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Abstract
Background  American College of Radiology (ACR) Thyroid Imaging Reporting and Data System (TI-RADS, TR) 4 and 5 
thyroid nodules (TNs) demonstrate much more complicated and overlapping risk characteristics than TR1-3 and have 
a rather wide range of malignancy possibilities (> 5%), which may cause overdiagnosis or misdiagnosis. This study was 
designed to establish and validate a dual-modal ultrasound (US) radiomics nomogram integrating B-mode ultrasound 
(BMUS) and contrast-enhanced ultrasound (CEUS) imaging to improve differential diagnostic accuracy and reduce 
unnecessary fine needle aspiration biopsy (FNAB) rates in TR 4–5 TNs.

Methods  A retrospective dataset of 312 pathologically confirmed TR4-5 TNs from 269 patients was collected for our 
study. Data were randomly divided into a training dataset of 219 TNs and a validation dataset of 93 TNs. Radiomics 
characteristics were derived from the BMUS and CEUS images. After feature reduction, the BMUS and CEUS radiomics 
scores (Rad-score) were built. A multivariate logistic regression analysis was conducted incorporating both Rad-scores 
and clinical/US data, and a radiomics nomogram was subsequently developed. The performance of the radiomics 
nomogram was evaluated using calibration, discrimination, and clinical usefulness, and the unnecessary FNAB rate 
was also calculated.

Results  BMUS Rad-score, CEUS Rad-score, age, shape, margin, and enhancement direction were significant 
independent predictors associated with malignant TR4-5 TNs. The radiomics nomogram involving the six variables 
exhibited excellent calibration and discrimination in the training and validation cohorts, with an AUC of 0.873 (95% 
CI, 0.821–0.925) and 0.851 (95% CI, 0.764–0.938), respectively. The marked improvements in the net reclassification 
index and integrated discriminatory improvement suggested that the BMUS and CEUS Rad-scores could be 
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Background
Thyroid ultrasound (US) is the first-line imaging choice 
to detect thyroid nodules (TNs) and differentiate benign 
TNs from malignant nodules [1]. Over the past few 
decades, the incidence rates of both TNs and thyroid 
cancer have increased due to the prevalence of ultra-
sonography and fine needle aspiration biopsy (FNAB), 
respectively [2]. However, using ultrasonography to dif-
ferentiate benign and malignant TNs is strongly opera-
tor-dependent and has a great interobserver variation. To 
fulfill standardized management of TNs, the Committee 
of the American College of Radiology (ACR) published 
a white paper in 2017 based on comprehensive scores 
of five US grayscale features, including internal compo-
sition, echogenicity of the solid part, shape, margin, and 
echogenic foci called ACR Thyroid Imaging Reporting 
and Data System (TI-RADS, TR) [3]. This risk stratifica-
tion system presented different risk levels from TR1 to 
TR5 for classifying TNs and guided whether to undergo 
FNAB or US follow-up according to their maximum 
diameter. However, it is a challenging issue to differenti-
ate benign from malignant TR4-5 TNs, as they demon-
strate much more complicated features and overlapping 
compositions, echoes, boundaries, and morphologies 
than TR1-3 TNs [4]. Moreover, TR4-5 TNs exhibit a 
broad spectrum of potential malignancy rates (> 5%), 
which could result in excessive diagnosis or incorrect 
diagnosis, leading to unnecessary FNAB and thyroid sur-
gery, and ultimately impacting the individual’s quality 
of life adversely. Therefore, the development of an accu-
rate and noninvasive diagnostic method is expected to 
improve diagnostic accuracy and decrease unnecessary 
FNAB for TR4-5 TNs.

Apart from the morphologic information provided by 
B-mode ultrasound (BMUS), intra-nodular blood flow 
distribution, and vascular characteristics also have an 
important role in differentiating benign and malignant 
TNs [5]. As a noninvasive ultrasonic technology for eval-
uating microvascular perfusion in TNs in daily clinical 
practice, contrast-enhanced ultrasound (CEUS) is com-
monly served as an important complement to BMUS and 
has been demonstrated to improve the diagnostic speci-
ficity in combination with grayscale US in the evaluation 

of TNs [6]. It was also reported in a meta-analysis that 
both qualitative and quantitative CEUS showed a good 
performance in differentiating between benign and 
malignant TNs [7]. Previous studies have reported 
heterogeneous hypo-enhancement is the most com-
mon predictor of malignancy, while homogeneous iso/
hyperenhancement or a ring enhancement pattern likely 
indicates a benign nodule on CEUS [8]. However, over-
lapping characteristics of CEUS criteria of benign and 
malignant TNs and observer variability still exist [9]. In 
fact, no single ultrasonic mode is perfect with sufficient 
sensitivity or specificity. Furthermore, medical profes-
sionals assess the danger of TNs and subsequently deter-
mine the course of action based on a thorough evaluation 
of clinical and US data. Hence, these complementary US 
techniques should be in conjunction with other clinical 
data to improve diagnostic accuracy in evaluating TNs.

In recent times, radiomics analysis of medical imag-
ing has emerged as a popular research area in the field 
of artificial intelligence, owing to its ability to overcome 
the inherent subjectivity associated with the traditional 
visual interpretation of medical images and transform 
imaging data into objective quantitative biomarkers using 
cutting-edge computational techniques [10]. Prior stud-
ies have demonstrated that the radiomic features of US 
can aid in distinguishing between benign and malignant 
TNs [11–13]. However, referring to differentiating benign 
and malignant TR4-5 TNs, the integrated system of com-
bining deep learning network and traditional machine 
learning radiomics network developed by Wang et al. 
only got an area under the receiver operating characteris-
tic curve (AUC) of 0.800 and an accuracy of 76.8% in the 
test set [4]. Wu et al. found that the performance of deep 
learning convolutional neural networks was also weaker 
in the combined TR4 and TR5 datasets than separated 
TR4 dataset or TR5 dataset, with an AUC of 0.829 and 
accuracy of 78.4% in the independent external test set, 
which might be correlated with a more complex task 
when mixing different imaging features in TR4 and TR5 
TNs [14]. As differentiating benign and malignant TR4-5 
TNs was a tough task for radiologists, our study mainly 
focused on how to improve diagnostic accuracy in dif-
ferentiating benign nodules from malignant TR4-5 TNs, 

valuable indicators for distinguishing benign from malignant TR4-5 TNs. Decision curve analysis demonstrated that 
our developed radiomics nomogram was an instrumental tool for clinical decision-making. Using the radiomics 
nomogram, the unnecessary FNAB rate decreased from 35.3 to 14.5% in the training cohort and from 41.5 to 17.7% in 
the validation cohorts compared with ACR TI-RADS.

Conclusion  The dual-modal US radiomics nomogram revealed superior discrimination accuracy and considerably 
decreased unnecessary FNAB rates in benign and malignant TR4-5 TNs. It could guide further examination or 
treatment options.

Keywords  ACR TI-RADS 4–5, Thyroid nodules, Contrast-enhanced ultrasound, Radiomics, Nomogram
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which had much more complicated characteristics than 
TR1-3 TNs.

A nomogram is an individualized evidence-based 
graphical model used to predict clinical outcomes in a 
concise and objective manifestation. Some studies have 
shown that nomograms incorporating clinical and US 
risk factors such as age, echogenicity, shape, margin, and 
echogenic foci help in predicting malignant TNs [15, 16]. 
We assumed that a nomogram involving clinicopatho-
logical features, visual evaluation, and radiomics-derived 
data of BMUS and CEUS images to obtain better predic-
tive performance for ACR TI-RADS 4–5 TNs. To the 
best of our knowledge, no previous studies have exam-
ined whether a nomogram including CEUS radiomics 
traits could more effectively distinguish benign and 
malignant ACR TI-RADS 4–5 TNs. Therefore, this study 
was designed to establish and validate a dual-modal US 
radiomics nomogram integrating BMUS and CEUS 
imaging to improve the accuracy of diagnosis and reduce 
unnecessary FNAB rates in ACR TI-RADS 4 and 5 TNs.

Methods
Patients
Between December 2019 and November 2022, consecu-
tive patients with TNs were collected. This retrospective 
study was approved by the hospital Institutional Review 
Board and the informed consent for using patient data 
was waived. However, informed consent for the CEUS 
examinations was obtained from all patients.

The inclusion criteria were as follows: (1) ACR TI-
RADS 4 and 5 category TNs; (2) US data of BMUS and 
CEUS and basic clinical data were complete; (3) the nod-
ule had definite surgical pathological or FNAB results.

The exclusion criteria were as follows: (1) nodules with 
benign cytological findings not validated by two repeat 
FNABs or experiencing enlargement on US or an altera-
tion of ACR TI-RADS classification over a minimum of 
six months’ surveillance; (2) the patients who had a his-
tory of FNAB or ablation; (3) the nodule is too large to 
reveal the whole lesion or has no surrounding normal 
parenchyma as a reference.

Ultimately, a total of 312 nodules from 269 patients 
(mean age, 40.17 ± 11.31 years, range, 18–69 years; 53 
men and 216 women) were enrolled in our study. All 
nodules were randomly divided into the training group 
(n = 219) and the validation group (n = 93) with a ratio 
of 7:3. More detailed inclusion and exclusion steps were 
presented in Fig. S1 in the Supplemental materials.

Clinicopathologic information and dual-modal US images 
acquisition
All patients’ baseline clinical-pathologic information, 
including age, sex, surgical pathologies or FNAB results, 
and US diagnostic reports (largest diameter and location 

of the target nodule) were collected from medical records. 
All TNs’ BMUS and CEUS images were acquired with the 
same US device (Canon Aplio i800, Canon Medical Sys-
tems) using a 5–18 MHz linear transducer. The operation 
and diagnosis of TNs were independently performed by 
one radiologist with more than 20 years of experience in 
thyroid US diagnosis and 5 years of experience in thy-
roid CEUS. Images of the maximum cross-section of 
each target nodule on BMUS were preserved, and video 
clips of BMUS images were also obtained. Then the focus 
was adjusted to the lower edge of the target nodule and 
CEUS mode was switched. Continuous cine was stored 
by injecting SonoVue (Bracco) through the elbow vein. 
We then exported all the static images and dynamic clips 
of BMUS and CEUS to the USB.

Qualitative analysis of BMUS and CEUS
All BMUS and CEUS images and dynamic videos were 
evaluated independently by two radiologists (with > 8 
years of experience in thyroid US diagnosis and 5 years of 
experience in thyroid CEUS) who were blinded to all the 
clinicopathological information of TNs. When there were 
any discrepancies, they negotiated to reach a consensus.

For BMUS, the composition (mixed cystic and 
solid, solid or almost completely solid), echogenicity 
(isoechoic, hyperechoic, hypoechoic relative to adjacent 
thyroid parenchyma, very hypoechoic relative to adjacent 
strap muscles), shape (wider-than-tall, taller-than-wide), 
margin (smooth or ill-defined, lobulated or irregular, 
extra-thyroidal extension), echogenic foci (none or large 
comet-tail artifacts, macrocalcifications, peripheral cal-
cifications, punctate echogenic foci), TI-RADS score and 
risk level were recorded of each TN according to the lexi-
con of 2017 ACR TI-RADS [3]. TR4 TNs with a maximal 
diameter ≥ 15  mm, and TR5 TNs with a maximal diam-
eter ≥ 10 mm were recommended for FNAB.

For CEUS, each nodule’s enhancement direction (scat-
tered, centripetal, centrifugal), enhancement pattern 
(homogeneous, heterogeneous), peak intensity (non-
enhancement, hypo-enhancement, iso-enhancement, 
hyper-enhancement relative to adjacent thyroid paren-
chyma at peak), ring enhancement (absent, present) were 
recorded.

Radiomics analysis of dual-modal US images
Region of interest (ROI) segmentation
Each target nodule was manually segmented around 
the nodule outline on the BMUS image of the largest 
cross-section using ITK-SNAP 3.8.0. For the TN seg-
mentation on the CEUS image, firstly the offline exter-
nal perfusion analysis software (VueBox®) was used to 
generate the CEUS quantitative parameters including 
the peak enhancement and time to peak. Then the single 
frame matching the moment of peak enhancement of 
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the CEUS clips of the TN was chosen to be representa-
tive of the whole CEUS process for analysis as there was 
a significant difference in intra-nodular peak enhance-
ment of CEUS between benign and malignant TNs [17]. 
On the dual-mode CEUS image, the ROI of the nodule 
on the BMUS image was segmented first, then copied 
and mapped to the corresponding CEUS image due to an 
indefinite borderline of the nodule on the CEUS image. 
The detailed TIC analysis procedures of CEUS videos are 
presented in Supplementary A1.

All the TNs’ manual delineations on the BMUS and 
CEUS images were conducted by a radiologist (Doctor A) 
with 10 years of experience in thyroid US imaging who 
was blinded to the clinicopathologic result of TNs. Then 
at a one-week interval, fifty TNs with the BMUS and 
CEUS images were randomly selected and independently 
segmented by Doctor A and another radiologist (Doctor 
B) with 8 years of experience in thyroid US imaging to 
evaluate the intra-observer and inter-observer reproduc-
ibility of the extracted radiomics features, respectively. 
Features with an interclass correlation coefficient (ICC) 
that was greater than 0.75 were considered to have a high 
consistency.

Radiomics feature extraction, selection, and radiomics 
score (Rad-score) building
Open-source software (Pyradiomics; version 3.0.1, http://
pyradiomics.readthedocs.io) was applied to extract tex-
tural, morphological, intensity, and wavelet features 
automatically from each ROI of the BMUS and CEUS 
images. After the BMUS radiomics feature set and the 
CEUS radiomics feature set were obtained, dimension-
ality reduction and TR4-5 TNs status-related radiomics 
feature selection were performed on the feature data 
extracted from BMUS and CEUS images in the training 
set. First, insignificant characteristics with P-values ≥ 0.05 
were removed using univariate analyses. Then, variables 
that were highly correlated (with a Spearman’s correla-
tion coefficient of ≥ 0.8) were eliminated to avoid redun-
dancy. Finally, the least absolute shrinkage and selection 
operator (LASSO) logistic regression algorithm using 
ten-fold cross-validations was applied to select the 
remaining most predictive TR4-5 TNs status-related fea-
tures from the training cohort.

The Rad-score was built via a linear amalgamation of 
the selected characteristics, with weighting determined 
by the LASSO algorithm. The equation for the BMUS 
and CEUS Rad-scores were constructed using the chosen 
respective features in the training and validation groups, 
respectively, and the possible association between the 
Rad-scores and the characteristics of TR4-5 TNs from 
BMUS and CEUS images was evaluated using a Mann-
Whitney U test.

Dual-modal US radiomics nomogram construction
Differences in clinical and dual-modal US risk factors 
associated with benign and malignant TR4-5 TNs were 
assessed using univariate analyses. Then a multivariate 
logistic regression analysis involving the Rad-scores and 
significant clinical and US risk factors was conducted, 
employing a stepwise backward selection approach with 
a liberal P-value threshold of < 0.05 as the retention stan-
dard to identify the ultimate significant predictors for 
assessing TR4-5 TNs. Finally, a dual-modal US radiomics 
nomogram was built with Rad-scores, and clinical and 
US characteristics in the training cohort. For compari-
son, another two predictive models based on indepen-
dent clinical combined US risk factors, and dual-modal 
US Rad-score were established using the same method, 
respectively.

Performance evaluation
The calibration curve and Hosmer-Lemeshow test were 
plotted to assess the calibration effect of the dual-modal 
US radiomics nomogram. The discriminative perfor-
mance of the dual-modal US radiomics nomogram was 
evaluated using the AUC. Then the performance of the 
dual-modal US radiomics nomogram was tested in the 
validation cohort using the calibration curve and AUC. 
AUCs of the dual-modal US radiomics nomogram and 
another two predictive models were compared in the 
training, validation, and entire cohorts. A decision curve 
analysis (DCA) was used to evaluate the clinical useful-
ness of the dual-modal US radiomics nomogram by guid-
ing FNAB at different thresholds by quantifying the net 
benefits in the entire cohort. The predictive importance 
of the dual-modal US radiomics nomogram was assessed 
by the index integrated discrimination improvement 
(IDI) and the net reclassification improvement (NRI). 
For clinical use, the dual-modal US radiomics nomogram 
predicting the probability of malignancy of each nodule 
(defined as Nomo-score) was calculated based on the 
nomogram algorithm. Then the optimal Nomo-score 
cutoff value was assessed by maximizing the Youden 
index. The performance of the optimal Nomo-score cut-
off value was assessed by accuracy, sensitivity, specificity, 
predictive values, and likelihood ratios.

If the predictive models yielded a positive result, the 
TNs were recommended for FNAB, while those with 
a negative result were not recommended. The rate of 
unnecessary FNAB was calculated as the proportion of 
benign TNs among the recommended biopsied TNs.

Statistical analyses
The statistical analyses were performed with R version 
3.6.1, SPSS version 27.0, and MedCalc version 20.027. 
In the univariate analysis, Student’s t-test (for normally 
distributed characteristics) or Mann-Whitney U test 

http://pyradiomics.readthedocs.io
http://pyradiomics.readthedocs.io


Page 5 of 16Ren et al. Cancer Imaging           (2024) 24:17 

(for non-normally distributed characteristics) was used 
for continuous variables and a chi-square test or Fisher’s 
exact test (categorical variables) was used for categori-
cal variables as appropriate. The DeLong test was used to 
compare differences in the AUC of three different mod-
els in the training, validation, and entire cohorts. All the 
statistically significant differences were a two-sided P 
value < 0.05. R software and descriptions of the associated 
step algorithm are provided in the Supplemental materi-
als (Table S1).

Results
Clinical and dual-modal US characteristics of TNs
The study flowchart and radiomics workflow are pre-
sented in Fig.  1. Of the 312 TNs, 219 (70.2%) nodules 
were malignant (containing 214 papillary thyroid carci-
nomas, 3 follicular carcinomas, and 2 medullary carci-
nomas). Among the 93 benign nodules, 65 (69.9%) were 
confirmed by excised surgeries, including 47 nodular 
goiter, 1 adenomatous goiter, 1 diffuse toxic goiter, 10 fol-
licular adenomas, 3 oxyphilic adenomas, and 3 subacute 
thyroiditis. For the remaining 28 (30.1%) benign nodules, 
7 were determined by the concordant benign cytological 
results of twice FNABs, and 21 were validated by the ini-
tial benign cytological results of FNAB and a decreased 
or stable size on at least six months of US follow-up. 
The detailed clinical and US features on the training and 
validation sets are summarized in Tables 1 and 2. There 
were no significant differences in the remaining clinical 
and US characteristics between the training and vali-
dation datasets, except for composition (P = 0.024). In 
the training cohort, univariate analyses for each clini-
cal and US characteristic revealed that age, tumor size, 

primary site, composition, shape, margin, echogenic foci, 
enhancement direction, enhancement pattern, and ring 
enhancement were significantly different in differenti-
ating between benign and malignant TR4-5 TNs. Then 
a multivariate logistic regression analysis based on the 
above ten predictive risk factors demonstrated that age, 
shape, echogenic foci, enhancement direction, and ring 
enhancement were independent predictors of the nature 
of TR4-5 TNs. Finally, a clinical combined with US 
model was constructed based on the final five predictive 
risk factors for differentiating the nature of TR4-5 TNs. 
Table  3 displays the performance of the ACR TI-RADS 
for estimating the malignant risk of TR 4–5 TNs.

Dual-modal US rad-score building
A set of 651 radiomics features was extracted from the 
BMUS and CEUS modes of each TN, respectively. After 
intra-observer and inter-observer reproducibility of 
the extracted radiomics features were evaluated, 639 
out of 651 BMUS features and 630 out of 651 CEUS 
features were retained. For BMUS, the radiomics fea-
tures were reduced to 10 features after LASSO regres-
sion in the training cohort (Supplementary Fig. S2A, B). 
Likewise, the CEUS radiomics features were reduced 
to 7 risk predictors by LASSO algorithm in the training 
cohort (Supplementary Fig. S2C, D). The Rad-score cal-
culation formulas for BMUS and CEUS are provided in 
the Supplementary material (Supplementary A2). The 
BMUS and CEUS Rad-scores were all significantly higher 
in the malignant TR4-5 nodule group than that in the 
benign group in both the training and validation cohorts 
(Table  2). Then, a dual-modal US Rad-score model was 
constructed based on both BMUS Rad-score and CEUS 

Fig. 1  The study flowchart and ultrasound radiomics workflow of the present study. BMUS = B-mode ultrasound, CEUS = contrast-enhanced ultrasound, 
LASSO = least absolute shrinkage and selection operator, Rad-score = radiomics score, US = ultrasound, ROI = region of interest
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Table 1  Clinical and ultrasound characteristics in the training and validation cohorts
Characteristic Training (n = 219) Validation (n = 93) P 

value
Sex 0.707

Male 43 (19.6) 20 (21.5)

Female 176 (80.4) 73 (78.5)

Age (years) 0.795

Mean ± SD 40.33 ± 11.16 39.98 ± 10.77

Range 18–69 18–64

Tumor size, median (IQR) 10 (8–16) 12 (7–23) 0.111

Primary site 0.289

Right 117 (53.4) 45 (48.4)

Left 96 (43.8) 42 (45.2)

Isthmus 6 (2.7) 6 (6.5)

Pathology 0.845

Benign 66 (30.1) 27 (29.0)

Malignant 153 (69.9) 66 (71.0)

Composition 0.024

Mixed cystic and solid 22 (10.0) 18 (19.4)

Solid or almost completely solid 197 (90.0) 75 (80.6)

Echogenicity 0.234

Hyperechoic or isoechoic 4 (1.8) 0 (0.0)

Hypoechoic 212 (96.8) 92 (98.9)

Very hypoechoic 3 (1.4) 1 (1.1)

Shape 0.087

Wider-than-tall 104 (47.5) 54 (58.1)

Taller-than-wide 115 (52.5) 39 (41.9)

Margin 0.173

Smooth or ill-defined 39 (17.8) 10 (10.8)

Lobulated or irregular 177 (80.8) 80 (86.0)

Extra-thyroidal extension 3 (1.4) 3 (3.2)

Echogenic foci 0.245

None or large comet-tail artifacts 77 (35.2) 30 (32.3)

Macrocalcifications 20 (9.1) 4 (4.3)

Punctate echogenic foci 123 (55.7) 59 (63.4)

TI-RADS risk level 0.604

TR4 46 (21.0) 22 (23.7)

TR5 173 (79.0) 71 (76.3)

Enhancement direction 0.724

Scattered 57 (26.0) 26 (28.0)

Centripetal or centrifugal 162 (74.0) 67 (72.0)

Enhancement pattern 0.201

Homogeneous 44 (20.1) 13 (14.0)

Heterogeneous 175 (79.9) 80 (86.0)

Peak intensity 0.955

None- or iso-enhancement 43 (19.6) 18 (19.4)

Hypo- or Hyper-enhancement 176 (80.4) 75 (80.6)

Ring enhancement 0.106

Absent 192 (87.7) 75 (80.6)

Present 27 (12.3) 18 (19.4)

BMUS Rad-score, median (IQR) 0.93 (0.56–1.26) 0.90 (0.49–1.24) 0.715

CEUS Rad-score, median (IQR) 1.05 (0.60–1.34) 1.03 (0.50–1.34) 0.624
Note: Data is the number of thyroid nodules with percentages in parentheses unless otherwise noted. ACR TI-RADS = American College of Radiology Thyroid Imaging 
Reporting and Data System, SD = standard deviation, IQR = interquartile range, BMUS = B-mode ultrasound, CEUS = contrast-enhanced ultrasound
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Table 2  Clinical and ultrasound characteristics predicting malignancy of ACR TI-RADS 4 and 5 thyroid nodules
Characteristic Training (n = 219) Validation (n = 93)

Benign (n = 66) Malignant
(n = 153)

P value Benign
(n = 27)

Malignant
(n = 66)

P 
value

Sex 0.468 0.032

Male 11 (16.7) 32 (20.9) 2 (7.4) 18 (27.3)

Female 55 (83.3) 121 (79.1) 25 (92.6) 48 (72.7)

Age (years) 0.029 0.620

Mean ± SD 42.83 ± 10.94 39.25 ± 11.11 40.85 ± 11.24 39.62 ± 10.64

Range 19–69 18–67 21–64 18–60

Tumor size (mm), median (IQR) 12 (8–20) 10 (8–15) 0.048 22 (17–29) 10 (6–15) < 0.001

Primary site 0.033 0.589

Right 31 (47.0) 86 (56.2) 15 (55.6) 30 (45.5)

Left 35 (53.0) 61 (39.9) 11 (40.7) 31 (47.0)

Isthmus 0 (0) 6 (3.9) 1 (3.7) 5 (7.6)

Composition 0.032 0.029

Mixed cystic and solid 11 (16.7) 11 (7.2) 9 (33.3) 9 (13.6)

Solid or almost completely solid 55 (83.3) 142 (92.8) 18 (66.7) 57 (86.4)

Echogenicity 0.414 0.406

Hyperechoic or isoechoic 1 (1.5) 3 (2.0) 0 (0.0) 0 (0.0)

Hypoechoic 63 (95.5) 149 (97.4) 27 (100.0) 65 (98.5)

Very hypoechoic 2 (3.0) 1 (0.7) 0 (0.0) 1 (1.5)

Shape < 0.001 0.014

Wider-than-tall 47 (71.2) 57 (37.3) 21 (77.8) 33 (50.0)

Taller-than wide 19 (28.8) 96 (62.7) 6 (22.2) 33 (50.0)

Margin < 0.001 0.001

Smooth or ill-defined 27 (40.9) 12 (7.8) 8 (29.6) 2 (3.0)

Lobulated or irregular 39 (59.1) 138 (90.2) 19 (70.4) 61 (92.4)

Extra-thyroidal extension 0 (0) 3 (2) 0 (0.0) 3 (4.5)

Echogenic foci < 0.001 0.298

None or large comet-tail artifacts 35 (53.0) 42 (27.5) 11 (40.7) 19 (28.8)

Macrocalcifications 8 (12.1) 12 (7.8) 2 (7.4) 2 (3.0)

Punctate echogenic foci 23 (34.8) 99 (64.7) 14 (51.9) 45 (68.2)

TI-RADS risk level < 0.001 < 0.001

TR4 28 (42.4) 18 (11.8) 15 (55.6) 7 (10.6)

TR5 38 (57.6) 135 (88.2) 12 (44.4) 59 (89.4)

Enhancement direction < 0.001 < 0.001

Scattered 31 (47.0) 26 (17.0) 15 (55.6) 11 (16.7)

Centripetal or centrifugal 35 (53.0) 127 (83.0) 12 (44.4) 55 (83.3)

Enhancement pattern 0.001 0.430

Homogeneous 22 (33.3) 22 (14.4) 5 (18.5) 8 (12.1)

Heterogeneous 44 (66.7) 131 (85.6) 22 (81.5) 58 (87.9)

Peak intensity 0.062 0.305

None- or iso-enhancement 18 (27.3) 25 (16.3) 7 (25.9) 11 (16.7)

Hypo- or Hyper-enhancement 48 (72.7) 128 (83.7) 20 (74.1) 55 (83.3)

Ring enhancement < 0.001 < 0.001

Absent 47 (71.2) 145 (94.8) 15 (55.6) 60 (90.9)

Present 19 (28.8) 8 (5.2) 12 (44.4) 6 (9.1)

BMUS Rad-score, median (IQR) 0.64 (0.15–0.97) 1.05 (0.73–1.35) < 0.001 0.49 (0.13–1.05) 0.95 (0.65–1.37) 0.001

CEUS Rad-score, median (IQR) 0.58 (0.03–1.06) 1.18 (0.85–1.40) < 0.001 0.64 (0.07–0.70) 1.15 (0.87–1.40) < 0.001
Note: Data is the number of thyroid nodules with percentages in brackets unless otherwise noted. ACR TI-RADS = American College of Radiology Thyroid Imaging 
Reporting and Data System, SD = standard deviation, IQR = interquartile range, BMUS = B-mode ultrasound, CEUS = contrast-enhanced ultrasound
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Rad-score for differentiating benign from malignant 
TR4-5 TNs.

Dual-modal US radiomics nomogram construction and 
evaluation
The BMUS Rad-score, CEUS Rad-score, age, shape, 
margin, and enhancement direction were identified as 
independent predictors for the nature of TR4-5 TNs by 
multivariate logistic regression analysis in the training 
cohort (Table  4). A dual-modal US radiomics nomo-
gram based on the above independent risk predictors 
was constructed (Fig.  2A). The Hosmer-Lemeshow test 
statistic (P = 0.403 and 0.346 for the training and valida-
tion cohorts, respectively) and calibration curve showed 
good calibration of the dual-modal US radiomics nomo-
gram for predicting benign and malignant TR4-5 TNs in 
the training and validation cohorts (Fig.  2B). The DCA 

curves showed that the dual-modal US radiomics nomo-
gram was more beneficial than the clinical combined 
with US model or dual-modal US Rad-score model alone 
at all different threshold probabilities in the entire cohort 
(Fig. 2C).

The optimal cutoff value of the nomogram score to dif-
ferentiate benign and malignant TR4-5 TNs was deter-
mined to be 0.524 by maximizing the Youden index. The 
performance of the dual-modal US radiomics nomogram 
to predict the nature of TR4-5 TNs using the recom-
mended cutoff value is summarized in Table 5. An AUC 
of 0.873 (95% confidence interval (CI), 0.821–0.925) for 
the training cohort (Fig.  3A and B) and 0.851 (95% CI, 
0.764–0.938) for the validation cohort (Fig.  3C and D) 
showed good discrimination ability of the dual-modal 
US radiomics nomogram. Moreover, the dual-modal US 
radiomics nomogram had better discrimination than the 
clinical combined with US model and the dual-modal 
Rad-score model in the training cohort (AUC 0.873 vs. 
0.815, P = 0.032, 0.873 vs. 0.802, P = 0.006) and valida-
tion cohort (AUC 0.851 vs. 0.770, P = 0.047, 0.851 vs. 
0.808, P = 0.196) (Table 6). Furthermore, compared with 
the clinical combined with US prediction model which 
only incorporated the independent clinical and US risk 
predictors, the addition of the dual-modal US Rad-score 
significantly improved the NRI and IDI, implying that 
dual-modal US Rad-score could be a rather valuable 
marker for the nature of TR4-5 TNs prediction (Table 7).

In addition, we further assessed the performance of the 
dual-mode US radiomics nomogram in all TR4-5 TNs (n 
= 312). All the TR4-5 TNs were classified into low-risk 
and high-risk subgroups according to the best Nomo-
score cutoff value (0.524). The results demonstrated that 
the high-risk group had a greater proportion of malig-
nant TNs in all TR4-5 TNs (Fig. 4A). The dual-modal US 
radiomics nomogram yielded a more favorable discrimi-
natory performance than the clinical combined with US 

Table 3  Predictive performance of the ACR TI-RADS for TI-RADS 
4 and 5 thyroid nodules
Variable Value (95% CI)

Training cohort 
(n = 219)

Validation co-
hort (n = 93)

Entire cohort 
(n = 312)

Cutoff value 0.586 0.586 0.586

AUC 0.653 
(0.588–0.719)

0.669 
(0.567–0.772)

0.658 
(0.603–0.713)

Sensitivity, % 88.2 (83.0-93.5) 89.4 (81.8–97.0) 88.6 (84.5–92.7)

Specificity, % 42.4 (30.3–54.5) 44.4 (25.9–63.0) 43.0 (33.3–52.7)

PPV, % 78.0 (71.9–84.2) 79.7 (70.6–88.9) 78.5 (73.4–83.7)

NPV, % 60.9 (46.8–75.0) 63.2 (41.5–84.8) 61.5 (49.7–73.4)

PLR 2.771 
(1.925–3.988)

3.116 
(1.766–5.496)

2.868 
(2.111–3.896)

NLR 0.501 
(0.347–0.725)

0.462 
(0.254–0.842)

0.490 
(0.358–0.671)

Accuracy, % 74.4 (68.1–80.1) 76.3 (66.4–84.5) 75.0 (69.8–79.7)
Note: ACR TI-RADS = American College of Radiology Thyroid Imaging Reporting 
and Data System, CI = confidence interval, AUC = the area under the receiver 
operating characteristic curve, PPV = positive predictive value, NPV = negative 
predictive value, PLR = positive likelihood ratio, NLR = negative likelihood ratio

Table 4  Construction of three different models based on risk factors in the training cohort
Intercept and variable Dual-modal US radiomics nomogram Clinical combined with US model Dual-modal US Rad-score

Coef Odds ratio
(95% CI)

P 
value

Coef Odds ratio
(95% CI)

P 
value

Coef Odds ratio
(95% CI)

P 
value

Intercept -0.648 0.519 -1.475

Age -0.072 0.931 (0.895–0.969) < 0.001 -0.043 0.958 (0.925–0.992) 0.017 NA NA NA

Shape 0.307 1.360 (1.038–1.781) 0.026 0.403 1.496 (1.169–1.913) 0.001 NA NA NA

Margin 1.238 3.447 (1.309–9.081) 0.012 NA NA NA NA NA NA

Echogenic foci NA NA NA 1.303 3.678 (1.715–7.890) < 0.001 NA NA NA

Enhancement direction 1.012 2.751 (1.147-6.600) 0.023 1.480 4.391 (2.002–9.628) < 0.001 NA NA NA

Ring enhancement NA NA NA -1.303 0.272 (0.099–0.747) 0.012 NA NA NA

BMUS Rad-score 1.098 2.997 (1.386–6.481) 0.005 NA NA NA 1.317 3.732 
(1.876–7.426)

< 0.001

CEUS Rad-score 1.687 5.405 
(2.407–12.135)

< 0.001 NA NA NA 1.487 4.422 
(2.260–8.652)

< 0.001

Note: US = ultrasound, Rad-score = radiomics score, ACR TI-RADS = American College of Radiology Thyroid Imaging Reporting and Data System, Coef = coefficient, 
CI = confidence interval, NA = not available, BMUS = B-mode ultrasound, CEUS = contrast-enhanced ultrasound
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model (AUC 0.867 vs. 0.801, P = 0.003) and dual-modal 
US Rad-score model (AUC 0.867 vs. 0.803, P = 0.002) in 
all 312 TR4-5 TNs (Fig. 4B). Figure 5 depicted two illus-
trative examples of clinical nomogram utilization visual-
ized in diagram.

The unnecessary FNAB rates of the dual-modal US 
radiomics nomogram and three other predictive models 
in TR4-5 TNs were calculated and compared in Table 8. 
Using the dual-modal US radiomics nomogram, the 
unnecessary FNAB rate decreased from 35.3 to 14.5% 
(P < 0.001) in the training cohort and from 41.5 to 17.7% 
(P = 0.005) in the validation cohorts compared with ACR 
TI-RADS.

Discussion
In the current study, we retrospectively collected 312 
BMUS and CEUS images of ACR TI-RADS 4 and 5 TNs, 
then developed and validated a dual-modal US radiomics 

nomogram that involving BMUS and CEUS Rad-scores, 
which outperformed the clinical combined US model and 
the dual-modal US Rad-score for the personalized pre-
diction of benign and malignant TR4-5 TNs and mean-
ingfully reduced the unnecessary FNAB rate compared 
with ACR TI-RADS. This easy-to-use graphical visual-
ized tool might provide more accurate and robust infor-
mation to promote clinical decision-making systems.

High-resolution ultrasonography is reckoned as the 
preferred diagnostic method for TNs. There have been 
several thyroid US risk stratification systems used in 
clinical practices, thereinto ACR TI-RADS was the most 
widely used stratification system due to its feasibility of 
classifying all the TNs [18]. However, there exists rela-
tively low specificity and overlapping risk characteristics 
between benign and malignant suspicious TR4 and TR5 
TNs [4]. In this study, the AUC, specificity, and unnec-
essary FNAB rate of the ACR TI-RADS stratification 

Fig. 2  Dual-modal US radiomics nomogram and its predictive performance for TI-RADS 4 and 5 thyroid nodules. (A) A dual-modal US radiomics nomo-
gram was constructed with BMUS Rad-score, CEUS Rad-score, age, shape, margin, and enhancement direction for predicting malignancy of TI-RADS 4–5 
thyroid nodules. (B) Calibration curves of the dual-modal US radiomics nomogram in the training and validation cohorts. The red and green lines rep-
resent the actual predictive probabilities of malignancy of the nomogram in the training and validation cohorts, respectively, and the dashed black line 
represents an ideal prediction. (C) A decision curve analysis (DCA) shows the role of three different models in predicting benign and malignant TI-RADS 
4–5 thyroid nodules derived from the entire cohort (n = 312). The DCA shows that using the dual-modal US radiomics nomogram (red curve) to predict 
benign and malignant TI-RADS 4–5 thyroid nodules provided a greater benefit than the clinical combined US model (green curve) and dual-modal US 
Rad-score (orange curve). BMUS = B-mode ultrasound, CEUS = contrast-enhanced ultrasound, US = ultrasound, Rad-score = radiomics score
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system for TR4-5 TNs were 0.653 (95% CI, 0.588–0.719), 
42.4% (95% CI, 30.3-54.5%) and 32.0% in the training 
cohort and 0.669 (95% CI, 0.567–0.772), 44.4% (95% CI, 
25.9-63.0%) and 36.9% in the validation cohort, respec-
tively. Hence, to reduce the unnecessary FNAB rate and 
mitigate overdiagnosis and overtreatment, pursuing a 
non-invasive method with high specificity is necessary. 
In the past few decades, there have been numerous stud-
ies on the diagnosis of TNs using qualitative or quanti-
tative CEUS [7, 19]. Even for differentiating benign and 
malignant TR4-5 TNs, using US facilitated by CEUS also 
has rather good performance, as CEUS provides effec-
tive supplementary micro- and macro-vascularization 
information within the TNs, which reflect the patterns 
of neoplastic growth [20, 21]. But radiologists’ subjective 
factors and inter-observer variability with different expe-
riences in the visual interpretation of BMUS and CEUS 
videos could affect the diagnosis accuracy.

In recent years, “radiomics” as a machine-learning 
method has emerged in clinical practices to improve the 
accuracy of disease diagnosis, prediction, and prognosis 
as it can automatically extract high-throughput quantita-
tive image features and detect information that is difficult 
to be assessed through visual interpretation. US-based 
radiomics methods have attracted the interest of numer-
ous researchers for characterizing benign and malig-
nant TNs using quantitative US image features [11–13]. 
Liang et al. reported that Rad-score composed of several 
dozen radiomics features extracted from grayscale US 
images outperformed the ACR TI-RADS evaluation of 
junior radiologists but reached no statistical difference 
with senior radiologists in predicting malignancy in TNs, 
which indicated the feasibility of radiomics method as a 
diagnostic tool [11]. Referring to differentiating benign 

and malignant TR4-5 TNs, Wang et al. developed an 
integrated system of combining deep learning network 
and traditional machine learning radiomics network 
to analyze suspicious solid or almost completely solid 
TNs. Although the performance of this integrated model 
was better than two senior and three junior ultrasonog-
raphers, it only got an AUC of 0.800 and an accuracy 
of 76.8% in the test set [4]. Wu et al. trained three deep 
learning convolutional neural networks and found that 
ResNet-50 performed the best and was superior to radi-
ologists in discriminating benign and malignant TR4-5 
TNs. But the performance of deep learning algorithms 
was weaker in the combined TR4 and TR5 datasets than 
separated TR4 dataset or TR5 dataset, with an AUC of 
0.829 and accuracy of 78.4% in the independent external 
test set [14]. Our dual-modal US radiomics nomogram 
containing BMUS and CEUS images got an AUC of 0.873 
and 0.851, and the accuracy of 84.0% and 80.7%, in the 
training and validation set, respectively, whose perfor-
mance was superior to the clinical combined US model, 
dual-modal US Rad-score and the results of Liang et al. 
and Wu et al., indicating our developed dual-modal US 
radiomics nomogram was a valuable method to solve 
the actual difficulty of predicting benign and malignant 
TR4-5 TNs for radiologists in a real-world clinical diag-
nosis. A key factor contributing to the robustness of our 
dual-modal US radiomics nomogram could be the incor-
poration of BMUS and CEUS radiomics features, which 
differed from the research conducted by Liang et al. and 
Wu et al., which focused solely on grayscale US radiomics 
features for distinguishing between benign and malig-
nant TR4-5 TNs.

CEUS radiomics analysis methods have been widely 
used in the field of disease diagnoses [22, 23], risk evalua-
tion [24, 25], prognoses prediction [26, 27], and decision-
making treatment [28]. To some extent, CEUS radiomics 
was more meaningful than BMUS radiomics as it could 
capture additional characteristics of blood flow infor-
mation in addition to the extraction of grayscale US 
radiomics features [29]. However, most of the previous 
studies only applied grayscale US radiomics features in 
characterizing TNs and did not involve CEUS radiomics 
features. Our study result showed that the addition of 
BMUS radiomics features and CEUS radiomics features 
to the clinical combined US model notably increased the 
NRI and IDI, meaning that both BMUS Rad-score and 
CEUS Rad-score could be highly conducive markers for 
differentiating benign and malignant TR4-5 TNs. And 
CEUS Rad-score had noticeably higher NRI and IDI than 
the BMUS Rad-score, further demonstrating the consid-
erable predictive value of CEUS imaging. This result was 
consistent with a previous study performed by Guo et al., 
which found that an AUC of 0.861 for the BMUS + CEUS 
radiomics model was superior to a single BMUS or 

Table 5  Predictive performance of dual-modal ultrasound 
radiomics nomogram for ACR TI-RADS 4 and 5 thyroid nodules
Variable Value (95% CI)

Training cohort 
(n = 219)

Validation co-
hort (n = 93)

Entire cohort 
(n = 312)

Cutoff value 0.524 0.524 0.524

AUC 0.873 
(0.821–0.925)

0.851 
(0.764–0.938)

0.867 
(0.822–0.911)

Sensitivity, % 90.2 (85.0-94.78) 86.4 (77.3–93.9) 89.0 (84.9–93.2)

Specificity, % 69.7 (59.1–80.3) 66.7 (48.2–81.5) 68.8 (59.1–78.5)

PPV, % 87.3 (82.2–92.5) 86.4 (78.1–94.6) 87.1 (82.7–91.5)

NPV, % 75.4 (64.6–86.2) 66.7 (48.9–84.5) 72.7 (63.4–82.0)

PLR 3.552 
(2.280–5.534)

2.623 
(1.614–4.264)

3.104 
(2.233–4.315)

NLR 0.168 
(0.109–0.259)

0.150 
(0.067–0.334)

0.171 
(0.117–0.249)

Accuracy, % 84.0 (78.5–88.6) 80.7 (71.2–88.1) 83.0 (78.4–87.0)
Note: ACR TI-RADS = American College of Radiology Thyroid Imaging Reporting 
and Data System, CI = confidence interval, AUC = the area under the receiver 
operating characteristic curve, PPV = positive predictive value, NPV = negative 
predictive value, PLR = positive likelihood ratio, NLR = negative likelihood ratio
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CEUS Rad-score [30]. But their study had a rather small 
sample size of only 123 TR3-5 TNs in the entire dataset 
and 7 benign TNs in the validation dataset, which may 
cause overfitting and increased bias. Compared with 
their study, our developed dual-modal US radiomics 

nomogram further reduced the unnecessary FNAB rate 
considerably from 35.3 to 14.5% in the training cohort 
and from 41.5 to 17.7% in the validation cohorts in com-
parison to ACR TI-RADS.

Table 6  Comparison of the AUCs for three different models in the training, validation, and entire cohorts
Training cohort Validation cohort Entire cohort
AUC P value AUC P value AUC P value

Dual-modal US radiomics nomogram
vs. Clinical combined with US model

0.873 vs. 0.815 0.032 0.851 vs. 0.770 0.047 0.867 vs. 0.801 0.003

Dual-modal US radiomics nomogram
vs. Dual-modal US Rad-score

0.873 vs. 0.802 0.006 0.851 vs. 0.808 0.196 0.867 vs. 0.803 0.002

Clinical combined with US model
vs. Dual-modal US Rad-score

0.815 vs. 0.802 0.773 0.770 vs. 0.808 0.520 0.801 vs. 0.803 0.964

Note: AUC = the area under the receiver operating characteristic curve, US = ultrasound, Rad-score = radiomics score

Fig. 3  Differential diagnostic accuracy of dual-modal US radiomics nomogram for TI-RADS 4 and 5 thyroid nodules. The violin plot shows that the dual-
modal US radiomics nomogram performed well in predicting benign and malignant TI-RADS 4–5 thyroid nodules in both the training (A) and validation 
(C) cohorts. The receiver operating characteristic curves of the dual-modal US radiomics nomogram, clinical combined US model, and the dual-modal US 
Rad-score model are displayed in the training (B) and validation (D) cohorts, respectively. US = ultrasound, Rad-score = radiomics score, AUC = the area 
under the receiver operating characteristic curve, CI = confidence interval
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As far as we know, our study represented the first 
attempt to evaluate the predictive value of a dual-modal 
US radiomics nomogram incorporating CEUS images 
in addressing the challenge of distinguishing benign and 
malignant TR4-5 TNs in an actual clinical setting. In the 
present study, we evaluated the clinical and US risk fac-
tors. Age, shape, margin, and enhancement direction 
were determined as significant predictive variables in 
a multivariate logistic regression analysis that were dis-
tinct from the BMUS and CEUS Rad-score. To facilitate 
decision-making, a dual-modal US radiomics nomogram 

was developed that integrated the six factors mentioned 
above, providing a user-friendly tool. This nomogram 
demonstrated excellent discrimination and calibration, 
surpassing the predictive efficacy of both the clinical and 
US risk factors prediction model and the dual-modal 
US Rad-score model in both the training and validation 
cohorts. The DCA further supported the effectiveness 
of the dual-modal US radiomics nomogram, indicating 
a significant improvement in predictive value for TR4-5 
TNs compared with both the clinical combined US model 
and the dual-modal US Rad-score. To aid in the clinical 

Table 7  Predictive value of the dual-modal ultrasound radiomics scores in terms of NRI and IDI
Variable Training cohort Validation cohort Entire cohort

Categorical NRI 
(95% CI)

Continuous 
NRI (95% CI)

IDI (95% 
CI)

Categorical NRI 
(95% CI)

Continuous NRI
(95% CI)

IDI
(95% CI)

Categorical 
NRI
(95% CI)

Continuous 
NRI
(95% CI)

IDI
(95% 
CI)

BMUS 
Rad-score

0.093 
(-0.026-0.212)

0.532 
(0.253–0.812)

0.056 
(0.020–
0.092)

0.1633 
(-0.057-0.384)

0.2929 
(-0.151-0.737)

0.083 
(0.015–
0.150)

0.114 (0.008–
0.2197)

0.461 
(0.224–0.698)

0.064 
(0.032–
0.096)

P value 0.125 0.002 0.002 0.147 0.196 < 0.05 0.035 < 0.001 < 0.001

CEUS 
Rad-score

0.2338 
(0.091–0.377)

0.6851 
(0.411–0.959)

0.122 
(0.064–
0.180)

0.244 
(-0.001-0.489)

0.983 
(0.586–1.380)

0.148 
(0.058–
0.237)

0.237 
(0.113–0.361)

0.772 
(0.546–0.999)

0.130 
(0.081–
0.178)

P value 0.001 < 0.05 < 0.001 0.05 < 0.05 0.001 < 0.001 < 0.001 < 0.001

BMUS + CEUS 
Rad-score

0.247 
(0.096–0.398)

0.759 
(0.488–1.029)

0.152 
(0.089–
0.216)

0.303 
(0.070–0.536)

0.788 
(0.372–1.203)

0.176 
(0.077–
0.276)

0.263 
(0.135–0.390)

0.767 
(0.540–0.994)

0.159 
(0.106–
0.213)

P value 0.001 < 0.05 < 0.05 < 0.05 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001
Note: NRI = net reclassification improvement, IDI = index integrated discrimination improvement, CI = confidence interval = BMUS = B-mode ultrasound, CEUS = 
contrast-enhanced ultrasound

Fig. 4  Performance of dual-modal US radiomics nomogram in all 312 TI-RADS 4 and 5 thyroid nodules. (A) The risk-classification performance of the 
dual-modal US radiomics nomogram. (B) The ROC curve analyses of the three different models. US = ultrasound, Rad-score = radiomics score, AUC = the 
area under the receiver operating characteristic curve, CI = confidence interval
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Fig. 5 (See legend on next page.)

 



Page 14 of 16Ren et al. Cancer Imaging           (2024) 24:17 

utilization of the nomogram, we provided the sensitivity, 
specificity, positive predictive value, negative predictive 
value as well as accuracy for the model using the optimal 
cut-off value in evaluating the risk of TR4-5 TNs. When 
stratified into low- and high-risk subgroups based on the 
optimal cutoff value of the Nomo-score, we determined 
that TR4-5 TNs with a Nomo-score of 0.524 or higher 
represented a high-risk subset, with a high probability of 
malignancy (positive predictive value, 87.1%). Therefore, 
this high-risk subset may be candidates for further exam-
ination or treatment options.

Several limitations of our study should be consid-
ered. Firstly, this was a single-institution retrospective 
study that utilized a single vendor machine, which could 
result in selection bias and data imbalance and may not 
be applicable to other centers or machines. To validate 
the feasibility of our developed radiomics nomogram, 
a well-designed prospective longitudinal cohort study 
with a larger patient group and multi-vendor machines 
across multiple centers is essential in the future. Second, 
the CEUS Rad-score was only based on a single peak-
enhancement CEUS image to represent the whole per-
fusion process, so some other information related to the 
dynamic CEUS videos that might be valuable to the TNs 

diagnoses might have been neglected. We anticipated 
further exploring more sophisticated and effective tech-
nical approaches to investigate the relationship between 
radiomics features and dynamic CEUS video character-
istics (such as TIC parameters), which could potentially 
enhance the predictive performance of radiomics. Third, 
the scope of our study was solely restricted to TR4-5 
TNs, and as such, our findings may not be applicable to 
TNs with lower TI-RADS scores.

Conclusion
To sum up, this study developed a dual-modal US 
radiomics nomogram incorporating both BMUS and 
CEUS Rad-scores and clinical and US risk factors, dem-
onstrating superior discrimination accuracy between 
benign and malignant ACR TI-RADS 4 and 5 TNs 
compared with the clinical combined US model and 
dual-modal US Rad-score and considerably reducing 
unnecessary FNAB rate in comparison to ACR TI-RADS. 
Moreover, it could guide further examination or treat-
ment options.

(See figure on previous page.)
Fig. 5  Two illustrative examples to present the clinical utilization of the nomogram as diagrams. (A) The blue arrows demonstrated that a 54-year-old pa-
tient (point: 10.25) has a thyroid nodule which has an aspect ratio < 1 (point: 0), lobulated margin (point: 11.25), centripetal enhancement direction (point: 
9), BMUS radiomics score of 0.354 (point: 23), and CEUS radiomics score of 0.715 (point: 80.5). This thyroid nodule got a total point of 134, corresponding 
to the malignancy probability (defined as Nomo-score) of 0.339. Therefore, this thyroid nodule was predicted as benign by the nomogram according to 
the optimal cutoff value of 0.524 and was eventually pathologically confirmed as a nodular goiter. (B) The red arrows showed that a 33-year-old (point: 
24) patient has a thyroid nodule which has an aspect ratio > 1 (point: 8), irregular margin (point: 11), centripetal enhancement direction (point: 9), BMUS 
radiomics score of 1.468 (point: 34.75), and CEUS radiomics score of 1.752 (point: 96.25). This thyroid nodule got a total point of 183, referring to a Nomo-
score of 0. 991. The nomogram eventually produced an accurate result consistent with the pathology outcome of papillary thyroid carcinoma. BMUS = 
B-mode ultrasound, CEUS = contrast-enhanced ultrasound

Table 8  Comparison of unnecessary FNAB rates of the dual-modal US radiomics nomogram and other models
Diagnostic models Datasets No. of recom-

mended FNABs
No. of malig-
nant nodules

No. of benign 
nodules

Unnecessary FNAB 
rates (%)

P 
value*

ACR TI-RADS Training dataset (n = 219) 116 75 41 35.3 (41/116) < 0.001

Validation dataset (n = 93) 53 31 22 41.5 (22/53) 0.005

All dataset
(312)

169 103 63 37.3 (63/169) < 0.0001

Dual-modal US ra-
diomics nomogram

Training dataset (n = 219) 145 124 21 14.5 (21/145) NA

Validation dataset (n = 93) 62 51 11 17.8 (11/62) NA

All dataset
(312)

207 175 32 15.5 (32/207) NA

Clinical combined 
with US model

Training dataset (n = 219) 160 137 23 14.4 (23/160) 0.980

Validation dataset (n = 93) 65 54 11 16.9(11/65) 0.894

All dataset
(312)

225 191 34 15.1 (34/225) 0.908

Dual-modal US 
Rad-score

Training dataset (n = 219) 158 138 20 12.7 (20/158) 0.648

Validation dataset (n = 93) 66 57 9 13.6 (9/66) 0.515

All dataset
(312)

224 195 29 12.9 (29/224) 0.440

Note: *For the comparison of unnecessary FNAB rates between dual-modal US radiomics nomogram and other models. FNAB = fine needle aspiration biopsy, ACR 
TI-RADS = American College of Radiology Thyroid Imaging Reporting and Data System, No. = number, US = ultrasound, Rad-score = radiomics score
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