that 
after lobectomy (48% vs. 66%; P = 0.010) [10]. This 
means that it is more necessary for such STAS-positive 
patients to undergo lobectomy to reduce the possibility 
of recurrence. Therefore, it is important to accurately 
predict STAS before operation in order to decrease the 
risk of relapse in patients with stage I LAC.

Several CT signs have been demonstrated to predict 
STAS, including density, CT long diameter, spiculation 
and so on [6, 11–16]. 2-deoxy-2-[18F]fluoro-D-glucose 
(2-[18F] FDG) positron emission tomography–com-
puted tomography (PET/CT) imaging can simul-
taneously reflect the morphological and metabolic 
characteristics of the lesion, which play important 
roles in the diagnosis of lung cancer and identification 
of distant metastases [17]. The maximum standard-
ized uptake value (SUVmax) has also been shown to be 
of great importance in predicting STAS before surgery 
[6, 12].

Our objective was to create a user-friendly model 
that can predict the STAS status of patients with stage 
I LAC who have undergone preoperative 2-[18F] FDG 
PET/CT examination. The model includes only clinical 
and imaging data that can be directly accessed by tho-
racic surgeons, which is significant. The optimization 
of the surgical plan can be achieved by predicting the 
STAS status before surgery. By screening out high-risk 
patients who are more suitable for lobectomy, the like-
lihood of tumor recurrence can be minimized.

Materials and methods
Patients
This study complies with the principles of the Declara-
tion of Helsinki and was approved by the Ethics Com-
mittee of the Affiliated Hospital of Qingdao University 
(Approval Number: QYFY WZLL 27218).

During January 2019 to December 2022, 466 patients 
with stage I LAC who received complete resection of the 
primary lung tumor and standard lymph node dissection 
at our hospital were retrospectively analyzed for data col-
lection, including 161 males and 305 females (median 
age, 62 years; interquartile range, 55–67 years).

Inclusion criteria: The 2-[18F] FDG PET/CT was per-
formed within 2 weeks preoperatively; the maximum 
diameter of lesions in CT images ≤4 cm; and the post-
operative pathology confirmed the LAC without lymph 
node metastases and a clear STAS status. Patients 
received tumor-related treatment before operation 
(n = 4), patients with multiple lesions (n = 7), incomplete 
clinical data (n = 9), or previous history of other malig-
nancies (n = 11) were excluded (Fig. 1).

According to the postoperative pathological results, 
all patients were classified as either STAS-positive or 
STAS-negative. The patients were grouped into a train-
ing cohort (January 2019 to December 2020; 232 cases), 
a validation cohort (January 2021 to December 2021; 
122 cases), and a test cohort (January 2022 to December 
2022; 112 cases) based on the date of surgery.

Clinical data collection
Clinical information was obtained through an electronic 
medical record system, including age, sex, localization, 
and serum levels of carcinoembryonic antigen (CEA) 
within 3 weeks prior to surgery.

Imaging method and image analysis
The 2-[18F] FDG radiotracer was prepared using a cyclo-
tron (Sumitomo Heavy Industries, Ltd. Tokyo, Japan) 
automated synthesis module, with radiochemical purity 
> 95% and pH 4–8. Patients were injected with 5.5–
6.6 MBq/kg (0.1 mCi/kg) of 2-[18F] FDG under the prem-
ise of fasting for at least 6 hours and plasma glucose of 
less than 11.1 mmol/L. One hour later, the bladder was 
emptied and then PET/CT images were collected. 2-[18F] 
FDG PET/CT was performed on a GE Discovery VCT 
PET/CT scanner, with the scanning range from the skull 
base to the mid-thigh level. A CT scan (scanning param-
eters: slice thickness 5 mm, tube current 110 mA, tube 
voltage 120 kV, frame rotation speed 0.7 r/s, bed speed 
29.46 cm/s, matrix 512 × 512) was done first, followed 
by a PET scan (scanning parameters: matrix 128 × 128, 
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8–9 bed positions, 1.5–3.0 min/bed position). CT and 
PET images, which were reconstructed with decay cor-
rection and ordered subset expectation maximization 
(OSEM) algorithms were fused and reviewed on a Xeleris 
workstation. In addition, all patients involved underwent 
deep-inspiration breath-hold chest thin-slice CT scan 
(scanning parameters: layer thickness 1.25 mm, matrix 
512 × 512); preset lung window (window width 1200 
Hounsfield units (HU), window level − 700 HU).

The morphologic characteristics on CT and SUVmax of 
the lesions were independently analyzed by two Nuclear 
Medicine physicians who had more than 5 years of expe-
rience in the interpretation of PET/CT images. In cases 
where there is a disagreement between them, a physician 
with over 10 years of experience would join them, and 
they eventually came to a consensus through discussion. 
They were blinded to pathological details when reading 
the images. The lesion density was classified into three 
subtypes: pure ground-glass, part-solid, and solid. Other 
morphologic characteristics included CT long diameter, 
lobulation, spiculation, satellite, air bronchogram, vessel 
convergence, and bronchial truncation.

Adjudication of STAS status
Hematoxylin-eosin (HE) sections and immunohisto-
chemical sections of all histological samples of lung tissue 
were observed under a light microscope. When micro-
papillary clusters, solid nests, or single tumor cells are 
observed beyond the edge of the tumor into air spaces 
in the surrounding lung parenchyma, STAS is diagnosed 

after being checked correctly by two thoracic patholo-
gists [3].

Statistical analysis
IBM SPSS v26.0 and GraphPad Prism v9.5.1 were used for 
statistical processing and graphing. We express quantita-
tive variables as mean ± standard deviation (−X ± SD) or 
median (quartile) [M (Q1, Q3)] and qualitative variables as 
frequencies (percentages). The categorical data were ana-
lyzed using χ2 test. Because all measurement data did not 
meet the normal distribution, Mann–Whitney U test was 
used for analysis. Independent predictors of STAS were 
selected by univariate and multivariate logistic regression 
analyses performed on the clinical data, CT features, and 
SUVmax in the training cohort. Subsequently, a prediction 
model was built using the independent predictors by logis-
tic regression and validated through the three chronologi-
cally separated cohorts. Model performance was assessed 
using receiver operating characteristic (ROC) curves and 
calculations of area under the curves (AUC). The Hosmer-
Lemeshow test was employed to measure the goodness-of-
fit. All mentioned P-values were two-tailed and a Ρ < 0.05 
was considered statistically significant.

Results
Patients’ data
In the training cohort, STAS was positive in 47 (20.3%) 
of the 232 subjects. In the validation cohort, STAS 
was positive in 33 (27.0%) of the 122 subjects. In the 
test cohort, STAS was positive in 33 (29.5%) of the 112 

Fig. 1  Flow chart of the inclusion and exclusion criteria. STAS, spread through air space
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subjects. The distribution of pathological characteristics 
among the three cohorts of patients did not differ statis-
tically (χ2 = 4.19, P > 0.05). The univariate analysis results 
showed that the differences of age (z = − 2.61, P = 0.009), 
lesion density subtype (χ2 = 38.60, P < 0.001), spicula-
tion sign (χ2 = 14.53, P < 0.001), bronchus truncation sign 
(χ2 = 10.41, P = 0.001), and SUVmax (z = − 5.58, P < 0.001) 
between positive and negative groups were statistically 
significant (Table 1). According to the maximum value of 

Youden’s index of the ROC curve, the age of 56 years and 
SUVmax of 2.5 g/ml were identified as the optimal cut-off 
values.

Typical PET/CT images and histopathological images 
for the two groups are displayed in Figs. 2, 3, 4 and 5. 
(Notes: (a) Axial CT images in the lung window; (b) 
Axial PET images; (c) Axial fused PET/CT images; (d) 
Axial chest thin-slice CT scan images in the lung win-
dow; (e) pathological images).

Table 1  Clinical factors, CT features, and SUVmax of the patients in the training cohort

STAS tumor spread through air spaces, SUVmax the maximum standardized uptake value
* Statistically significant, P < 0.05; **Statistically significant, P < 0.001

Variables STAS status Sig. P-value

Positive (n = 47) Negative (n = 185)

Sex, male [n, (%)] 19 (40.4%) 55 (29.7%) 1.974 0.160

Age [year, M (Q1, Q3)] 64 (58,69) 62 (54,66) −2.611 0.009*

Age ≥ 56 years 42 (89.4%) 132 (71.4%) 6.484 0.013*

CEA [ng/ml, M (Q1, Q3)] 2.20 (1.45, 3.07) 1.98 (1.17, 3.05) −0.903 0.368

CEA > 3.4 ng/ml 9 (19.1%) 35 (41.2%) 0.001 0.971

Localization—lung (left) 20 (42.6%) 72 (38.9%) 0.207 0.649

CT long diameter [mm, M (Q1, Q3)] 24.00 (17.70, 30.60) 21.20 (15.50, 28.75) −1.396 0.163

Lesion density subtype 38.601 < 0.001**

  pure ground-glass 3 (6.4%) 52 (28.1%)

  part-solid 12 (25.5%) 93 (50.3%)

  solid 32 (68.1%) 40 (21.6%)

Lobulation 43 (91.5%) 155 (83.8%) 1.779 0.182

Spiculation 28 (59.6%) 55 (29.7%) 14.529 < 0.001**

Satellite 2 (4.3%) 3 (0.02%) 0.300 0.584

Air bronchogram 24 (51.1%) 86 (46.5%) 0.315 0.575

Vessel convergence 30 (63.8%) 111 (60.0%) 0.231 0.631

Bronchial truncation 13 (27.7%) 18 (9.7%) 10.408 0.001*

SUVmax [g/ml, M (Q1, Q3)] 3.20 (2.04, 7.82) 1.56 (0.99, 2.36) −5.579 < 0.001**

SUVmax ≥ 2.5 g/ml 32 (68.1%) 43 (23.2%) 34.448 < 0.001**

Fig. 2  56-year-old female with invasive adenocarcinoma in the left upper lobe, STAS (−). On axial CT in the lung window (a) and axial chest 
thin-slice CT (d), a pure ground-glass lesion which is about 1.5 × 2.0 cm can be observed, lobulation sign and vessel convergence can be seen. Axial 
PET (b) and axial fused PET/CT (c) show the SUVmax of the lesion is 1.4 g/ml. Photomicrograph (hematoxylin-eosin stain, magnification × 400) (e) 
shows no tumor tissue in the alveolar cavity outside the edge (dashed line) of the tumor (triangle)
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Fig. 3  46-year-old female with invasive adenocarcinoma in the left lower lobe, STAS (−). On axial CT in the lung window (a) and axial chest 
thin-slice CT (d), a part-solid lesion which is about 1.1 × 1.6 cm can be observed. Axial PET (b) and axial fused PET/CT (c) show the SUVmax 
of the lesion is 1.9 g/ml. Photomicrograph (hematoxylin-eosin stain, magnification × 400) (e) shows no tumor tissue in the alveolar cavity 
outside the edge (dashed line) of the tumor (triangle)

Fig. 4  61-year-old female with invasive adenocarcinoma in the right upper lobe, STAS (+). Axial CT in the lung window (a) and axial chest thin-slice 
CT (d) show that the part-solid nodule is about 2.7 × 2.0 cm with lobulation, spiculation, pleural indentation and vessel convergence. Axial PET (b) 
and axial fused PET/CT (c) show the SUVmax of the lesion is 6.3 g/ml. In photomicrograph (hematoxylin-eosin stain, magnification × 400) (e), tumor 
tissues (black arrow) are observed in the alveolar spaces beyond the edge (dashed line) of the main tumor (triangle)

Fig. 5  70-year-old female with invasive adenocarcinoma in the right upper lobe, STAS (+). Axial CT in the lung window (a) and axial chest thin-slice 
CT (d) show that the solid nodule is about 1.5 × 2.0 cm with lobulation, spiculation, vessel convergence and bronchial truncation. Axial PET (b) 
and axial fused PET/CT (c) show the SUVmax of the lesion is 7.2 g/ml. In photomicrograph (hematoxylin-eosin stain, magnification × 400) (e), tumor 
tissues (black arrow) are observed within air spaces in the surrounding lung parenchyma adjacent to the boundary (dashed line) of the bulk 
of the tumor (triangle). STAS, tumor spread through air spaces; SUVmax, the maximum standardized uptake value
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Logistic regression analysis
The above statistically significant (P < 0.05) param-
eters were incorporated into univariate and multi-
variate logistic regression analysis. The results showed 
that age ≥ 56 years [OR (95%CI): 3.310 (1.150–9.530), 
P = 0.027], lesion density subtype (P = 0.004) and 
SUVmax ≥ 2.5 g/ml [OR (95%CI): 3.268 (1.021–1.356), 
P = 0.005] were the independent factors predicting STAS 
(Table 2).

Establishment and verification of the prediction model
Ultimately, the above three independent predictors 
were chosen to establish the A-D-S (Age-Density-
SUVmax) logistic regression risk prediction model: P = 1 
/ (1 + e-x), where e = 2.718…is the natural constant, 
x = − 3.871 + A + D + S. Among them, “A” assumes 1.243 
when the age ≥ 56 years, otherwise it assumes 0; “D” 
is assigned to 0, 0.321, or 1.829 when the lesion den-
sity subtype is pure ground-glass, part-solid or solid, 
respectively; “S” takes 1.249 when SUVmax ≥2.5 g/ml, 
otherwise it takes 0. The model has a good fit (Hosmer–
Lemeshow test: P = 0.959).

In the training, validation and test cohorts, the AUCs 
of the A-D-S risk prediction model were 0.808 (95%CI: 
0.738–0.880), 0.786 (95%CI: 0.700–0.872) and 0.806 
(95%CI: 0.720–0.892), respectively; sensitivity was 0.766, 
0.818, and 0.788, respectively; and specificity was 0.735, 
0.697, and 0.684, respectively (Fig. 6).

Discussion
The differentiation of benign and malignant pulmonary 
nodules and the risk stratification of lung cancer have 
always been the focus of clinical research, as an adverse 
prognostic factor for lung cancer, STAS has attracted 
widespread attention from clinicians, radiologists, and 
pathologists recently. Sublobar resection is one of the 
primary modes of treatment for stage I LAC [18–20]. 

However, according to a study, patients with STAS are at 
a greater risk of recurrence after sublobar resection [21]. 
Therefore, the STAS status of patients with stage I LAC 
affects the choice of surgical approach. The likelihood of 
recurrence can be reduced by judging the STAS status of 
the tumor preoperatively and performing lobectomy in 
patients with suspected positivity when conditions per-
mit. Perhaps due to the limited scope of materials and 
other reasons, presurgical bronchial cytology is not suf-
ficient to accurately predict tumor STAS [22], and the 
diagnostic efficacy of intraoperative frozen pathology 
is also controversial [21, 23, 24]. By using a simple and 
reliable method to predict the STAS status of lung can-
cer, patients could be stratified effectively, and surgical 

Table 2  Univariate and multivariate logistic regression analysis of the independent association between risk factors and STAS

STAS tumor spread through air spaces, OR odds ratio, SUVmax the maximum standardized uptake value
* Statistically significant, P < 0.05; **Statistically significant, P < 0.001; aThe pure ground-glass group was considered the reference

Risk factors Univariate logistic regression Multivariate logistic regression

OR 95%CI P-value OR 95%CI P-value

Age ≥ 56 years 3.373 1.265–8.991 0.015* 3.310 1.150–9.530 0.027*

Lesion density subtypea < 0.001** 0.004*

    part-solid 2.237 0.604–8.288 0.228 1.165 0.282–4.813 0.833

    solid 13.867 3.960–48.553 < 0.001** 3.268 1.416–7.539 0.043*

Spiculation 3.483 1.796–6.756 < 0.001** 1.452 0.642–3.286 0.371

Bronchial truncation 3.547 1.589–7.919 0.002* 1.485 0.574–3.841 0.415

SUVmax ≥ 2.5 g/ml 7.045 3.492–14.212 < 0.001** 3.268 1.416–7.539 0.005*

Fig. 6  The ROC curves evaluating the predictive efficiency 
of the A-D-S risk prediction model. ROC, receiver operating 
characteristic; AUC​, area under the curve; A-D-S, Age-Density-SUVmax
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plans could be developed appropriately, which could 
potentially improve the prognosis of patients. This makes 
research on predicting STAS based on preoperative 
imaging a hot topic.

In this study, the age of STAS-positive patients was 
slightly older than that of STAS-negative patients, which 
was the same as the result reported by Chae et  al. [25]. 
This may be related to the natural history of the tumor. 
It usually takes several years for carcinoma in situ to pro-
gress to microinvasive adenocarcinoma and then to inva-
sive adenocarcinoma. During this process, as the tumor 
invasiveness increases, the cancer cells are more likely 
to dissociate into the airway outside the main body of 
the tumor and develop STAS. Jiang et al. [26] concluded 
that STAS-positive patients were younger, which may be 
related to the lack of staging screening when the study 
included cases. In short, the correlation between age and 
STAS needs to be further studied.

A quantitative study showed that every time the con-
solidation percentage on CT increased by 1%, the risk of 
STAS increased more than 3-fold in early non-small cell 
lung cancer [12]. We arrived at a similar conclusion: for 
stage I lung adenocarcinoma whose lesion density sub-
type was pure ground glass, part-solid and solid, the inci-
dence of STAS increased gradually. The conclusion is also 
consistent with that reported by Kim et al. [11]. Moreo-
ver, this classification method avoids the errors caused by 
manual measurement when calculating the consolidation 
percentage. In addition, lung cancer with pure ground 
glass density on CT was considered to be free of STAS in 
most previous studies. However, in this study, STAS also 
appeared in these lesions with a small probability (4/103, 
3.88%), which was consistent with the findings of previ-
ous studies [16, 27].

SUV value is the most commonly used semi-quanti-
tative index of 2-[18F] FDG PET/CT, which can reflect 
the activity of glucose metabolism in tumor tissue and is 
closely related to the degree of risk and biological inva-
siveness of tumor [28]. In this study, the occurrence prob-
ability of STAS was positively correlated with SUVmax, 
which could be explained by the greater metabolic activ-
ity and aggressiveness of STAS-positive LAC. Further-
more, we found that SUVmax ≥ 2.5 g/ml was the optimal 
cut-off value to predict STAS, which is coincidentally 
consistent with previous research results [6].

In recent years, several models have been proposed to 
predict STAS and have achieved good prediction perfor-
mance. For example, a model established by Liao et  al. 
[29] based on radiomics to predict STAS of clinical stage 
I LAC achieved an AUC of 0.871 (95%CI: 0.820–0.922) 
and 0.869 (95%CI: 0.776–0.961) in the validation and test 
cohorts, respectively. It can be seen that the diagnostic 
performance of this model is indeed higher than that of 

the A-D-S model. However, the advantage of the A-D-S 
model is that it is easier to use and more timesaving. Li 
et al. [14] developed a CT-based logistic regression pre-
diction model that achieved AUCs of 0.801 (95%CI: 
0.709–0.892) and 0.692 (95%CI: 0.518–0.866) in the vali-
dation and external test cohorts, respectively. The diag-
nostic efficiency of this model is similar to that of A-D-S, 
but they did not stage the tumor when they included the 
data, which might lead to an increase in confounding fac-
tors, further resulting in exaggeration or underestimation 
of the prediction performance. In our study, we specifi-
cally targeted clinical stage I LAC, and the three param-
eters included in the model could be obtained directly 
from medical records and PET/CT reports and images 
without complex post-processing. Therefore, as a user-
friendly model, compared with the above two studies, the 
A-D-S prediction model has better clinical practicality.

The deficiencies of this study are as follows. First, the 
CT imaging features included in the study are subjec-
tive. To guarantee the repeatability of these factors, we 
employed 2–3 senior doctors to read the images. Second, 
because this was a single-center study, we used tempo-
ral validation to verify the effectiveness of the model. 
Although this method is better than internal validation, it 
is evident that there are numerous similarities among the 
three patient cohorts and among the clinical and labora-
tory techniques employed in their evaluation. Therefore, 
the evaluation of the generalization ability of this verifica-
tion method is not as good as that of external verification 
[30]. Third, the sample size was relatively small. Follow-
up large-scale multicenter prospective studies are needed 
to confirm the conclusions of this study, to better provide 
a clinic basis.

Conclusion
The STAS status of stage I lung adenocarcinoma is related 
to multiple PET/CT imaging features. Age, lesion density 
subtype, and SUVmax are independent predictors of STAS 
in stage I LAC. This study included the above three fac-
tors to establish a STAS risk prediction model. The model 
has good prediction performance. More importantly, 
it can be conveniently used in the clinic to evaluate the 
STAS status of stage I lung adenocarcinoma before sur-
gery. It can help thoracic surgeons optimize surgical pro-
cedures with a view to improving patient prognosis.
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