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Abstract

Background: To explore the usefulness of analyzing histograms and textures of apparent diffusion coefficient
(ADC) maps and T2-weighted (T2W) images to differentiate prostatic cancer (PCa) from benign prostatic hyperplasia
(BPH) using histopathology as the reference.

Methods: Ninety patients with PCa and 112 patients with BPH were included in this retrospective study.
Differences in whole-lesion histograms and texture parameters of ADC maps and T2W images between PCa and
BPH patients were evaluated using the independent samples t-test. The diagnostic performance of ADC maps and
T2W images in being able to differentiate PCa from BPH was assessed using receiver operating characteristic (ROC)
curves.

Results : The mean, median, 5th, and 95th percentiles of ADC values in images from PCa patients were significantly
lower than those from BPH patients (p < 0.05). Significant differences were observed in the means, standard
deviations, medians, kurtosis, skewness, and 5th percentile values of T2W image between PCa and BPH patients (p <
0.05). The ADC5th showed the largest AUC (0.906) with a sensitivity of 83.3 % and specificity of 89.3 %. The
diagnostic performance of the T2W image histogram and texture analysis was moderate and had the largest AUC
of 0.634 for T2WKurtosis with a sensitivity and specificity of 48.9% and 79.5 %, respectively. The diagnostic
performance of the combined ADC5th & T2WKurtosis parameters was also similar to that of the ADC5th & ADCDiff
−Variance.

Conclusions: Histogram and texture parameters derived from the ADC maps and T2W images for entire prostatic
lesions could be used as imaging biomarkers to differentiate PCa and BPH biologic characteristics, however,
histogram parameters outperformed texture parameters in the diagnostic performance.
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Background
Prostate cancer (PCa) is the second most commonly di-
agnosed cancer in men worldwide [1]. Patients with sus-
pected PCa usually undergo a standard transrectal
ultrasound-guided biopsy. However, increased serum
prostate-specific antigen (PSA) levels and abnormal
digital rectal examinations have also been used as detec-
tion methods. Unfortunately, these tests have resulted in
the insufficient detection of high-grade PCa tumors and
excessive detection of low-grade lesions [2]. Although a
few randomized-controlled trials have shown that pa-
tients with low-grade tumors failed to benefit from ther-
apy, most patients continued to have excessive
therapeutic interventions and follow-up examinations,
which increased patient and the healthcare sector med-
ical costs [3, 4].
With the increasing application of multi-parametric

magnetic resonance imaging (mpMRI), more focal PCa
tumors can be detected and accurately localized, making
early and precise PCa therapies possible [5]. Diffusion-
weighted imaging (DWI) is a noninvasive technique used
to evaluate the microscopic mobility of water molecules
in tissues and has been used to detect and evaluate pros-
tatic tumors [6, 7]. Apparent diffusion coefficient (ADC)
maps, derived from DWI images, can reflect the histo-
logic characteristics of lesions and has enhanced PCa
diagnosis as a supplementary diagnostic tool [8]. Kuhl
et al. found that bi-parametric MRI (bpMRI, T2-
weighted imaging, and DWI) and mpMRI (T2WI, DWI,
and dynamic contrast-enhanced MRI) had similar diag-
nostic efficiency and accuracy. bpMRI image interpreta-
tions were also have a good consistency among
radiologists, and the diagnostic accuracy of tumor detec-
tion was similar to that of mpMRI. However, bpMRI
had significantly shorter imaging acquisition and inter-
pretation time, and no contrast agent is needed com-
pared with mpMRI [9]. Dynamic contrast-enhanced
(DCE) MRI characterizes the pharmacokinetic tissue
properties through imaging during the administration of
contrast agent. However, this method has several limita-
tions, such as potential adverse reactions to gadolinium
administration, additional scanning time and cost, and
poor consistency in the interpretation of images among
radiologists, limiting its broad application in clinical
practice [10, 11].
Image texture analysis can be used to estimate the het-

erogeneity of image signals by quantifying the roughness
and regularity of grayscale pixel value spatial distribu-
tions in normal and pathologic tissues; the macroscopic
heterogeneity of images might reflect microscopic het-
erogeneity at the level of histopathology [12, 13]. Several
studies have shown that MR image texture analysis
could detect, classify, evaluate, and predict breast, brain,
rectal, and cervical cancer lesions [14–17]. Sidhu et al.

used single-slice texture analysis of ADC, T2W, and
contrast-enhanced T1W images to identify clinically sig-
nificant carcinomas in patients with transitional prostatic
lesions [18]. Wibmer et al. found that Haralick texture
analysis of prostate MRI could be used to detect PCa
and differentiate Gleason scores [19]. Differentiating
PCa from benign prostatic hyperplasia (BPH) remains a
challenge using conventional multi-parametric MRI due
to lesion heterogeneity. Histogram and texture image
analysis is a promising tool that provides a numerical
representation of data distributions and is particularly
useful when evaluating the heterogeneous features of tu-
mors [14, 20, 21]. Cui et al. evaluated the diagnostic per-
formance of histogram analysis of intravoxel incoherent
motion parameters for differentiating PCa from BPH
[22]. Chatterjee et al. found that ADC values were sig-
nificantly lower in PCa compared to all BPH types and
can differentiate between PCa and BPH with high accur-
acy (areas under the curve: AUC = 0.87) [23]. Bonekamp
et al. compared biparametric contrast-free radiomic ma-
chine learning, mean ADC, and radiologist assessment
for characterization of prostate lesions detected during
prospective MRI interpretation. They reported an AUC
of 0.84 for mean ADC values and validated their results
with a test cohort of 133 patients [24]. Peng et al. re-
ported AUC values for the differentiation of PCa from
normal foci of the 10th percentile ADC, average ADC,
T2-weighted skewness, and Ktrans [25]. However, using
whole-lesion histogram and texture analysis with bpMRI
to distinguish BPH nodules from PCa has not yet been
reported.
Therefore, the study aimed to explore the usefulness

of ADC map and T2W image histogram and texture
analyses to distinguish PCa from BPH using histopath-
ology as the reference.

Methods
Subjects
This retrospective study was approved by the local insti-
tutional review board (NO. M20140149), and individual
consent for this retrospective analysis was waived. Be-
tween March 2015 and July 2017, consecutive patients
with pathologically proven PCa or BPH were enrolled in
this study. Patients who met the following criteria were
included in the present study: (1) had pathologically
proven prostatic hyperplasia (systemic biopsy) or cancer
(prostatectomy); (2) had prostatic MRI examinations
performed; (3) the interval between prostatic biopsy/rad-
ical resection and MRI was less than 3 months; and (4)
no history of other malignant tumors. The exclusion cri-
teria were as follows: (1) histopathology of lesion biop-
sies were confirmed to be positive but were negative on
MRI; (2) pretreatments were given to treat prostatic le-
sions, such as endocrine, chemotherapy, or radiotherapy;
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(3) poor image quality due to motion artifacts or severe
susceptibility artifacts; and (4) incomplete imaging
protocol, images of DWI or T2W were missed to per-
form histogram and texture analysis. Patient clinical
characteristics were recorded, including age, PSA levels,
lesion volumes, score of Prostate Imaging Reporting and
Data System (PI-RADS, version 2), and Gleason scores
(in the case of lesions was confirmed to be PCa).

Magnetic resonance imaging
All imaging was performed on a 3 Tesla MRI system
(MAGNETOM Skyra, Siemens Healthcare, Erlangen,
Germany) using a standard 18-channel phased-array
body coil and 32-channel integrated spine coil. The main
parameters of axial DWI were repetition time/echo time
(TR/TE) = 5100/89 ms, field of view (FOV) = 224 × 280
mm2, matrix = 120 × 150, slices = 20, slice thickness = 4
mm, gap = 0 mm, acceleration factor = 2, b-values (num-
ber of averages) = 0 (1), 500(2), 800(4), 1000(5), 1500(6),
2000(8) s/mm2, diffusion gradients applied in three or-
thogonal directions, and acquisition times = 6 min 43 s.
ADC maps were inline calculated using the mono-
exponential model, S(b) = S(0) e− b*ADC, where S(b) is the
signal intensity with a b-value > 0, and S(0) is the signal
intensity with a b-value = 0. Parameters for axial T2-
weighted turbo spin echo sequence were TR/TE = 5460/
104 ms, FOV = 180 × 180 mm2, matrix = 384 × 384,
slices = 24, slice thickness = 4 mm, gap = 0 mm, echo
train length = 18, and acquisition time = 3 min 49 s.

Image analysis
All images were sent to a dedicated workstation for data
processing and were independently assessed by two ex-
perienced radiologists (P.X. and Q.Y.) with 6 and 8 years
of experience in pelvic radiology, respectively. The radi-
ologists were blinded to the data and clinical informa-
tion, and using a consensus, selected the largest lesions
in patients with multicentric or multifocal tumors for
further analysis.
Whole-lesion histogram and texture analyses were

performed on ADC maps and T2W images with the
prototypic MR Multiparametric Analysis software (Sie-
mens Healthcare, Erlangen, Germany) by the radiologists
using the following steps: (1) Import data. T2W images,
DWI images with b = 1500 s/mm2, and ADC maps were
loaded into the histogram and texture analysis software.
(2) Region of interest (ROI) delineations were acquired.
Foreground and background seed points were manually
drawn inside and outside of lesions, respectively, on
three reformatted planes of the DWI images. Then, they
were automatically copied to ADC maps and T2W im-
ages. (3) Lesion segmentation. Segmentation of the
whole lesion was performed based on seed points with a
random walker algorithm [14]. Manual adjustments for

segmentation were performed, if necessary. (4) Histo-
gram and texture analysis. Histogram and texture ana-
lyses for entire lesions on the ADC maps and T2W
images were performed, and statistical parameters were
extracted, including lesion volume, mean, standard devi-
ation, median, 5th and 95th percentiles, differential vari-
ance (diff-variance), differential entropy (diff-entropy),
contrast, entropy, skewness, and kurtosis. Figure 1 shows
the workflow of histogram and texture analysis.

Histopathologic analysis
All patients underwent transrectal ultrasound-guided bi-
opsy or radical prostatectomy. Biopsies and prostatecto-
mies were formalin-fixed and subjected to tissue
sectioning. Tissue sections were stained with a
hematoxylin & eosin stain and subjected to immunohis-
tochemical analyses. A urologic pathologist with 8 years
of experience, observed the histologic sections and de-
termined lesion locations and boundaries. If the lesions
were confirmed to be PCa, Gleason scores were deter-
mined according to the PCa grading guidelines formu-
lated by the 2014 Consensus of the International
Urological Pathology Association [26]. For patients with
BPH, the largest hyperplastic nodules were selected for
analysis, while those with PCa had the largest lesions
chosen for analysis.

Statistical analysis
Statistical analyses were performed using SPSS software
(Version 19, IBM Statistical Package for the Social Sci-
ences, Chicago, IL) and MedCalc (Version 18.2.1, Med-
Calc Software, Mariakerke, Belgium). Quantitative
variables are presented as the mean ± standard deviation
or as the median (1st and 3rd quartile ranges) based on
the normal distribution of the data, and the categorical
variables are expressed as percentages. Differences in PI-
RADS score, PSA levels, and lesion volumes between the
PCa and BPH patients were compared using Mann-
Whitney U tests. Statistical variable differences in age,
histograms and texture analyses of the ADC maps and
T2W images between PCa and BPH patients were evalu-
ated using the independent-samples t-test. In addition,
the diagnostic performance of histogram and texture pa-
rameters on ADC maps and T2W images in being able
to differentiate PCa from BPH was assessed using re-
ceiver operating characteristic (ROC) curves, and the
95 % confidence interval (CI) for the area can be used to
test the hypothesis that the theoretical area is 0.5. If the
CI does not include the 0.5 value, then there is evidence
that the laboratory test does have an ability to distin-
guish between the two groups [27, 28]. Furthermore, we
explored the diagnostic performance of optimized and
combined parameters, based on the best diagnostic
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performance of the ADC map and/or T2W image histo-
gram and texture parameters. A p-value < 0.05 was con-
sidered statistically significant.

Results
Patients
Two hundred and thirteen patients with prostatic lesions
were enrolled in this study. Among these, 11 patients
were excluded because three had poor image quality,
two had lesions confirmed to be positive by histopatho-
logic diagnoses but had negative MRI results, four had
endocrine, chemotherapy, or radiotherapy before MRI,
and two had incomplete imaging protocol. Finally, a
total of 202 patients with a mean age of 65.9 ± 8.7 years
(range 37–86 years) were included in the final analysis.
Ninety (44.5 %) patients were diagnosed with PCa, and
112 (55.5 %) were diagnosed with BPH. There were sig-
nificant differences between PCa and BPH patients in
median scores (quartile range) of PI-RADS (5 (4, 5) vs. 2
(2, 2), p < 0.0001), age (68.9 ± 7.4 vs. 63.5 ± 8.9 years, p <
0.001), PSA concentrations (14.88 (9.05, 30.13) vs. 9.81
(7.26, 15.01) ng/ml, p < 0.001), and lesion volumes (2.50
(1.10, 6.00) vs. 1.05 (0.70, 1.70) cm3, p < 0.001) (Table 1).
The number of PCa patients with Gleason scores of 3 +
3, 3 + 4, 4 + 3 and ≥ 8 were 27 (13.4 %), 17 (8.4 %), 14
(6.9 %) and 32 (15.8 %), respectively.

Comparisons of histogram and texture parameters
The statistical results regarding differences in histogram
and texture parameters of ADC maps and T2W images
in patients with PCa and BPH are summarized in
Table 2. Histogram parameters of the mean, median,
and 5th and 95th percentiles of ADC maps were signifi-
cantly lower in PCa patients compared with those in

BPH patients (all p < 0.0001). For ADC maps, aside from
kurtosis (0.419 ± 1.212 vs. 0.315 ± 1.311, p = 0.386),
standard deviation, diff-variance, diff-entropy, contrast,
entropy, and skewness measures were significantly larger
in PCa patients than in BPH patients (all p < 0.05). Sig-
nificant differences in the means, standard deviations,
medians, kurtosis and skewness values, and 5th percen-
tiles of T2W images were found between PCa and BPH
patients (all p < 0.05), while no significant differences
were observed in the 5th percentile, diff-variance, diff-
entropy, entropy or contrast parameters.

Fig. 1 Flow diagrams of the whole-lesion histogram and texture analysis. a-c: Foreground and background seed points were manually drawn
inside (green color) and outside (red color) on three reformatted diffusion-weighted imaging (DWI) images with b = 1500 s/mm2. e-g: Three-
dimensional segmentations were generated on the DWI images. d, h: Histograms of the T2weighted (T2W) images and apparent diffusion
coefficient (ADC) maps that were generated

Table 1 Patient characteristics

Variable Value

PCa BPH

Patients (n, %) 90 (44.5) 112 (55.5)

Age (years) a 68.9±7.4 63.5±8.9

PSA level (ng/ml) b 14.88(9.05, 30.13) 9.81(7.26, 15.01)

Lesion volume (ml) b 2.50(1.10, 6.00) 1.05(0.70, 1.70)

PI-RADS score b 5 (4, 5) 2 (2, 2)

Gleason score

3+3 (n, %) 27 (13.4) /

3+4 (n, %) 17 (8.4) /

4+3 (n, %) 14 (6.9) /

≥8 (n, %) 32 (15.8) /

PCa prostate cancer, BPH benign prostatic hypertrophy, PSA prostate-specific
antigen, PI-RADS prostate imaging reporting and data system
a, and b, data are expressed as the mean ± standard deviation and the median
(1st and 3rd quartile ranges), respectively
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The diagnostic performance of the histogram and texture
parameters
Table 3 shows that the ROC results of ADC map quali-
tative histogram and texture analyses were able to differ-
entiate PCa from BPH. The AUCs for the ADC maps
ranged from 0.536 to 0.906 with a sensitivity and specifi-
city of 53.3–83.3 % and 57.1–89.3 %, respectively. More-
over, the 5th percentile of the ADC maps showed the
largest AUC (0.906) with a sensitivity and specificity of
83.3 and 89.3 %, respectively, while kurtosis had the low-
est AUC (0.536) with a sensitivity and specificity of 53.3
and 57.1 %, respectively. Histogram and texture analysis
workflow are shown with two representative PCa and
BPH patients (Figs. 2 and 3). ROC curve analyses for the
histogram and texture parameters of ADC maps and
T2W images are shown in Fig. 4. Compared with ADC
maps, the diagnostic performance of T2W images in the
histogram and texture analyses was moderate, while kur-
tosis had the largest AUC of 0.634 with a sensitivity and
specificity of 48.89% and 79.46 %, respectively (Table 3;
Fig. 5). In addition, the diagnostic performance of com-
bining the 5th percentile of the ADC values (ADC5th) &
the kurtosis of T2W (T2WKurtosis) parameters was the

same as that of the combined ADC5th & ADCDiff−Variance

parameters, yielding AUCs of 0.906 (95 % CI 0.857,
0.943), and sensitivities and specificities of 83.3 %, and
89.3 %, respectively. However, these combined parame-
ters were not better than the ADC5th parameter alone in
distinguishing PCa from BPH, which was also true of the
T2W5th & T2WDiff −Variance combined parameters
(Table 4; Fig. 6).

Discussion
In the present study, we evaluated the whole-lesion
histogram and texture analyses of ADC maps and T2W
images to distinguish PCa and BPH using histopatho-
logic diagnoses as the reference standard and found
those parameters could serve as useful biologic charac-
terizations of PCa. The results demonstrated that histo-
gram and texture analyses of parameters from ADC and
T2W images could be useful to differentiate PCa from
BPH, however, histogram parameters outperformed tex-
ture parameters in the diagnostic performance. All histo-
gram and texture parameters, except for kurtosis, were
significantly different in ADC values between PCa and
BPH patients. Significant differences were observed in

Table 2 Histogram parameters of apparent diffusion coefficient (ADC) maps and T2weighted (T2W) images in patients with prostate
cancer (PCa) and benign prostatic hyperplasia (BPH)

Parameters PCa (n = 90) BPH (n = 112) p-value

ADC 5th percentile 557.661 ± 131.688 795.973 ± 116.08 < 0.0001

Mean 806.754 ± 131.268 988.752 ± 106.763 < 0.0001

Median 788.539 ± 140.309 979.942 ± 111.27 < 0.0001

Std 176.311 ± 48.874 129.004 ± 45.47 < 0.0001

Diff-Variance 0.195 ± 0.032 0.178 ± 0.04 < 0.0001

Diff-Entropy 0.757 ± 0.099 0.707 ± 0.086 < 0.0001

Contrast 0.628 ± 0.231 0.488 ± 0.21 < 0.0001

Entropy 1.748 ± 0.289 1.605 ± 0.234 < 0.0001

95th percentile 1123.756 ± 169.511 1217.362 ± 142.675 < 0.0001

Skewness 0.472 ± 0.597 0.297 ± 0.575 0.026

Kurtosis 0.419 ± 1.212 0.315 ± 1.311 0.386

T2W Kurtosis 2.272 ± 2.179 1.375 ± 1.598 0.001

Skewness 0.851 ± 0.558 0.631 ± 0.413 0.001

5th percentile 171.594 ± 43.653 193.165 ± 45.757 0.001

Median 259.822 ± 54.330 278.165 ± 54.817 0.014

Std 68.67 ± 20.296 61.937 ± 18.164 0.012

Mean 267.630 ± 56.500 283.756 ± 55.486 0.039

Entropy 2.355 ± 0.291 2.362 ± 0.279 0.797

Diff-Variance 0.589 ± 0.178 0.570 ± 0.162 0.578

95th percentile 391.011 ± 88.876 393.134 ± 78.278 0.759

Diff-Entropy 1.467 ± 0.158 1.459 ± 0.157 0.808

Contrast 1.847 ± 0.689 1.851 ± 0.665 0.954

Std standard deviation, Diff-Variance difference in variance, Diff-Entropy difference in entropy
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Table 3 Receiver operating characteristic curve results regarding the qualitative analysis of apparent diffusion coefficient (ADC)
maps and T2weighted (T2W) images to distinguish prostate cancer from benign prostatic hyperplasia

Parameters AUC (95% CI) Sensitivity (%) Specificity (%) Cutoff value p value Youden index +LR -LR

ADC 5th percentile 0.906 (0.858, 0.943) 83.3 89.3 ≤ 650.5 < 0.0001 0.7262 7.78 0.19

Mean 0.866 (0.811, 0.910) 73.3 92.0 ≤ 858.379 < 0.0001 0.653 9.13 0.29

Median 0.861 (0.805, 0.905) 68.9 93.7 ≤ 830.5 < 0.0001 0.6264 11.02 0.33

Std 0.797 (0.734, 0.850) 74.4 75.0 > 142.175 < 0.0001 0.4944 2.98 0.34

Diff-Variance 0.717 (0.649, 0.778) 78.9 61.6 > 0.18 < 0.0001 0.405 2.05 0.34

Diff-Entropy 0.717 (0.650, 0.778) 63.3 78.6 > 0.746 < 0.0001 0.419 2.96 0.47

Contrast 0.712 (0.644, 0.773) 67.8 69.6 > 0.506 < 0.0001 0.3742 2.23 0.46

Entropy 0.681 (0.612, 0.744) 70.0 64.3 > 1.668 < 0.0001 0.3429 1.96 0.47

95th percentile 0.674 (0.605, 0.738) 57.8 73.2 ≤ 1135.5 < 0.0001 0.3099 2.16 0.58

Skewness 0.591 (0.520, 0.660) 65.6 54.5 > 0.299 0.0250 0.2002 1.44 0.63

Kurtosis 0.536 (0.464, 0.606) 53.3 57.1 > 0.089 0.3910 0.1048 1.24 0.82

T2W Kurtosis 0.634 (0.563, 0.700) 48.89 79.46 > 2.082 0.0008 0.2835 2.38 0.64

Skewness 0.633 (0.562, 0.699) 60 66.96 > 0.653 0.0009 0.2696 1.82 0.6

5th percentile 0.633 (0.562, 0.699) 82.22 41.07 ≤ 206.5 0.0007 0.2329 1.4 0.43

Median 0.601 (0.530, 0.669) 70 52.68 ≤ 278.5 0.012 0.2268 1.48 0.57

Std 0.603 (0.532, 0.671) 53.33 68.75 > 66.431 0.0119 0.2208 1.71 0.68

Mean 0.584 (0.513, 0.653) 71.11 49.11 ≤ 288.803 0.0371 0.2022 1.4 0.59

Entropy 0.511 (0.439, 0.581) 43.33 69.64 ≤ 2.29 0.7993 0.1298 1.43 0.81

Diff-Variance 0.523 (0.452, 0.593) 25.56 82.14 > 0.711 0.5799 0.07698 1.43 0.91

95th percentile 0.513 (0.441,0.583) 88.89 3.57 ≤ 515.5 0.7625 0.0754 0.92 3.11

Diff-Entropy 0.510 (0.439, 0.581) 42.22 65.18 > 1.526 0.8086 0.07401 1.21 0.89

Contrast 0.502 (0.431, 0.573) 32.22 74.11 ≤ 1.426 0.954 0.0633 1.24 0.91

AUC area under the curve, Std standard deviation, Diff-Variance difference in variance, Diff-Entropy difference in entropy

Fig. 2 Representative images of a 69-year-old male with prostatic carcinoma (a-f) and Gleason scores of 4 + 3. Segmentation of the lesion is
shown on diffusion-weighted imaging (DWI) images with a b = 1500 s/mm2 (a, d). Histograms (c, f) of T2weighted (T2W) images (b) and ADC
maps (e)
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the means, standard deviations, medians, kurtosis and
skewness values, and the 5th percentile of T2W images
between PCa and BPH lesions.
DWI detects the Brownian motion of water molecules

and closely reflects tumor microenvironments, such as

tumor cell densities, water content, the amount of fi-
brous stroma, and cell membrane integrities [29]. ADC
maps can provide in vivo quantitative diffusion measure-
ments. Several studies have shown that ADC values were
negatively correlated with Gleason classifications [30–

Fig. 3 Representative images of a 63-year-old-male patient with benign prostatic hypertrophy (a-f). Segmentation of the lesion is shown on
diffusion-weighted imaging (DWI) images with a b = 1500 s/mm2 (a, d). Histograms (c, f) of T2weighted (T2W) images (b) and apparent diffusion
coefficient (ADC) maps (e) were inline-generated

Fig. 4 Receiver operating characteristic (ROC) curves show the diagnostic performance in distinguishing prostatic carcinoma from benign
prostatic hypertrophy with different ADC map histogram parameters. The 5th percentile of the ADC maps (ADC5th) showed the best overall
sensitivity and specificity compared with the other parameters
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32]. Absolute ADC values can vary depending on the
choice and number of b values selected. Thus, the current
guidelines do not recommend using a single quantitative
ADC parameter to characterize lesions [33]. ADC values
have also shown reasonable repeatability in vivo, with a
variation of about 20 %. In these studies, evaluations of
mean or median ADCs were the primary focus [34, 35]. A
few studies have demonstrated the mean relative percent-
age variations in ADC of prostate ranging from 6.45 to
15.93 % during single scanning session or when two scans
were performed within 2 weeks [36, 37].
ADC map histogram and texture parameters showed

good diagnostic capabilities in detecting and characteriz-
ing diseases and evaluating therapeutic responses. These
parameters can determine the spatial variations of ADC
values and provide additional information about tumor

heterogeneity, which could better reflect tumor charac-
teristics than simply averaging these differences with
ROIs. In this study, we found that texture features ex-
tracted from ADC maps of prostatic MRI could be used
as potential biomarkers to distinguish BPH from PCa tu-
mors. Although this is a preliminary study, the imaging
phenotype based on the whole-lesion histograms of MR
multi-parametric maps might provide as a noninvasive
tool to evaluate the biological characteristics and hetero-
geneity of PCa.
T2WI has been used to show prostatic zonation anat-

omies to localize lesions, which has served as the key
protocol for prostatic MRI since it was first described in
the early 1980 s [38]. Tan et al. performed a meta-
analysis and reported that the overall sensitivity and spe-
cificity of PCa detection using T2WI were 0.57–0.62 and

Fig. 5 Receiver operating characteristic (ROC) curves show the diagnostic performance in being able to distinguish prostatic carcinoma from
benign prostatic with different T2W image histogram parameters

Table 4 Receiver operating characteristic curve results regarding the qualitative analysis of the combined parameters to distinguish
prostate cancer from benign prostatic hyperplasia

Parameters AUC (95% CI) Sensitivity (%) Specificity (%) Cutoff value p value Youden index +LR -LR

ADC5th & T2WKurtosis 0.906 (0.857, 0.943) 83.3 89.3 > 0.53384 < 0.0001 0.7262 7.78 0.19

ADC5th & ADCDiff−Variance 0.906 (0.857, 0.942) 83.3 89.3 > 0.53566 < 0.0001 0.7262 7.78 0.19

T2W5th & T2WDiff − Variance 0.633 (0.562, 0.699) 83.3 42.9 > 0.38111 0.0007 0.2619 1.46 0.39

ADC apparent diffusion coefficient, T2W T2-weighted imaging, 5th 5th percentile, Diff-variance difference in variance
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0.74–0.78, respectively [39]. Due to its low diagnostic ef-
ficacy, T2WI should not be used alone in clinical prac-
tice. In thePI-RADS version 2, T2WI is involved in
prostatic lesion scoring, but overall lesions are judged
primarily based on DWI [40]. This finding is consistent
with the differing abilities of T2WI and DWI texture
analyses in being able to detect PCa and BPH in our
study. Downes et al. created a unique histologic sub-
pattern using the standard Gleason grading system,
where T2WI was used to evaluate potential histopatho-
logic differences between interstitial and epithelial tumor
components [41]. Nketiah et al. showed that T2W image
texture features were more sensitive than signal inten-
sities in revealing tissue morphologies and were closely
related to potential pathophysiologic changes in PCa tu-
mors, further improving the existing PCa classification
methods [42]. Daniel et al. showed that bpMRI texture
analysis could distinguish normal tissues from tumor tis-
sues in patients with androgen deprivation therapy bet-
ter compared with traditional histogram parameters
[43]. Our study revealed that whole-lesion histogram
and texture analysis parameters of T2W images could be
used to distinguish PCa from BPH; however, the diag-
nostic performance was low compared with those of
ADC maps.
Texture analysis has been used to diagnose, differenti-

ate, and assesses the types and therapeutic effects of

various tumors, including PCa. Studies have shown that
histogram and texture analyses of ADCs contributed to
the characterization of prostate tumors. Compared with
the mean and median ADC values and 90th percentile
Kapp values of diffusion kurtosis imaging, the 10th per-
centile ADC values correlated better with Gleason classi-
fications, and was superior to other DWI parameters in
being able to distinguish low-grade and high-grade tu-
mors [31, 44].
Limited whole-lesion histogram analysis has been used

to evaluate PCa therapeutic responses [45]. Kyriazi et al.
proved that the 25th percentiles of ADC were the best
predictor of chemotherapeutic responses in patients with
metastatic ovarian cancer and primary peritoneal can-
cers [46]. Xie et al. used the histogram and texture ana-
lyses of ADCs to differentiate triple-negative breast
cancers from other subtypes [14]. Another group used
DCE MRI and texture analysis to differentiate malignant
glioma from glioblastoma [17]. Texture analysis parame-
ters, extracted from T2W images of rectal cancer pa-
tients, were also found to be useful imaging biomarkers
to assess tumor responses to neoadjuvant chemother-
apies [16]. Meng et al. revealed possible T2W and ADC
texture parameters that could be used as noninvasive
imaging biomarkers for the early detection of recurrence
in patients with advanced cervical cancer after radiother-
apy. These parameters could help clinicians adjust

Fig. 6 Receiver operating characteristic (ROC) curves show the diagnostic performance in being able to distinguish prostatic carcinoma from
benign prostatic with different combined ADC map histogram parameters. This graph shows improved sensitivity and specificity when the 5th

percentile of the ADC values (ADC5th) and ADC differential variance (ADCDiff−Variance) are used together, but this combination is not better than
5th percentile of the ADC maps (ADC5th) parameter used alone (Fig. 4)
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therapeutic strategies and offer more personalized anti-
cancer therapies [15].
For patients with increased PSA levels or clinical indi-

cations of disease on digital rectal examinations, trans-
rectal ultrasound-guided biopsies are currently the most
accepted definitive diagnostic method; however, biopsy
results have been markedly inconsistent with the histo-
pathology of complete prostatic resections. In this study,
we used whole-lesion histogram and texture analysis to
overcome this issue.
There were several limitations in this study. First, the

sample size was relatively small and the diagnostic per-
formance was not validated on an independent dataset
in the current study. We will enlarge the sample size
and validate it in the future study. Second, this study
mainly focused on patients who had histopathological
proved to be positive as well as had definitive lesions in
MRI, which may introduce a selection bias for these pa-
tients. Third, the histopathologic results of most patients
were obtained by transrectal ultrasound-guided biopsy;
and therefore, a mismatch between the pathologic loca-
tions and delineated ROIs was present. In future studies,
3D MRI-guided biopsies might help to obtain accurate
matching between MRIs and pathologic locations and
improve the repeatability of prostate MR image interpre-
tations using texture analysis results. Fourth, ROIs of the
lesions were acquired on DWI images and transferred to
ADC maps and T2W images. Finally, it was retrospect-
ive study and all cases came from a single center. Future
studies will be prospective and have larger sample sizes.
Multiple centers and MR vendors will also be assessed
to confirm the current findings.

Conclusions
In conclusion, parameters derived from whole-lesion
histogram and texture analyses of ADC maps and T2W
images could be used as imaging biomarkers to assess
the biologic characteristics of PCa and BPH lesions,
however, histogram parameters outperformed texture
parameters in the diagnostic performance, which could
help clinicians differentiate benign and malignant pros-
tate nodules, providing efficient and accurate clinical
decisions.
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