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Abstract

Purpose: To investigate the performance of magnetic resonance imaging (MRI)-based radiomics models for benign
and malignant prostate lesion discrimination and extracapsular extension (ECE) and positive surgical margins (PSM)
prediction.

Methods and materials: In total, 459 patients who underwent multiparametric MRI (mpMRI) before prostate
biopsy were included. Radiomic features were extracted from both T2-weighted imaging (T2WI) and the apparent
diffusion coefficient (ADC). Patients were divided into different training sets and testing sets for different targets
according to a ratio of 7:3. Radiomics signatures were built using radiomic features on the training set, and
integrated models were built by adding clinical characteristics. The areas under the receiver operating characteristic
curves (AUCs) were calculated to assess the classification performance on the testing sets.

Results: The radiomics signatures for benign and malignant lesion discrimination achieved AUCs of 0.775 (T2WI),
0.863 (ADC) and 0.855 (ADC + T2WI). The corresponding integrated models improved the AUC to 0.851/0.912/0.905,
respectively. The radiomics signatures for ECE achieved the highest AUC of 0.625 (ADC), and the corresponding
integrated model achieved the highest AUC (0.728). The radiomics signatures for PSM prediction achieved AUCs of
0.614 (T2WI) and 0.733 (ADC). The corresponding integrated models reached AUCs of 0.680 and 0.766, respectively.

Conclusions: The MRI-based radiomics models, which took advantage of radiomic features on ADC and T2WI
scans, showed good performance in discriminating benign and malignant prostate lesions and predicting ECE and
PSM. Combining radiomics signatures and clinical factors enhanced the performance of the models, which may
contribute to clinical diagnosis and treatment.
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Introduction
Prostate cancer (PCa) is the second most common can-
cer in males worldwide [1]. According to the most re-
cent cancer statistics estimated by the American Cancer
Society, PCa alone accounted for nearly 20 % of new
cancer diagnoses and 10 % of cancer deaths in males in
2019 [2].
The clinical gold standard for PCa diagnosis is prostate

biopsy, but biopsy may lead to complications such as pain,
bleeding, inflammation and dysuria [3–5]. Prostate-
specific antigen (PSA) tests and digital rectal examinations
(DREs) are widely used as non-invasive methods to detect
PCa [6]. PSA tests and DREs have high sensitivity but low
specificity [7].
After PCa is detected, staging is an important task that

significantly influences management of the disease. The
evaluation of extracapsular extension (ECE), which indi-
cates that PCa has reached stage T3, is of significance
because ECE is associated with cancer-specific survival
and can affect the positive surgical margins (PSM) [8].
PSM is regarded as a negative prognostic factor in PCa
patients [9]. The presence of PSM within a radical pros-
tatectomy (RP) specimen has a negative effect on prog-
nosis and is linked to a 3.7-fold increase in the risk of
biochemical recurrence [10].
To improve the risk assessment of ECE and PSM,

many nomograms based on PSA, age, perineural inva-
sion status, Gleason score and percentage of positive
cores in biopsy pathology have been constructed [9, 11,
12]. However, ECE and PSM are still poorly predicted by
standard clinical tests.
Multiparametric MRI (mpMRI) is considered a

standard tool for diagnostic evaluations of PCa and
can help reduce unnecessary biopsies by a quarter
[13, 14]. The accurate assessment of PCa by mpMRI
before RP can help clinicians distinguish extrapro-
static disease, identify risk factors associated with
PSM, and evaluate intraoperative complications and
functional recovery after surgery [15]. Several studies
have demonstrated that the features extracted from
T2WI and ADC can aid the classification of Gleason
scores [16–19], indicating that the association be-
tween extraprostatic disease and the features extracted
from ADC and T2WI can be used to improve the ac-
curacy of benign and malignant prostate lesion dis-
crimination and ECE and PSM prediction.
Radiomics is a novel tool that can translate images

into meaningful data for analysis and has been applied
in oncology and the development of machine learning
methods [20]. Recent studies have explored the value of
radiomics based on MRI in the differentiation of PCa
from benign prostate tissue [21] and the evaluation of
PCa aggressiveness [22]. Additional applications of
radiomics are possible.

In this study, we attempted to investigate whether an
MRI-based radiomics model could aid clinical diagnosis
and treatment due to its efficiency in benign and malig-
nant prostate lesion discrimination, ECE prediction and
PSM prediction.

Materials and methods
Patients and data collection
With the approval of our institutional review board, we
performed a retrospective analysis of 640 consecutive
patients who underwent pelvic mpMRI and prostate bi-
opsy at the First Affiliated Hospital of SooChow
University.
Patients who met the following inclusion criteria were

included in our study: (1) prostate lesions with well-
defined boundaries on both T2WI and ADC images ac-
cording to the Prostate Imaging Reporting and Data Sys-
tem version 2 (PI-RADS v2); (2) clinical information,
including age, total PSA (tPSA), free PSA/tPSA (f/tPSA),
biopsy Gleason score (biopsyGS), and percentage of
positive cores; (3) mpMRI before biopsy; (4) trans-rectal
ultrasound guided random biopsy including at least 12
cores; and (5) RP performed in PCa patients by the same
urologist within three months after MRI and biopsy.
The exclusion criteria were as follows: (1) previous

prostate biopsy; (2) previous treatment for PCa; and (3)
confirmed diagnosis of a tumor other than PCa.
The following three biological characteristics were

studied using the above patient data: discrimination of
benign and malignant prostate lesions in all patients and
ECE prediction and PSM prediction in patients with ma-
lignant prostate lesions.

Magnetic resonance imaging protocols
All patients were scanned with a 3.0T MRI scanner
(MAGNETOM Skyra; Siemens Healthineers, Erlangen,
Germany) using a standard spine array coil and an 18-
channel body array coil. The images included axial, cor-
onal and sagittal T2WI (repetition time (TR)/echo time
(TE), 3900/105 ms; flip angle, 160°; section thickness, 3
mm; intersection gap, 0 mm; FOV, 25 cm; and matrix,
384*336) and axial DWI (diffusion weighted imaging) (b
values, 0, 700, 1400, and 2000 s/mm2; TR/TE, 5000/72
ms; section thickness, 5 mm; FOV, 20 cm; and matrix,
128*128). ADC was obtained from DWI with b values of
0 and 700 s/mm2 using a 2D echo planar imaging
sequence.

Pathological Evaluation
After the biopsy or the prostatectomy, the excised tissue
was submitted to histopathology. The RP specimen was
fixed in formalin and sliced from apex to base in 3 to 4
mm intervals. These slices were then stained with
haematoxylin and eosin (H&E). A pathologist with 5
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years of experience outlined each lesion on the micro-
scopic slices and assigned a Gleason score. ECE was de-
termined by the presence of neoplastic tissue outside the
prostatic capsular in the periprostatic tissue. PSM was
determined by the presence of neoplastic tissue at the
surgical margins. Another radiologist with over 5 years
cooperated with the pathologist on the pathology-MRI
lesion matching. All the results were confirmed and cor-
rected by the other pathologist and radiologist both with
over 15 years of experience.

Radiomic feature extraction
Experienced pathologists and radiologists reached a con-
sensus regarding the standard histological-radiological
correlation based on the histological and imaging find-
ings. The tumor region of interest (ROI) was identified
by anatomical landmarks and manually delineated slice
by slice on both the T2WI and ADC sequences by radi-
ologists using Medical Imaging Interaction Toolkit
(MITK) software (version 2013.12.00) (Fig. 1). The full
intensity range of the ROI was quantized to 32 Gy levels
for subsequent feature extraction.
The radiomic features were extracted from the ROIs on

both the T2WI and ADC sequences of each patient by
using the open-source Python package Pyradiomics (ver-
sion 2.1.0) [23]. The extracted features were divided into
the following three categories: (1) 14 shape-based features,
including descriptors of the three-dimensional size and
shape of the ROI; (2) eighteen first-order features describ-
ing the distribution of the voxel intensities within the ROI
using commonly used and basic metrics; and (3) 75 tex-
ture features, including the gray-level run-length matrix
(GLRLM), gray-level co-occurrence matrix (GLCM), gray-
level size-zone matrix (GLSZM), neighboring gray-tone

difference matrix (NGTDM) and gray-level dependence
matrix (GLDM). The wavelet features were calculated by
wavelet decomposition to obtain the intensity and texture
features of the original image. The features were concen-
trated in different frequency ranges within the tumor ROI
[24]. In this research, all radiomic features, except for the
shape-based features, were calculated based on the ori-
ginal image and derived image obtained by applying a
wavelet transform. Ultimately, 851 quantitative radiomic
features were extracted for each ROI.

Feature selection
The number of radiomic features was much larger than
the number of patients, and feature selection was per-
formed to avoid overfitting. A portion of the features
may have low reproducibility when the ROI is manually
delineated by different radiologists or at different times.
To eliminate these features with low reproducibility, two
radiologists (radiologist 1 with 6 years of experience in
MRI interpretation and radiologist 2 with 10 years of ex-
perience) were assigned to delineate the ROIs in each
case. Radiologist 1 performed a series of delineations at
two different times, and radiologist 2 performed the de-
lineation only once. The interclass and intraclass correl-
ation coefficients (ICCs) were computed to assess the
interobserver (radiologist 1 vs. radiologist 2) and intra-
observer (radiologist 1) reliability, respectively. A large
ICC value represents a high degree of reproducibility.
Features with an ICC lower than 0.75 were considered
to have poor agreement and were removed.
Features with a variance close to 0 were redundant

and could not provide valid information for predicting
the label because the values of such features barely
change regardless of whether the case is negative or

Fig. 1 Examples of ROI delineation. a and c are T2WI and ADC images, respectively, of the same patient. The red areas in b and d were
delineated as ROIs
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positive. A Spearman correlation analysis was performed
to identify the highly correlated features [20]. Features
with a mean absolute correlation higher than 0.9 were
considered redundant. Standardization was performed
to eliminate the impact of different feature orders of
magnitude by scaling the features to a zero mean and
unit variance.
Previous studies have shown that adding a prior fea-

ture ranking procedure may be helpful in improving the
final performance. After eliminating the features with
low reproducibility or high redundancy, we used feature-
ranking algorithms to identify the most important
features for label prediction based on a heuristic scoring
criterion, and only the top-ranked features were
retained. The minimum redundancy, maximum rele-
vance (MRMR) approach is a representative and highly
cited multivariate ranking method [25]. This method can
find the m features most relevant to the label from the
feature space.

Model building
The least absolute shrinkage and selection operator
(LASSO) regression algorithm was implemented to ex-
plore powerful predictive combinations of features re-
lated to labels and reduce overfitting and selection bias.
We used the LASSO classifier to build radiomics signa-
tures based on the top-ranking features of each single
sequence and a multivariable logistic regression to build
mpMRI signatures by combining predictions of different
radiomics signatures. The classifier was trained using
10-fold cross-validation and the training set.
To assess the impact of the clinical parameters, we built

integrated models by adding the clinical characteristics to
the radiomics signatures. We used independent t-tests or
Mann-Whitney U tests to assess the continuous variables
and chi-square tests to evaluate the categorical variables.
The optimal model was chosen from combinations of
radiomics signatures and subsets of clinical characteristics
by using a multivariable logistic regression analysis and
Akaike information criteria (AICs) [26].
The radiomics signatures and integrated models were

tested using an independent testing set. The areas under
the receiver operating characteristic (ROC) curves
(AUCs) along with the 95 % confidence intervals (CIs)
and accuracy values were calculated to assess the classifi-
cation performance, and the cut-off value was selected
according to the Youden index to determine the corre-
sponding sensitivity and specificity. The DeLong test
[27] was used for the statistical comparison of the AUCs
between the integrated models and the corresponding
radiomics signatures.
The radiomics signature extracted from T2WI is de-

noted by ST2WI , the signature extracted from ADC is de-
noted by SADC , and the signature of the combination of

features extracted from T2WI and ADC is denoted by
SMP�MRI . The integrated diagnosis models are corres-
pondingly denoted by MT2WI , MADC and MMP�MRI .
R software (3.6.1) was used to conduct feature selec-

tion, model building, and statistical analysis.

Results
Patient profiles
In total, 459 patients with prostate disease (186 patients
with benign tumors and 273 patients with malignant tu-
mors) were analysed after screening according to the in-
clusion criteria (Fig. 2). 186 patients were diagnosed of
benign diseases through biopsy and the other 273 pa-
tients with malignant tumors all underwent prostatec-
tomy. The data included clinical information (age, tPSA,
f/tPSA, positive core percentage, biopsyGS, MRI report
and postoperative pathology report; Table 1) and pelvic
mpMRI images. A stratified sampling method was used
to divide the data into the training set and testing set at
a ratio of 7:3. Of the 459 patients in this study, 323 were
assigned to the training set, and 136 were assigned to
the testing set. The ECE and PSM were studied using
the 273 patients with malignant tumors, and the training
and testing sets for these two labels contained 192 pa-
tients and 81 patients, respectively.
Between the PCa patient group and the non-PCa pa-

tient group, there were significant differences in age,
tPSA and f/tPSA (P < 0.05). Both between the ECE pa-
tient group and the non-ECE patient group and between
the PSM patient group and the non-PSM patient group,
there were significant differences in tPSA, positive core
percentage and biopsyGS. The details are shown in
Tables S1, S2, S3.
There were no obvious differences in clinical characteris-

tics between the different training sets and corresponding
testing sets. The characteristics of the included patients are
summarized in Tables S4, S5, S6; the PCa patients consti-
tuted 59.4 and 59.6 % of the training and testing sets, re-
spectively. The PCa patients with ECE constituted 41.7 and
40.7 % of the training and testing sets, respectively. The pa-
tients with a PSM constituted 37.0 % of both the training
and testing sets. In the training and testing sets for benign
and malignant prostate lesion discrimination, there were no
significant differences in age, tPSA, or f/tPSA (P > 0.05;
Table S7), and in the training and testing sets used for ECE
and PSM prediction, there were no significant differences
in tPSA, positive core percentage and biopsyGS (P > 0.05;
Tables S8 and S9).

Feature selection and acquisition of radiomics signatures
In total, 851 radiomic features per patient were extracted
separately from the ROIs on the T2WI and ADC images.
After removing features with low reproducibility or high
redundancy, 278 T2WI features and 281 ADC features
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were retained for benign and malignant prostate le-
sion discrimination, 278 T2WI features and 293 ADC
features were retained for ECE prediction, and 268
T2WI features and 295 ADC features were retained
for PSM prediction. The remaining features were

ranked by the MRMR approach, and the top 10 fea-
tures were selected as the optimal radiomic feature
subset.
The LASSO classifier was trained using the training

set and the optimal radiomic feature subset to build the

Fig. 2 Flow diagram of patient selection for the study

Table 1 Clinical information of patients with benign and malignant prostate disease

Benign Malignant

Number 186 273

Age, mean (range) (year) 65.23 (30–89) 70.21 (49–87)

tPSA (ng/ml), mean (range) 13.62 (1.64-136.45) 28.95 (2.85-211.87)

f/tPSA, mean (range) 0.16 (0.03–0.40) 0.13 (0.02–0.43)

PI-RADS v2, median (range) 3 (2–5) 4 (3–5)

Positive core percentage, mean (range) - 0.41 (0.08-1)

BiopsyGS, median (range) - 7 (6–10)

ECE reported by MRI - 25

ECE on postoperative pathology, n - 113

reported by MRI, n (%) - 23 (20.4)

not reported by MRI, n (%) - 90 (79.6)

PSM on postoperative pathology, n - 101

PSM with ECE, n (%) - 68 (67.3)

PSM without ECE, n (%) - 33 (32.7)

Pathologic stage -

pT2, n (%) - 160 (58.6)

pT3, n (%) - 113 (41.4)
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radiomics signatures. The details of the features used to
build the different signatures are shown in Tables S10,
S11, S12. These tables also show the positive and nega-
tive correlations and dependencies between the features
and labels by providing the p-values and Spearman’s r-
coefficients.
After the multivariable logistic regression analysis and

AIC analysis, different combinations of ST2WI , SADC , age,
tPSA, f/tPSA, biopsyGS and positive core percentage
were selected to build integrated models. The details
and formulas are shown in Tables S13, S14, S15, S16,
S17, S18, S19, S20, S21, S22, S23, S24, S25, S26, S27.
The performances of the radiomics signatures and in-

tegrated models of different characteristics are shown in
Tables 2, 3 and 4. MADC yielded the highest AUC of
0.912 for benign and malignant prostate lesion discrim-
ination. MADC achieved the highest AUC of 0.728 for
ECE prediction.MADC yielded the highest AUC of 0.766
for PSM prediction. The p-values of the DeLong tests,
95 % CIs and the accuracy, sensitivity and specificity
values are also shown in Tables 2, 3 and 4.

The ROC curves of the different radiomics signatures,
the integrated models and the combination of the radio-
mics signatures and integrated models for evaluating the
effects of adding clinical information are shown in Fig. 3.

Discussion
Despite the reliability of senior radiologists in detecting
cancer lesions and boundaries, it is still challenging to
determine the aggressiveness of PCa and predict the ef-
fect of surgical treatment. When estimating potential le-
sions, clinicians are limited to their personal knowledge
and previous experience. These estimates are influenced
by subjective judgements that may lead to variability
among different clinicians. Machine learning based on
the radiomics method can extract a large number of dis-
tinctive imaging features beyond those obtained by vis-
ual analysis by clinicians and build an objective

prediction model. In our work, T2WI and ADC were
used to build radiomics signatures for benign and malig-
nant prostate lesion discrimination, ECE prediction and
PSM prediction.
ADC and T2WI have been suggested to be negatively

correlated with the percentage area of nuclei or cytoplasm
measured in histopathological prostate tissue specimens
and positively correlated with the percentage of luminal
space [28]. With higher Gleason scores, a disrupted gland
architecture results in a more chaotic and scattered ap-
pearance of the gland lumen [29]. The above findings
were considered the histological basis of the correlations
between PCa and the features on ADC and T2WI. In
addition, ADC has been proven to provide more informa-
tion than T2WI. In addition to providing information on
cellularity, cell count and epithelial volume, ADC is in-
versely correlated with the expression of Ki-67, which is
associated with proliferation potential [30].
The radiomic features ranked by the MRMR approach

and then used in the radiomics signatures by LASSO
were mostly wavelet-based features (8/10 for tumor dis-
crimination, 3/6 for ECE prediction and 3/4 for PSM
prediction). Wavelet-based features have a strong ability
to predict labels and can quantify the heterogeneity of
tumors at different scales that cannot be recognized by
the naked eye [31]. These features play an important role
in the establishment of radiomics signatures.
The radiomics signatures performed well in benign

and malignant prostate lesion discrimination with the
highest AUCs of 0.863 (ADC) and 0.775 (T2WI). The
integrated model using the combination of the ADC sig-
natures and clinical information reached an AUC of
0.912 and thus was better than the model combining the
mpMRI signatures and clinical information. These find-
ings suggest that the ADC sequence had more valid in-
formation for benign and malignant prostate lesion

Table 2 The performance of radiomics signatures in the testing
set for benign and malignant prostate lesion discrimination

AUC p-value 95% CI ACC SEN SPE Cut-off

ST2WI 0.775 0.008 0.696, 0.842 0.699 0.654 0.782 0.622

MT2WI 0.851 0.780, 0.907 0.794 0.840 0.727 0.463

SADC 0.863 0.024 0.793, 0.916 0.809 0.827 0.781 0.620

MADC 0.912 0.852, 0.954 0.868 0.877 0.873 0.552

SMP�MRI 0.855 0.010 0.784, 0.909 0.801 0.815 0.782 0.574

MMP�MRI 0.905 0.843, 0.949 0.846 0.790 0.927 0.678

The p-values were derived from DeLong tests. The first row of p-values
compares the AUCs of the radiomics signatures with random guesses by
chance (AUC of 0.5), and the second row compares the AUCs of the radiomics
signatures with those of the corresponding integrated models

Table 3 The performance of radiomics signatures in the testing
set for ECE prediction

AUC p-value 95% CI ACC SEN SPE Cut-off

ST2WI 0.599 0.002 0.484, 0.707 0.617 0.636 0.625 0.396

MT2WI 0.726 0.616, 0.819 0.691 0.849 0.583 0.267

SADC 0.625 0.007 0.500, 0.724 0.580 0.697 0.521 0.386

MADC 0.728 0.618, 0.821 0.691 0.727 0.688 0.427

Table 4 The performance of radiomics signatures in the testing
set for PSM prediction

AUC p-value 95% CI ACC SEN SPE Cut-off

ST2WI 0.614 0.099 0.499, 0.720 0.605 0.800 0.431 0.368

MT2WI 0.680 0.567, 0.779 0.691 0.633 0.745 0.414

SADC 0.733 0.244 0.623, 0.826 0.667 0.867 0.569 0.311

MADC 0.766 0.659, 0.853 0.728 0.667 0.765 0.360
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discrimination than the T2WI sequence. According to
Table S4, age and f/tPSA were both included in the
three integrated models. The clinical information and
radiomic features were complementary and could be
combined to obtain the prostate-related characteris-
tics. Recent studies based on radiomics have used dif-
ferent features from different MRI sequences to
discriminate benign prostate lesions from malignant
lesions with AUCs ranging from 0.70 to 0.92 [21, 32].
Our findings are consistent with these studies, and
we incorporated more clinical data from the patients
for model optimization.
The radiomics signatures for ECE prediction achieved

the highest AUC of 0.625 using the ADC sequence. Not-
ably, among the 113 patients with ECE diagnosed by
postoperative pathology, only 23 patients (20.3 %) were
identified correctly by the preoperative MRI report with
the manual identification method. There should be a
correlation within in the radiomic features extracted
from primary localized malignant lesions between the
occurrence of ECE and tumor heterogeneity. The inte-
grated models improved the performance to an AUC of
0.728 compared with the corresponding radiomics signa-
tures with no clinical information. These results suggest
that it is difficult to predict ECE using only preoperative

MRI and that the inclusion of clinical information is
necessary.
Previously, the factors used to predict PSM after RP in

PCa mainly relied on clinical information. Turan et al.
[33] identified that a positive core percentage of biopsy
specimens, tPSA levels and the elapsed time between bi-
opsy and surgery increased the risk of a PSM. Yang et al.
[11] reported that perineural invasion, higher biopsy
Gleason scores and more positive cores in biopsy speci-
mens were independent predictors of a PSM. Although
other predictors have been reported, such as body mass
index, tPSA, prostate volume, and surgical experience,
previous data have been largely inconclusive [34]. Con-
sidering the increasingly important role of mpMRI in
the evaluation of PCa, there could be a potential associ-
ation between radiomics and the occurrence of PSM. In
this study, we selected patients whose operations were
performed by the same senior urologist. As a result, the
radiomics signatures performed well in the PSM predic-
tion, with the highest AUC of 0.733 using ADC, and the
corresponding intergraded model reached an AUC of
0.766. Radiomics signatures might reflect a number of
characteristics. First, aggressive cancerous tissue blurs
the boundary between normal and cancerous tissue
under surgical vision, making it difficult to determine

Fig. 3 ROC curves of the radiomics signatures. (a) Radiomics signatures for benign and malignant prostate lesion discrimination. (b) Radiomics
signatures for ECE prediction. (c) Radiomics signatures for PSM prediction. (d), (e), (f). Combinations of the radiomics signatures and the
integrated models for the three tasks separately to evaluate the effect of adding clinical information
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the boundary during surgery. Second, malignant tumor
tissue loses stable tissue structure, increasing its suscep-
tibility to invasion by surgical instruments compared
with normal tissue during surgery.
Early studies have confirmed that age, tPSA and f/

tPSA are significant parameters in PCa diagnosis [7].
The percentage of positive cores and the Gleason score
based on biopsy pathology have been proven to be cor-
related with the aggressiveness of PCa [11, 35]. In our
study, clinical data were fully utilized. A multivariable lo-
gistic regression analysis was conducted, and the AICs
were compared to select risk factors from the above pa-
rameters for inclusion in different integrated models for
optimization.
Prior studies have used machine learning models ana-

lyzing radiomic features to detect PCa and predict Glea-
son scores [16, 18, 21]. Some studies have demonstrated
good correlations of mpMRI with other variables and
ECE [36–38]. Alves et al. [39] achieved good results in
an independent external validation of a nomogram using
clinical data and imaging to predict ECE. Our study
comprehensively analysed clinical variables and imaging
features, and the results were consistent with previous
studies. In addition, our experiments involved a rela-
tively large amount of patient data, and we filtered po-
tentially useful information from a larger number of
possible features. Moreover, we explored the implied in-
formation contained in radiomic features in the predic-
tion of ECE and PSM. We believe that applying our
model could provide a reference for clinical judgment,
thereby potentially improving diagnostic, prognostic, and
predictive accuracy.
Our work has several limitations. First, the analysis

was retrospectively performed using a dataset obtained
at a single center. Further verification should be con-
firmed in a multi-center clinical study to estimate prac-
ticability. Second, we did not reanalyze the postoperative
pathological slices but extracted information from path-
ology reports. Some uncertainty might exist in the match
between the ROIs used to extract the radiomic features
and the corresponding ROIs defined in the histological
slices. Third, while DWI and dynamic contrast-
enhanced MRI (DCE-MRI) have been proven to be ac-
curate assessments of PCa, these methods were not in-
cluded in our study because ADC is calculated from
DWI; thus, there is an intrinsic connection between
them, and the importance of DCE-MRI has diminished
[40]. Furthermore, we did not apply radiomics assess-
ment to lesions in different areas, such as peripheral and
transitional zones and areas that were not well-defined.
In conclusion, our study demonstrates that radiomics

signatures based on MRI could be used as a predictor in
the discrimination of benign and malignant prostate le-
sions and the prediction of ECE and PSM. Prediction

models were established, and we found that the combin-
ation of clinical data and radiomics signatures could im-
prove the efficiency of the model compared to models
including only radiomic features. Our findings might
help clinicians better identify the risk of PCa compared
with previous methods. Furthermore, wider tissue resec-
tion and more careful operation in PCa surgery should
be considered when our model predicts risks of ECE and
PSM.
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