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Abstract

Purpose: The Ki67 expression is associated with the advanced clinicopathological features and poor prognosis in
bladder cancer (BCa). We aimed to develop and validate magnetic resonance imaging (MRI)-based radiomics
signatures to preoperatively predict the Ki67 expression status in BCa.

Methods and materials: We retrospectively collected 179 BCa patients with Ki67 expression and preoperative MRI.
Radiomics features were extracted from T2-weighted (T2WI) and dynamic contrast-enhancement (DCE) images. The
synthetic minority over-sampling technique (SMOTE) was used to balance the minority group (low Ki67 expression
group) in the training set. Minimum redundancy maximum relevance was used to identify the best features
associated with Ki67 expression. Support vector machine and Least Absolute Shrinkage and Selection Operator
algorithms (LASSO) were used to construct radiomics signatures in training and SMOTE-training sets, and diagnostic
performance was assessed by the area under the curve (AUC) and accuracy. The decision curve analyses (DCA) and
calibration curve and were used to investigate the clinical usefulness and calibration of radiomics signatures,
respectively. The Kaplan-Meier test was performed to investigate the prognostic value of radiomics-predicted Ki67
expression status.

Results: 1218 radiomics features were extracted from T2WI and DCE images, respectively. The SMOTE-LASSO model
based on nine features achieved the best predictive performance in the SMOTE-training (AUC, 0.859; accuracy,
80.3%) and validation sets (AUC, 0.819; accuracy, 81.5%) with a good calibration performance and clinical usefulness.
Immunohistochemistry-based high Ki67 expression and radiomics-predicted high Ki67 expression based on the
SMOTE-LASSO model were significantly associated with poor disease-free survival in training and validation sets (all
P < 0.05).

Conclusions: The SMOTE-LASSO model could predict the Ki67 expression status and was associated with survival
outcomes of the BCa patients, thereby may aid in clinical decision-making.
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Introduction
Bladder cancer (BCa) is the 10th most prevalent cancer
with high risk of malignant progression, metastasis and re-
currence [1]. BCa can be classified into non-muscle-
invasive bladder cancer (NMIBC) and muscle-invasive
bladder cancer (MIBC) based on the muscle invasion sta-
tus. At initial diagnosis, approximately 75% of BCa pa-
tients represent NMIBC (Ta, Tis, T1) while the remaining
25% accounts for MIBC (stage from T2 to T4) [2].
Ki67 nucleoprotein, an indicator of cell growth fraction

and a marker associated with proliferative activity of cell,
presents the G1 stage (prophase of DNA synthesis) to mi-
tosis of the cell cycle [3]. Previous studies have demon-
strated that high Ki67 expression is associated with higher
T stage, higher tumor grade, lymph nodes invasion, lym-
phovascular invasion, and poorer prognosis in BCa [4–8].
More interestingly, a meta-analysis study has reported that
high expression of Ki67 was a risk factor for progression-
free survival in NMIBC patients treated with transurethral
resection and Bacillus Calmette-Guérin intravesical im-
munotherapy [9]. Therefore, Ki67 expression is not only a
useful indicator of tumor characteristics and prognosis,
but also may be a reference tool for treatment decision
making. In BCa, the Ki67 expression can only be postop-
eratively detected by immunohistochemistry (IHC) using
samples from either radical cystectomy or cystoscopic bi-
opsy. However, due to heterogeneity in the BCa samples
and relatively small sample size, the examination of Ki67
expression using cystoscopic biopsy may not represent en-
tire BCa, which limits its application. Therefore, a nonin-
vasive and accurate tool is needed to preoperatively
predict the Ki67 expression in BCa patients more compre-
hensively and accurately.
With the development of imaging techniques and

postprocessing analysis, Magnetic resonance imaging
(MRI) is becoming a routine and useful non-invasive
tool for preoperative tumor diagnosis and clinical staging
in BCa. One promising method to optimize radiological
assessment for Ki67 expression prediction is the applica-
tion of radiomics that has rapidly developed in the field
of medical imaging analysis in recent years and has been
widely utilized for the prediction of the biological behav-
ior in various tumors [10–12]. Compared with imaging
characteristics generated by subjective evaluation, radio-
mics is more objective and can extract high-dimensional
imaging features that could not be detected by human
eyes and might be correlated with the intratumor het-
erogeneity [13]. In addition, it is also a preoperative and
non-invasive method for the evaluation of tumor hetero-
geneity. Previous studies have constructed CT/MRI
based radiomics signature for biological behaviors pre-
diction in BCa, including muscle-invasive status, lymph
node metastasis, tumor stage, prognosis and therapeutic
response [14–18], which suggests that radiomics features

may potentially predict the expression of Ki67 in BCa
for the sake of positive relationship between Ki67 ex-
pression and malignant progression [4–6, 9].
In BCa, T2-weighted (T2WI) is usually used to evalu-

ate location, tumor size, morphology, growth pattern
and the degree of interruption of the hypointense
muscle, and dynamic contrast-enhancement (DCE) is
usually used to evaluate the extension of the early en-
hancing lesion into the non-early enhancing muscle [19].
Previous studies have used the T2WI- and DCE-based
radiomics features to preoperatively predict the muscle-
invasive status and pathological grade in BCa [20, 21],
suggesting that the T2WI- and DCE-based radiomics
features can indicate the biological behavior and hetero-
geneity on the onset of tumor and may facilitate the ap-
plication of T2WI- and DCE-based radiomics features
for Ki67 expression prediction in BCa.
To the best of our knowledge, no radiomics signatures

have been constructed for predicting the Ki67 expression
in BCa. In this study, we adopted the radiomics to ex-
tract high-throughput features from T2WI and DCE im-
ages and used Support vector machine (SVM) and Least
Absolute Shrinkage and Selection Operator (LASSO) al-
gorithms to construct radiomics signatures to preopera-
tively predict the Ki67 expression status and investigate
their prognostic value in BCa.

Materials and methods
Patients
In this retrospective cohort study, BCa patients who
were diagnosed by pathology between August 2014 and
April 2020 were retrospectively collected from our cen-
ter. The inclusion criteria included the following: (1)
BCa patients who underwent radical cystectomy or
transurethral resection; (2) BCa was diagnosed with
histopathology and IHC; (3) MRI examinations were
performed < 20 days ahead of surgery; (4) No missing
prognostic information and Ki67 expression. The exclu-
sion criteria included the following: (1) Poor-quality
MRI images; (2) Chemotherapy or radiotherapy were
performed before multiparametric pelvic MRI; (3) Le-
sions for which it was difficult to define the boundaries.
Before the surgical resection, the MRI-determined clin-
ical factors, including hydronephrosis, tumor size, num-
ber of tumors, the Vesical Imaging-Reporting and Data
System (VI-RADS) score and clinical T stage, were eval-
uated by two radiologists. VI-RADS is becoming an im-
aging protocol and reporting criterion for bladder MRI
and provides five-point scores that predict the possibility
of muscle invasiveness by BCa [22]. The protocols of
MRI examination were available in our previous
methods [23]. In this study, Digital Imaging and Com-
munications in Medicine images (DICOM) were re-
trieved for the radiomics analysis. The disease-free
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survival (DFS) of patients was the time when a patient
suffers from the first recurrence, or first progression, in-
cluding metastasis or death after the initiation of sur-
gery. Tumor recurrence or tumor progression was
diagnosed based on patients’ symptoms and medical im-
ages. Follow-up was performed every 3–6months after
surgery via telephone call or hospital visit to obtain the
DFS of patients.

Tumor segmentation and feature extraction
One radiologist (F Xu, with over 5-year experience in
bladder MRI reading) segmented the region of interest
(ROI). For each BCa patient, the boundaries of tumor
were drew on each slice on the DCE images and T2WI
images using ITK-SNAP software (version 3.6.0; http://
itk-snap.org). The areas of vessels or necrosis were ex-
cluded. When multiple tumors existed for a patient, the

Fig. 1 Representative immunostaining (original magnification, × 200) for Ki67 in bladder cancer. a Low Ki67 expression. b High Ki67 expression

Fig. 2 The study flow chart of the study. BCa: bladder cancer; MRI: magnetic resonance imaging; SMOTE: synthetic minority over-sampling technique
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maximal lesion was segmented for features extraction
[24, 25] Volumes of interest (VOI) was constructed by
stacking up the ROIs of each patient. After 30 days, the
same radiologist and another radiologist (T Xu, with
over 10-year experience in bladder MRI reading) repeat-
edly segmented the VOIs of 40 randomly selected BCa
patients to evaluate the intra- and inter-observer agree-
ment on feature extraction. In this process, two radiolo-
gists were blind to the prognostic information and Ki67
expression.
Before radiomics features extraction, all the DICOMs

were subjected to image normalization and resampled to
the same resolution (1 mm × 1mm× 1mm) to avoid
data heterogeneity. Four classes of radiomics features
(including shape and size, first-order features, textural
features and wavelet features) were extracted from seg-
mented tumors using the PyRadiomics platform (http://
www.radiomics.io/pyradiomics.html). Totally 2436 radio-
mics features were extracted from the axial T2WI and
delay phase of DCE images. Radiomics features of all pa-
tients were standardized by using the Z-score [(x – μ)/
σ]. In this formula, x is the radiomics feature value, μ is
the mean of the feature values and σ is the correspond-
ing standard deviation. μ and σ were calculated based on
the training set.

Feature selection
The intra- and interclass correlation coefficients (ICCs)
were used to evaluate the intra- and inter-observer
agreement on feature extraction. Features with ICC >
0.75 were selected for the minimum redundancy max-
imum relevance (mRMR). mRMR is a supervised feature
selection algorithm which calculates the mutual infor-
mation (MI) between a target variable and features. It
ranks features via maximizing MI with respect to the
target variable and then minimizes the average MI for
features with higher rankings [26].

Assessment of Ki67
After surgical resection, IHC was performed on BCa sam-
ples for assessment of the Ki67 within a week. Mouse
anti-human monoclonal primary antibodies against Ki67
(Bio-Rad Cat# MCA289, RRID:AB_321740) was utilized
to detect Ki67 expression according to the manufacturer’s
protocol. Immunoreactivity for Ki67 was scored according
to the Ki67 positive cells among randomly selected 1000
cells in each section by two independent pathologists who
were blind to the prognostic information and clinical data.
According to previous studies [4, 6, 7], BCa patients were
divided into two groups: high Ki67 expression group
(>15% cells stained) and low Ki67 expression group (≤15%
cells stained) (Fig. 1).

Data balancing and radiomics signatures construction
BCa patients were randomly allocated into training set
and validation set based on a 7:3 ratio. The ratio of low
Ki67 expression patients to high Ki67 expression pa-
tients was 1:3.81 (26 low Ki67 expression patients and
99 high Ki67 expression patients) in the training set, re-
vealing a sample imbalance. The synthetic minority
over-sampling technique (SMOTE) algorithm was used
to balance the minority class in the training set [27], so
that the two classes of BCa patients were 1:1 (99 low
Ki67 expression patients and 99 high Ki67 expression
patients) in the SMOTE-training set. We developed four
radiomics signatures, including SVM and LASSO models
in the training set and SMOTE-SVM and SMOTE-
LASSO models in the SMOTE-training set. These

Table 1 Clinicopathological characteristics of patients

Characteristic Number of Patients (%) P
valueTraining Set

(n = 125)
Validation Set
(n = 54)

Sex

Men 106 (84.8) 41 (75.9) 0.155b

Women 19 (15.2) 13 (24.1)

Age (years)

< 65 42 (33.6) 24 (44.4) 0.681b

≥ 65 83 (66.4) 30 (55.6)

Hydronephrosisa

Yes 20 (16.0) 12 (22.2) 0.319b

No 105 (84.0) 42 (77.8)

Tumor sizea (cm)

< 3 82 (65.6) 35 (64.8) 0.919b

≥ 3 43 (34.4) 19 (35.2)

Number of tumorsa

Single 88 (70.4) 36 (66.7) 0.619b

Multiple 37 (29.6) 18 (33.3)

VI-RADS scorea

1 15 (12.0) 7 (13.0) 0.824c

2 35 (28.0) 12 (22.2)

3 35 (28.0) 17 (31.5)

4 16 (12.8) 9 (16.7)

5 24 (19.2) 9 (16.7)

Clinical T stagea

< T2 85 (68.0) 35 (64.8) 0.677b

≥ T2 40 (32.0) 19 (35.2)

VI-RADS, Vesical Imaging-Reporting and Data System.
a MRI-determined information
b Statistical analysis performed using chi-square test.
c Statistical analysis performed using Mann-Whitney U test.
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radiomics signatures were all validated in the validation
set (15 low Ki67 expression patients and 39 high Ki67
expression patients).
The nonlinear SVM-based recursive feature elimin-

ation (SVM-RFE) algorithm was applied to select the op-
timal number of features and the most relevant features
for SVM model development via 10-fold cross-validation
[28]. The kernel parameters of SVM model were com-
puted inside the folds with a standard grid search pro-
cedure and the prediction of Ki67 expression was

automatically determined by the SVM model. The SVM
model generated an internal score called decision value
that was used as the radiomics score of SVM. The
LASSO algorithm was conducted to omit features that
minimally related to the target variable and obtain fea-
tures with non-zero coefficients via 10-fold cross-
validation [29]. The radiomics score of each patient was
calculated by summing the selected radiomics features
weighted by their coefficients. To classifying BCa pa-
tients into radiomics-predicted low and high Ki67

Fig. 3 Development of LASSO models. a Selecting the optimal number of features based on minimum criteria in the training set. b Based on the
optimal λ value of 0.036 with log(λ) = − 3.315, eight features were selected. c Selecting the optimal number of features based on minimum
criteria in the SMOTE-training set. d Based on the optimal λ value of 0.008 with log(λ) = − 4.785, nine features were selected. LASSO: least absolute
shrinkage and selection operator; SMOTE: synthetic minority over-sampling technique
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expression groups, the optimal cutoff value of radiomics
score in LASSO model was calculated with the highest
Youden index.
The performance of radiomics signatures was evalu-

ated by accuracy, sensitivity, specificity, negative-
predictive value (NPV), and positive-predictive value
(PPV) based on the Youden index. The area under the
receiver operator characteristic (ROC) curve (AUC) was
also calculated for radiomics signatures. Decision curve
analysis (DCA) and calibration curves were conducted to
investigate the clinical usefulness and calibration of the
radiomics signature, respectively.

Statistical analysis
Statistical analysis was conducted with SPSS 23.0 (SPSS,
Armonk, NY, USA) and R statistical software (version
3.6.1 R, https://www.r-project.org/). The R packages
used in this study were showed in Supplemental Table 1.
The clinical characteristics between the training and

validation sets were compared applying the Student’s t-
test, the Chi-square test, or the Mann-Whitney U test,
as appropriate. The Kaplan-Meier and log-rank tests
were performed between two groups, defined by IHC-
based Ki67 expression status and radiomics-predicted
Ki67 expression status, respectively. All tests were 2-
tailed, and P value< 0.05 was regarded as statistically
significant.

Results
Patient population
A total of 179 BCa patients [147 male, 32 female; mean
age = 67.8 years ±12.1 (standard deviation), range 20–93
years; 120 NMIBC, 59 MIBC] were collected after ex-
cluding 33 patients who did not meet the inclusion cri-
teria. Of the 179 BCa patients, 41 were low Ki67
expression, and 138 were high Ki67 expression. The spe-
cific flow chart was presented in Fig. 2. There were 125
(high Ki67 expression: 99 patients; low Ki67 expression:

Fig. 4 Development of SVM models. a Selecting the optimal number of features (two features) using SVM-RFE in the training set. b Features
were ranked according to the feature importance by SVM-RFE, and the top two features were selected for SVM model construction. c Selecting
the optimal number of features (nine features) in the SMOTE-training set. d The top nine features were selected for SVM model construction.
SVM: support vector machine; SVM-RFE: SVM-based recursive feature elimination; SMOTE: synthetic minority over-sampling technique
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26 patients) and 54 (high Ki67 expression: 39 patients;
low Ki67 expression: 15 patients) patients in training
and validation sets, respectively. There were no signifi-
cant differences in age, sex, MRI-determined clinical T
stage, tumor number, tumor size, hydronephrosis and
VI-RADS score between two data sets (Table 1).
A total of 2436 radiomics features were extracted from

axial DCE and T2WI sequences (1218 features per se-
quence). According to the standard of ICC > 0.75, 1136

features from DCE images and 1166 features from
T2WI images were highly robust and chosen for subse-
quent analyses. The top 10 features were selected by
mRMR for SMOTE-based data balancing and radiomics
signatures construction. These processes were per-
formed in the training set. After data balancing, the
number of patients in SMOTE-training set were 198
(high Ki67 expression: 99 patients; low Ki67 expression:
99 patients).

Fig. 5 Performance of LASSO models. a The ROC curves of LASSO and SMOTE-LASSO models in training and SMOTE-training sets, respectively. b
The ROC curves of LASSO and SMOTE-LASSO models in validation set. c The performance of LASSO and SMOTE-LASSO models in training and
SMOTE-training sets, respectively. d The performance of LASSO and SMOTE-LASSO models in validation set. ROC: receiver operating curve; AUC:
area under the ROC curve; NPV: negative predictive value; PPV: positive predict value; LASSO: least absolute shrinkage and selection operator;
SMOTE: synthetic minority over-sampling technique
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Radiomics signatures development
Eight and nine features with non-zero coefficients were
chosen by LASSO algorithm to construct LASSO and
SMOTE-LASSO models with the least binominal devi-
ance, respectively (Fig. 3). Through the SVM-RFE algo-
rithm, the top two and nine features were used to
develop SVM and SMOTE-SVM models with the high-
est accuracy, respectively (Fig. 4).

Performance of radiomics signatures
The AUCs of SMOTE-LASSO model were higher than
LASSO model in both training and validation sets (Fig. 5
a, b). Due to the high proportion of high Ki67 expression
patients, we observed high sensitivity but obviously low
specificity of the LASSO model in training and valid-
ation sets (Fig. 5 c, d). In contrast, although the sensitiv-
ity of SMOTE-LASSO model in training and validation

Fig. 6 Performance of SVM models. a The ROC curves of SVM and SMOTE-SVM models in training and SMOTE-training sets, respectively. b The ROC
curves of SVM and SMOTE-SVM models in validation set. c The performance of SVM and SMOTE-SVM models in training and SMOTE-training sets,
respectively. d The performance of SVM and SMOTE-SVM models in validation set. ROC: receiver operating curve; AUC: area under the ROC curve; NPV:
negative predictive value; PPV: positive predict value; SVM: support vector machine; SMOTE: synthetic minority over-sampling technique
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sets declined, the specificity improved greatly (Fig. 5 c,
d). In addition, the accuracy of the SMOTE-LASSO
model was improved in the validation set (Fig. 5d).
As for SVM, the AUCs of SMOTE-SVM model were

higher than SVM model in both training and validation
sets (Fig. 6 a, b), and the specificities of SMOTE-SVM
model were improved greatly in training and validation
sets (Fig. 6 c, d). However, the accuracy of the SMOTE-
SVM model was not improved in the validation set (Fig.
6d).Among these four radiomics signatures, the
SMOTE-LASSO achieved the highest AUC in SMOTE-
training and validation sets and the highest accuracy in
the validation set. In this way, the radiomics signature
based on the SMOTE-LASSO model was selected for
further analysis. The coefficients of nine features in the

SMOTE-LASSO model were showed in Fig. 7a. The nine
features were not highly correlated with each other (Fig.
7b, mean absolute Spearman ρ = 0.08).
High Ki67 expression patients had significantly higher

radiomics scores based on the SMOTE-LASSO model
than low Ki67 expression patients both in the SMOTE-
training and validation sets (both P < 0.001, Fig. 7 c, d).
After omitting the synthetic samples in the SMOTE-

training set, the AUC of the SMOTE-LASSO model was
0.854 (Fig. 8a, 95% confidence interval: 0.765–0.943).
Calibration curves presented a novel agreement between
prediction and observation in training and validation sets
(Fig. 8b). DCA revealed that the SMOTE-LASSO model
based radiomics signature achieved a good clinical net
benefit in both data sets (Fig. 8 c, d).

Fig. 7 Performance of the radiomics score generated by the SMOTE-LASSO model. a The coefficients of nine features in SMOTE-LASSO model. b
Pairwise Spearman rank correlation among nine features in SMOTE-LASSO model. c The violin plot of the radiomics score based on the SMOTE-
LASSO model in the SMOTE-training set. d The violin plot of the radiomics score based on the SMOTE-LASSO model in the validation set. SVM:
support vector machine; SMOTE: synthetic minority over-sampling technique
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Relationship between Ki67 expression status and DFS
In this study, the range of follow-up time was 1–70
months, and 56 BCa patients (31.3%) experienced the
event of tumor recurrence or tumor progression. BCa
patients with IHC-based high Ki67 expression had sig-
nificantly poor DFS than those with IHC-based low Ki67
expression in training and validation sets (Fig. 9a, b, P =
0.033 and 0.024, respectively). We further investigated
the association between patients’ survival outcomes and
the radiomics-predicted Ki67 expression based on the
SMOTE-LASSO model. As a result, BCa patients with
radiomics-predicted high Ki67 expression had signifi-
cantly poor DFS than those with radiomics-predicted
low Ki67 expression in training and validation sets (Fig.
9c, d, P = 0.022 and 0.019, respectively).

Discussion
In this retrospective study, we constructed and validated
MRI-based radiomics signatures for the preoperative pre-
diction of Ki67 expression status in BCa. Because of the
relatively low proportion of low Ki67 expression patients,
data were imbalanced between two classes. Without data
balancing, the predictive performance of radiomics signa-
tures was inadequate, with obviously low specificity. After
data balancing by the SMOTE, the synthesized perform-
ance of radiomics signatures was further improved, indi-
cating that data balancing contributes to construct more
powerful prediction models. In this study, the SMOTE-
LASSO had the optimal performance in the preoperative
prediction of Ki67 expression status. Calibration curves
presented a novel agreement between the SMOTE-

Fig. 8 Performance of the radiomics signature based on the SMOTE-LASSO model after omitting the synthetic samples generated by the SMOTE
in the SMOTE-training set. a The ROC curves of radiomics signature in the SMOTE-training set. b Calibration curve of the radiomics signature in
SMOTE-training and validation sets. c-d DCA for radiomics signature in SMOTE-training (c) and validation sets (d). CI: confidence interval; DCA:
decision curve analyses; ROC: receiver operating curve; AUC: area under the ROC curve; SMOTE: synthetic minority over-sampling technique
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LASSO model based prediction and observation, and
DCA revealed that the SMOTE-LASSO model achieved
good clinical net benefit. Thus, MRI-based radiomics
might assist in preoperatively predicting the Ki67 expres-
sion in BCa.
Radiomics is an emerging imaging technique which

can extract high-throughput imaging features from med-
ical images and is frequently applied for the prediction
of the biological behavior in various tumors [10–12].

The application of radiomics features for the prediction
of Ki67 expression status has been reported in gastrointes-
tinal stromal tumor [10], breast cancer [30], thyroid can-
cer [31], lung cancer [32], liver cancer [33] and glioma
[34]. These studies present the value of radiomics in bio-
logical behaviors prediction, which may also be a potential
method for the prediction of Ki67 expression in BCa on
MRI. However, no study has focused on the radiomics fea-
tures for the prediction of Ki67 expression in BCa. To the

Fig. 9 Prognostic value of the IHC-based Ki67 expression status and radiomics-predicted Ki67 expression status based on the SMOTE-LASSO
model. a, b Kaplan-Meier DFS curves for patients grouped by IHC-based Ki67 expression status in training and validation sets, respectively. c, d
Kaplan-Meier DFS curves for patients grouped by radiomics-predicted Ki67 expression status in training and validation sets, respectively.. IHC:
immunohistochemistry; DFS: disease-free survival
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best of our knowledge, this study is the first to construct
an MRI-based radiomics signature for preoperative Ki67
expression prediction in BCa.
Compared with CT, MRI provides various functional

parameters, orientations and angles to comprehensively
evaluate the tumor [35]. Most of previous studies also
focused on MRI-based radiomics features to predict the
Ki-67 expression status in various tumors, including liver
cancer [33], thyroid cancer [31], glioma [34] and breast
cancer [30, 36], which suggests that MRI-based radio-
mics features have the potential to predict the Ki67 ex-
pression status in BCa. Specifically, T2WI can better
evaluate the tumor size and tumor morphology, and the
T2WI-based radiomics features have been selected to
predict the Ki67 expression in glioma [34] and thyroid
cancer [31]. DCE has an advantage of reflecting the
tumor microvessel permeability. It is reported that a
slight submucosal linear enhancement is associated with
nonmuscle invasiveness condition in BCa [37], and the
DCE-based radiomics features have been successfully
used for the prediction of Ki67 expression in liver cancer
[33], breast cancer [30, 36] and thyroid cancer [31],
which may facilitate the application of DCE-based fea-
tures for Ki67 expression prediction in BCa. In this
study, the numbers of T2WI-based and DCE-based
radiomics features in the nine-feature-based SMOTE-
LASSO model were four and five, respectively, revealing
that the T2WI-based and DCE-based radiomics features
are equally important in Ki67 expression prediction in
BCa. In addition, five of nine radiomics features in the
SMOTE-LASSO model were wavelet filtered features,
revealing that the wavelet transform filter is able to show
tumor biology on multiple scales [38]. Wavelet trans-
form filter creates eight decompositions per level in each
of the three dimensions and offers high-dimensional
radiomics features that remain unnoticed by the human
eye. Compared with subjective evaluation by radiologists
features or low- dimensional radiomics, wavelet filtered
features could provide more information related to bio-
logical behavior and heterogeneity in various tumors, in-
cluding intrahepatic cholangiocarcinoma [39], renal cell
carcinoma [40], prostate carcinoma [41] and BCa [21].
Consistent with previous reports [4–6], our results revealed

that the IHC-based Ki67 expression status was associated
with BCa patients’ prognoses. Furthermore, we tried to ex-
plore the relationship between patients’ survival outcomes
and the radiomics-predicted Ki67 expression status based on
the SMOTE-LASSO model. Interestingly, BCa patients with
radiomics-predicted high Ki67 expression had obviously poor
DFS, indicating that the SMOTE-LASSO model not only
had good performance in the prediction of Ki67 expression,
but also may be a useful prognostic factor in BCa patients. In
this way, the constructed radiomics signature provided a
noninvasive, preoperative tool to predict Ki67 expression,

and the radiomics-predicted Ki67 expression status was asso-
ciated with prognosis in BCa. Traditionally, some preopera-
tive clinical variables such as age, sex, tumor size and
number of tumors have been found to be prognostic factors
in BCa patients [42]. The inclusion of radiomics signature
would provide additionally preoperative information for a
better prediction of the prognoses and potentially help the
treatment decision making in clinical practice. In addition,
this new tool will potentially help physicians in developing a
follow up post-operative plan for BCa patients.
There are some limitations in this study. First, it was a

retrospective study and thus bias could not be avoided.
Prospective study is warranted to further validate the
radiomics signature. Second, single-center study cannot
assess the generalizability of the radiomics signature in
other centers; thus, a multicenter study is necessary to
generalize the radiomics signature of this study.
In conclusion, we constructed a useful MRI-based

radiomics signature for preoperatively predicting Ki67
expression in BCa with satisfactory diagnostic perform-
ance, which may have potential value for clinical
decision-making in BCa.
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