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Abstract

Background: The purpose of this study was to analyze if the use of texture analysis on spectral detector CT (SDCT)-
derived iodine maps (IM) in addition to conventional images (CI) improves lung nodule differentiation, when being
applied to a k-nearest neighbor (KNN) classifier.

Methods: 183 cancer patients who underwent contrast-enhanced, venous phase SDCT of the chest were included:
85 patients with 146 benign lung nodules (BLN) confirmed by either prior/follow-up CT or histopathology and 98
patients with 425 lung metastases (LM) verified by histopathology, 18F-FDG-PET-CT or unequivocal change during
treatment. Semi-automatic 3D segmentation of BLN/LM was performed, and volumetric HU attenuation and iodine
concentration were acquired. For conventional images and iodine maps, average, standard deviation, entropy,
kurtosis, mean of the positive pixels (MPP), skewness, uniformity and uniformity of the positive pixels (UPP) within
the volumes of interests were calculated. All acquired parameters were transferred to a KNN classifier.

Results: Differentiation between BLN and LM was most accurate, when using all CI-derived features combined with
the most significant IM-derived feature, entropy (Accuracy:0.87; F1/Dice:0.92). However, differentiation accuracy
based on the 4 most powerful CI-derived features performed only slightly inferior (Accuracy:0.84; F1/Dice:0.89, p=
0.125). Mono-parametric lung nodule differentiation based on either feature alone (i.e. attenuation or iodine
concentration) was poor (AUC=0.65, 0.58, respectively).

Conclusions: First-order texture feature analysis of contrast-enhanced staging SDCT scans of the chest yield
accurate differentiation between benign and metastatic lung nodules. In our study cohort, the most powerful
iodine map-derived feature slightly, yet insignificantly increased classification accuracy compared to classification
based on conventional image features only.
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Lung metastases, Oncologic imaging
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Background
Lung nodules are one of the most common incidental
findings in chest computed tomography (CT) [1]. Dif-
ferent imaging features depicted in CT of the chest
can be used to facilitate prediction of malignancy,
especially large nodule size, part-solid appearance
and/or spiculation [2–4]. While nodules in non- can-
cer patients are mostly benign, probability of malig-
nancy is much higher when found in cancer patients
at staging examinations [5]. However, for cancer
patients, Fleischner criteria are not applicable [6].
Hence, cancer patients with ambiguous lung nodules
often undergo either additional follow-up to detect
size increase or biopsy of the referring lesions [7, 8].
The necessity for follow-up implies the risk of delayed
diagnosis and additional radiation exposure, while
biopsies may lead to periinterventional complications
such as pneumothorax or pulmonary hemorrhage [9].
Furthermore, uncertainty regarding metastatic status
may even alter therapy [10].
Several approaches have been suggested to investigate

differentiation of lung nodules within one examination
without further need for additional follow-up. Until
now, the majority of referring studies were primarily
focused on discrimination between benign lung nodules
and primary lung cancer [11–15]. However, with regards
to differentiation of benign lung nodules and lung me-
tastases at contrast-enhanced staging CT, data is much
sparser. As one of the approaches proposed to this
regard, it has been revealed that first order texture fea-
tures derived from contrast-enhanced chest CT scans
could be a feasible method do distinguish between
benign and metastatic lung nodules [16, 17]. Another
technique that has been investigated in this setting was
the application of dual-energy CT derived iodine maps
[18]. These maps can be calculated based on the separ-
ate acquisition of Photoelectric and Compton-weighted
datasets [19]. It has been shown that such maps may
be advantageous for the purpose of classification of
pulmonary nodules as they reflect lesion vascularity
[20–22]. However, accuracies obtained with either of
the two methods have not been sufficiently high to
pave the way to clinical application.
Our hypothesis was that texture analysis and dual-

energy CT-derived iodine maps may work synergistically
to facilitate lung nodule differentiation; we focused on
first order texture analysis which has been described to
be more reproducible than higher-order features, which
we assumed to be favorable when applying it to DECT
data [23]. Consequently, the study purpose was to exam-
ine the differentiation between benign lung nodules and
metastases based on first-order texture features obtained
from spectral-detector-CT derived iodine maps and con-
ventional CT images.

Methods
Patients
A retrospective database query was executed to identify
oncologic patients (≥ 18 years) who underwent clinically
indicated, contrast-enhanced, venous phase SDCT of the
chest and who were diagnosed with visually uncalcified,
metastatic or benign lung nodules according to the
radiological report. Subsequently, lung nodules with a
diameter equal or greater than 5 mm were selected by
an experienced radiologist and all nodules were corre-
lated with ground truth as indicated below; if ground
truth was absent, patients were excluded. Figure 1 shows
the workflow for inclusion and exclusion of study
subjects.

Ground truth correlation and lesion annotation
Before study inclusion, each lesion was correlated with a
reference standard. For the subgroup of lung metastases,
this was based either on

1. Histopathologic confirmation of metastatic disease
and/or

2. Unequivocal radionuclide uptake in referring FDG-
PET/CT examinations and/or

3. Unequivocal increase in size over the course of
multiple follow-up examinations or change in size
during anticancer treatment.

Eligibility criteria for benign lung nodules were:

1. Histopathologic confirmation of inflammation/post-
inflammatory changes without malignancy and/or

2. Constant size without treatment compared to prior
or follow-up CT for a period of at least 6 months,
no history of lung metastases

Image acquisition and reconstruction
All scans were performed on a clinical dual-energy CT
scanner (IQon; Philips Healthcare, Best, the
Netherlands) with the following scan parameters: supine
patient position, inspirational breath hold, pitch=0.67;
rotation time=0.33 s, collimation=64 × 0.625 mm;
matrix=512 × 512; tube voltage=120 kVp; tube current
modulation enabled (DoseRight 3D-DOM; Philips
Healthcare). For acquisition of contrast-enhanced scans
(mainly combined chest/abdomen examinations), all
patients received a body weight–adapted bolus of iodin-
ated contrast media (< 55 kg: 1 ml/kg; 55–120 kg: 100 ml;
> 120 kg: 120 ml; Accupaque, 350 mg/mL; GE Health-
care, Chicago, IL) which was administered via a periph-
eral vein with a flow rate of 3.5 mL/sec and followed by
a saline flush of 30 mL. Bolus-tracking technique with a
delay of 50 s was enabled to receive venous phase scans
of the chest (and abdomen, if clinically indicated). For
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reconstruction of conventional images (CI), a hybrid-
iterative reconstruction algorithm was used (iDose 3,
filter YA, Philips Healthcare) and standard lung window
was chosen. Iodine maps (IM) were reconstructed using
a dedicated spectral reconstruction method (Spectral,
filter B, level 3, Philips Healthcare); 2 mm slice thickness
and 1mm section increment were chosen throughout all
datasets.

Post-processing
CT datasets were transferred to a proprietary software
for oncologic follow-up (mint lesion research, Mint
Medical GmbH, Heidelberg, Germany). Lung nodules
were semi-automatically contoured based on CI. CI
and IM were co-registered, and segmentations were
transferred from CI to IM. After that, segmentations
were double-checked in order to warrant consistent
volumes of interest between both reconstructions.
Volumetric Hounsfield unit attenuation (HU), iodine
concentration (IC [mg/ml]) as well as first order tex-
ture features (entropy, kurtosis, mean of the positive
pixels (MPP), skewness, uniformity and uniformity of
the positive pixels (UPP)) within the referring vol-
umes of interests from both datasets were obtained
(supplementary Table 1).

Pre-processing and feature analysis
Values for HU and IC and referring first order texture
features were exported. Mean HU and IC between the
two groups were compared. 15 benign lesions with a HU
higher than one standard deviation above the mean HU
were excluded due to suspected calcification.
Features were tested individually (scikit-learn

0.21.3) by means of area under the receiver operator
characteristic curve (AUC), F-statistics and Mutual
Information (MI).

Multiparametric classification
Features were normalized (zero mean and unit variance)
and data was transferred to a k-nearest neighbor (KNN)
classifier with 10 neighbors using Euclidean distance
metric. The classifier was then evaluated with 5-fold and
Leave One-Out Cross Validation.

Statistical analysis
Quantitative attenuation and iodine values were
compared using Wilcoxon test. Statistical signifi-
cance was determined as p ≤0.05. For feature testing,
MI was calculated. For classification evaluation, F1
score, accuracy, specificity and sensitivity were com-
puted (supplementary Table 2).

Results
Study cohort
183 cancer patients (96 men and 87 women, mean age
63.2 ± 13.0) who underwent SDCT of the chest were in-
cluded: 85 patients with 161 benign lung nodules and 98
patients with 425 lung metastases. Median time of avail-
able imaging follow-up for ground truth correlation was
22.5 months, ranging from 6months to 79months. Table
1 gives an overview on patient characteristics. 425 me-
tastases and 146 benign lesions were used for training
and testing comprising approximately 70 and 30% of the
data, respectively. Accordingly, the training group was
composed of 105 benign lesions and 294 metastases,
while the testing group comprised 41 benign lesions and
131 metastases. Figure 2 gives an overview on the meth-
odological workflow of the study.

Monoparametric analysis
Hounsfield unit attenuation and iodine concentration
were both significantly higher in metastatic (Attenuation:
− 80.1 ± 192.0 HU; IC: 1.6 ± 0.5 mg/ml) than in benign
lung nodules (Attenuation: − 170.5 ± 173.5 HU; IC: 1.4
± 0.5 mg/ml; both p≤0.05). However, for both

Fig. 1 Workflow for inclusion and exclusion of patients
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Table 1 Patient characteristics

Patients with benign lung nodules Patients with lung metastases

Patients 85 98

Patient demographics

Sex (men/women) 47/38 49/49

Mean age (years) 62.7 ± 12.2 63.7± 13.8

Mean Dose (CTDIvol) 14.3 ± 6.7 14.6 ± 6.9

Underlying diseases

Melanoma 18 32

Esophageal cancer 8 5

Sarcoma 7 6

Breast cancer 4 9

Lymphoma 11 1

Colorectal cancer 3 9

Pancreatic cancer 6 5

Renal cell cancer 1 8

Urothelial carcinoma 2 5

Testicular cancer 4 1

Liver cancer 1 3

Ovarian cancer 0 4

Other oncologic diseases 16 10

No oncologic diseases 4 0

Ground truth

Follow-up 80 80

Pathology report 5 17

PET/CT 0 1

Fig. 2 Methodological workflow from study inclusion and image reconstruction to image segmentation, feature extraction, testing and
KNN-based classification
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parameters, a significant data overlap was observed be-
tween the two lesion types (Fig. 3). Consequently, area
under the ROC analysis revealed a low AUC of 0.67 and
0.58 for HU and IC, respectively, regarding benign and
metastatic nodule differentiation. Pertaining to texture
features, kurtosis, skewness and uniformity derived from
CI showed significant differences between benign nod-
ules and lung metastases, while for iodine map derived
features, significant differences were found for entropy,
kurtosis, uniformity and UPP; Table 2 shows the com-
parison of mean values of all tested features between be-
nign and metastatic lung nodules. Figure 4 depicts
exemplary cases of metastatic and benign lung nodules
with entropy feature maps, which was the most powerful
iodine map-derived feature.

Feature analysis
For feature analysis, only the training cohort was used.
Individual feature testing identified entropy, uniformity
and skewness as well as mean HU value derived from
conventional images as the four most powerful features
for lung nodule differentiation. The most powerful iod-
ine map-derived feature was entropy. Table 3 includes
AUC, F-statistics and MI values for each feature tested.

Multiparametric classification
Applied to the training cohort, KNN using 5-Fold Cross
Validation yielded optimal nodule differentiation when
the best 4 CI-derived features were used (Accuracy:0.87;

F1/Dice: 0.91). When combining the 4 best CI-derived
features with the best IM-derived feature (EntropyIM),
accuracy was on a comparable level (Accuracy:0.86; F1/
Dice: 0.90).
When using all iodine map-derived features without

CI-derived features, classification accuracy was lower
(Accuracy: 0.73; F1/Dice: 0.83). When applied to the
testing cohort, KNN yielded the best nodule differenti-
ation when using all CI-derived features and iodine-
derived entropy (Accuracy:0.86; F1/Dice:0.91). Here, the
4 best CI-derived features yielded a lower accuracy, yet
without statistical significance (Accuracy: 0.84, F1/Dice:
0.89). Tables 4 and 5 provide an overview on the results
of KNN-based multiparametric classification in the
training and testing cohort, respectively.

Discussion
This study evaluated differentiation between benign and
metastatic lung nodules at staging spectral detector CT
(SDCT) of the chest based on first-order texture features
derived from quantitative iodine maps (IM) and conven-
tional images (CI).
Distinguishing metastatic from non-metastatic lung

nodules is a clinical scenario of high relevance. Our
results suggest that the proposed method may help to
improve M staging in the context of lung metastases
which is important for determining prognostic outcome
as well as therapeutic approaches of many oncologic dis-
eases. Although lung metastases demonstrated a

Fig. 3 Attenuation and iodine concentration of benign lung nodules and lung metastases. Both were significantly higher in lung metastases yet
overlap between the two lesion types was large
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Fig. 4 Examples of benign nodules as shown in conventional images (CI; left column), iodine maps (IM; second column from the left) and
entropy texture maps derived from CI and IM (right columns). It is revealed that some benign and metastatic nodules may be clearly
distinguished by means of their iodine uptake (top row vs bottom row) while some benign nodules show comparable iodine concentration
values as metastases (second vs third row), hampering accurate differentiation

Table 2 Mean values of all tested features for benign and metastatic lung nodules

Benign lung nodules Lung metastases p-value

AttenuationCI −170.49 −80.12 p≤0.05

Attenuation SDCI 173.54 191.96 p≤0.05

EntropyCI 6.70 8.01 p≤0.0001

KurtosisCI 3.90 4.26 p≤0.0001

MPPCI 94.61 98.09 p=0.18

SkewnessCI −0.21 −0.80 p≤0.0001

UniformityCI 0.01 0.01 p≤0.0001

UPPCI 0.00 0.00 p=0.63

Iodine concentration 1.44 1.58 P≤0.05

Iodine concentration SD 0.47 0.49 P=0.24

EntropyIM 4.90 5.21 p≤0.0001

KurtosisIM 3.67 4.34 p≤0.0001

MPPIM 1.45 1.60 p≤0.05

SkewnessIM 0.42 0.31 p=0.06

UniformityIM 0.05 0.04 p≤0.0001

UPPIM 0.04 0.04 p≤0.0001

Lennartz et al. Cancer Imaging           (2021) 21:17 Page 6 of 10



significantly higher attenuation and iodine concentration
than benign nodules, the observed overlaps for both
parameters between the two lesion types were high. As a
result, nodule differentiation was poor when using either
HU attenuation or iodine concentration exclusively. In
contrast, first order texture analysis yielded highly accur-
ate differentiation between benign and metastatic pul-
monary nodules. Applied to the testing cohort, accuracy
was highest for the combination of all CI-based texture
features and the most powerful iodine-derived feature,
entropy; yet without statistical significance compared to
the differentiation based on CI-derived features only.
Increased iodine enhancement of lung nodules has

been described as an indicator for both vascularity and
malignancy [3, 24]. Hence, we expected that texture fea-
tures derived from iodine maps would provide better in-
sights to the vascular structure of lung nodules than
conventional images, facilitating nodule differentiation;
however, this hypothesis could not be confirmed by the

results of our study. One possible reason may be that
material separation between iodine and calcium as pro-
vided by dual-energy CT has been described to be lim-
ited in very small volumes [25]. Yet, despite this known
limitation, we decided to include smaller nodules in our
analysis as they are frequently encountered in staging
CT of the chest and therefore play an important role in
terms of clinical nodule differentiation [26]. To mitigate
the effect of iodine/calcium-related misclassification, we
only included patients having nodules without typical
calcifications which can be considered a strong predictor
for benign origin [27]. Further, during preprocessing, 15
additional nodules were excluded based on high HU
values suggesting calcifications. However, smaller calcifi-
cations may still be present in many of the benign le-
sions included, contributing to the low specificity
attained with iodine concentration and iodine map-
derived texture parameters. Another explanation for the
described results may be that iodine maps may not be a
suitable data input for first order texture analysis as their
generic appearance is blurrier compared to conventional
images.
Our results must be put into context of the heterogen-

eity of our dataset. It comprised a wide range of under-
lying, heterogenic oncologic diseases. While this can be
considered favorable in terms of generalizability, classifi-
cation accuracy of metastases might vary depending on
the underlying oncologic disease which is why validation
of our proposed approach in larger datasets required.
Moreover, while we refrained from including post-
therapeutic metastatic residuals or metastases in the
state of size decrease following therapy response, many
of the included patients underwent chemotherapy. This
might alter cellularity and vascularity of lung metastases,
potentially changing feature characteristics; yet again, an
ambiguous nodule in a patient with history of or cur-
rently under chemotherapy is a scenario that might also
be encountered clinically which is why we think includ-
ing such cases for model training improves its clinical
applicability.
Although there are several studies that suggested an

added value of iodine quantification for lung nodule
characterization [18, 21, 28, 29], one recent study

Table 3 Results from individual feature testing including area
under the receiver operating characteristics curve (AUC), F1
score and mutual information (MI score)

AUC F1 score MI

Attenuation 0.67 1.48 X 10−12 0.08

Attenuation SD 0.58 6.07 X 10−03 0.02

EntropyCI 0.83 7.45 X 10−31 0.17

KurtosisCI 0.63 2.97 X 10−01 0.02

MPPCI 0.64 2.70 X 10−7 0.03

SkewnessCI 0.74 3.05 X 10−9 0.07

UniformityCI 0.82 7.75 X 10−26 0.15

UPPCI 0.56 1.41 X 10−1 0.11

Iodine concentration 0.58 1.06 X 10−02 0.00

Iodine concentration SD 0.52 4.71 X 10−01 0.00

EntropyIM 0.64 1.36 X 10−02 0.03

KurtosisIM 0.62 1.68 X 10−01 0.00

MPPIM 0.58 9.74 X 10−03 0.00

SkewnessIM 0.55 4.49 X 10−01 0.03

UniformityIM 0.59 4.93 X 10−01 0.02

UPPIM 0.60 8.59 X 10−01 0.02

Table 4 Results of the training cohort. KNN-based lung nodule classification with 5-fold cross validation using different
combinations of CI- and iodine-derived texture features

Accuracy F1 / Dice Sensitivity Specificity

4 best CI-derived features 0.87 ± 0.03 0.91 ± 0.02 0.94 ± 0.03 0.69 ± 0.06

4 best CI-derived features + EntropyIM 0.86 ± 0.04 0.90 ± 0.03 0.95 ± 0.04 0.65 ± 0.05

All CI-derived features 0.86 ± 0.02 0.91 ± 0.02 0.95 ± 0.02 0.64 ± 0.07

All iodine-derived features 0.73 ± 0.02 0.83 ± 0.02 0.92 ± 0.04 0.28 ± 0.08

All CI-derived features + EntropyIM 0.86 ± 0.02 0.90 ± 0.02 0.96 ± 0.01 0.61 ± 0.08

All features 0.83 ± 0.06 0.89 ± 0.04 0.95 ± 0.03 0.56 ± 0.12
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indicated that in conventional CT, contrast-
enhancement did not improve texture analysis-based
subclassification of lung adenocarcinoma [30] which
supports the results we found. Regarding the use of tex-
ture analysis of conventional CT, our results are in line
with previous studies that reported an accurate nodule
differentiation: for differentiation of metastatic and be-
nign lung nodules, Cho et al. reported an AUC of 0.86
[17]. Other studies particularly elucidated the potential
of entropy and the absence of uniformity for differen-
tiation between benign nodules and adenocarcinoma
[15, 16] or prognostic evaluation of lung cancer [31].
In accordance with their results, entropy derived from
conventional images was higher in pulmonary metas-
tases in our study and it was the most powerful fea-
ture for nodule differentiation; also, it was the most
powerful iodine-derived feature.
Our study is subject to several limitations that need to

be addressed. First, we did not assess higher order tex-
ture features. As the combination of DECT-derived iod-
ine maps and texture analysis has not been tested before
for differentiation of benign and metastatic lung nodules,
we wanted to focus on first order features as they were
previously described as more robust compared to higher
order features [23]; yet, subsequent studies with higher
order features should be encouraged. Second, our study
comprised a much larger number of lung metastases
than benign nodules which introduces class imbalance.
Third, histopathologic information was available only in
a small proportion of nodules included which is owed to
the limited number of patients that underwent biopsy
especially in case of benign lung nodules. While the
diagnosis of the metastatic nodules we included can be
assumed to be relatively certain based on unequivocal
changes in follow-up imaging and diagnosis of under-
lying diseases, the benign nodules often remained un-
specified and will predominantly comprise granulomas,
scar tissue from previous infections and hamartomas;
despite long follow-up periods and refraining from in-
cluding patients with known history of pulmonary me-
tastases, a small number of non-vital metastatic residuals
may have been present in this subgroup. However, this
reflects the typical clinical scenario in oncological

patients for which the non-invasive characterization is
most important for individual optimized treatment plan-
ning. Last, most of the patients we included were diag-
nosed with oncologic diseases; this limits generalization
to non-oncologic patients with low probability of lung
nodule malignancy.

Conclusions
To conclude, our study revealed that KNN classification
based on first order texture features improves differentiation
of benign and metastatic lung nodules in contrast-enhanced
staging SDCT of the chest compared to mono-parametric
differentiation. Texture features derived from iodine maps
did not significantly improve differentiation compared to the
same features obtained from conventional images. Further
investigation of possible underlying technical limitations of
SDCT as well as analysis of other material-specific maps for
lung nodule differentiation should be pursued.
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