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Tumor stiffness measured by shear wave
elastography correlates with tumor hypoxia
as well as histologic biomarkers in breast
cancer
Joonghyun Yoo1, Bo Kyoung Seo1* , Eun Kyung Park1, Myoungae Kwon1, Hoiseon Jeong2, Kyu Ran Cho3,
Ok Hee Woo4, Sung Eun Song3 and Jaehyung Cha5

Abstract

Background: Shear wave elastography (SWE) is an ultrasound technique for the noninvasive quantification of tissue
stiffness. The hypoxic tumor microenvironment promotes tumor stiffness and is associated with poor prognosis in
cancer. We aimed to investigate the correlation between tumor hypoxia and histologic biomarkers and tumor
stiffness measured by SWE in breast cancer.

Methods: From June 2016 to January 2018, 82 women with invasive breast cancer who underwent SWE before
treatment were enrolled. Average tumor elasticity (Eaverage) and tumor-to-fat elasticity ratio (Eratio) were extracted from
SWE. Immunohistochemical staining of glucose transporter 1 (GLUT1) was used to assess tumor hypoxia in breast
cancer tissues and automated digital image analysis was performed to assess GLUT1 activities. Spearman correlation
and logistic regression analyses were performed to identify associations between GLUT1 expression and SWE values,
histologic biomarkers, and molecular subtypes. The Mann–Whitney U test, t test, or Kruskal–Wallis test was used to
compare SWE values and histologic features according to the GLUT1 expression (≤the median vs >median).

Results: Eaverage (r = 0.676) and Eratio (r = 0.411) correlated significantly with GLUT1 expression (both p< 0.001). Eaverage was
significantly higher in cancers with estrogen receptor (ER)–, progesterone receptor (PR)–, Ki67+, and high-grade (p< 0.05). Eratio
was higher in cancers with Ki67+, lymph node metastasis, and high-grade (p< 0.05). Cancers with high GLUT1 expression
(>median) had higher Eaverage (mean, 85.4 kPa vs 125.5 kPa) and Eratio (mean, 11.7 vs 17.9), and more frequent ER– (21.7% vs
78.3%), PR– (26.4% vs 73.1%), Ki67+ (31.7%% vs 68.3%), human epidermal growth factor receptor 2 (HER2) + (25.0% vs 75.0%),
high-grade (28.6% vs 71.4%), and HER2-overexpressing (25.0% vs 75.0%) and triple-negative (23.1% vs 76.9%) subtypes
(p< 0.05). Multivariable analysis showed that Eaverage was independently associated with GLUT1 expression (p< 0.001).

(Continued on next page)

© The Author(s). 2020 Open Access This article is licensed under a Creative Commons Attribution 4.0 International License,
which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give
appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if
changes were made. The images or other third party material in this article are included in the article's Creative Commons
licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons
licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain
permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.
The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the
data made available in this article, unless otherwise stated in a credit line to the data.

* Correspondence: seoboky@korea.ac.kr; seoboky@gmail.com
1Department of Radiology, Korea University Ansan Hospital, Korea University
College of Medicine, 123 Jeokgeum-ro, Danwon-gu, Ansan-si, Gyeonggi-do
15355, South Korea
Full list of author information is available at the end of the article

Yoo et al. Cancer Imaging           (2020) 20:85 
https://doi.org/10.1186/s40644-020-00362-7

http://crossmark.crossref.org/dialog/?doi=10.1186/s40644-020-00362-7&domain=pdf
http://orcid.org/0000-0002-9512-5361
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/publicdomain/zero/1.0/
mailto:seoboky@korea.ac.kr
mailto:seoboky@gmail.com


(Continued from previous page)

Conclusions: Tumor stiffness on SWE is significantly correlated with tumor hypoxia as well as histologic biomarkers. In
particular, Eaverage on SWE has independent prognostic significance for tumor hypoxia in the multivariable analysis and can
potentially be used as a noninvasive imaging biomarker to predict prognosis and pretreatment risk stratification in breast
cancer patients.
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Background
Tumor stiffness in breast cancer is an indicator of poor
prognosis. Changes in extracellular matrix (ECM) and
endothelium stiffness lead to increased interstitial pres-
sure and reduced tumor perfusion and drug delivery.
The resulting tumor stiffness can promote tumor inva-
sion and metastasis [1, 2]. Shear wave elastography
(SWE) is a highly reproducible ultrasound (US) tech-
nique for the noninvasive quantification of tissue stiff-
ness [3]. In this method, an initial US push pulse, which
induces a shear wave perpendicular to the US beam, is
applied to the tissue [4]. The speed of the shear wave
generated through the tissues is calculated, and the
strain modulus is estimated in kilopascals (kPa) from the
speed of sound. The elastic modulus of the tissue is pro-
portional to the square of the shear wave speed (E =
3pc2; where E is elasticity, p is the density of the tissue,
and c is the shear wave speed). Usually, breast cancer is
harder than the surrounding normal breast tissue or fat.
Shear waves pass faster through hard tissue than soft tis-
sue, and cancer usually has a higher stiffness value when
expressed in kPa. SWE has been reported to be a con-
venient and effective way to distinguish between benign
and malignant breast masses without loss of sensitivity
[5]. Several studies have reported that tumor stiffness
values on SWE for breast cancer are associated with
prognostic pathological indicators such as immunohisto-
chemical profile, molecular subtypes, or lymphovascular
invasion [6–12]. In addition, the multivariable analysis
by Evans et al. [13] demonstrated that preoperative
tumor stiffness on SWE was a significant independent
prognostic indicator of breast cancer-specific survival.
Therefore, identifying the primary histologic cause of
tumor stiffness on SWE is important for the use of SWE
in oncology imaging.
The hypoxic tumor microenvironment promotes

tumor stiffness by remodeling the ECM and increasing
collagen content and collagen crosslinks [2, 14, 15]. Ac-
cording to a recent study using a mouse tumor model,
tumor stiffness on elastography is related to total fibrous
collagen content and collagen crosslinks, which may be
a possible way to assess changes in the tumor micro-
environment, especially in ECM [16]. In breast cancer,
hypoxia is very important because it is strongly associ-
ated with angiogenesis, cancer growth, metastasis, and

resistance to treatment [17]. Hypoxia induces the secre-
tion of matrix metalloproteinases, which causes invasion
of cancer through ECM degradation, penetration of the
walls of blood vessels and lymphatic vessels, and promo-
tion of metastasis [17–19]. In addition, tumor stiffness
induced by hypoxia affects the vascular endothelium
through the CCN1–β-catenin–N-cadherin pathway,
which promotes the binding of cancer cells to blood ves-
sels and contributes to the metastatic cascade and pro-
motion of metastasis [18]. If tumor stiffness measured
by SWE is associated with hypoxic tumor microenviron-
ment, the SWE parameters can be used as potential im-
aging biomarkers to predict prognosis and pretreatment
risk stratification in breast cancer patients.
We conducted this study to investigate the relationships

between quantitative stiffness parameters on SWE and
tumor hypoxia and prognostic histologic biomarkers in inva-
sive breast cancers. Immunohistochemical staining was per-
formed to examine the expression of hypoxia-related
endogenous protein, glucose transporter-1 protein (GLUT1)
and digital image analysis was used for quantitative immuno-
histochemical evaluation [20–23]. GLUT1 is a high-affinity
glucose transporter that regulates glucose uptake [22].
GLUT1 expression increases under hypoxia, which creases
greater dependence on glycolysis as an energy source. In-
creased glucose consumption can provide the energy needed
for tumor cell proliferation. Among the many immunohisto-
chemical indicators of hypoxia, GLUT1 is overwhelmingly
expressed in breast cancer but its expression is extremely
rare in benign breast lesions such as ductal hyperplasia or
atypical ductal hyperplasia. GLUT1 expression correlates sig-
nificantly with survival outcomes and prognostic factors in
breast cancer [20, 23, 24]. Therefore, we chose to assess
GLUT1 expression because it is useful for measuring hyp-
oxia in breast cancer and we assessed its association with
prognostic factors. We evaluated tumor grade, lymph node,
and estrogen receptor (ER), progesterone receptor (PR), hu-
man epidermal growth factor receptor 2 (HER2), and Ki67
as histologic biomarkers.

Methods
Patients
This retrospective study was approved by our institu-
tional review board, which waived the requirement for
informed consent. From June 2016 to January 2018, 475
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consecutive women with suspicious breast masses, which
were assessed as category 4 or 5 according to the Breast
Imaging Reporting and Data System US lexicon [25],
underwent B-mode US and SWE before US-guided tis-
sue diagnosis. Of 475 patients, 82 patients who were
identified with pathologically invasive breast cancer and
underwent surgery without neoadjuvant chemotherapy
were included in this study (Fig. 1). The mean age of the
patients was 53.9 years (range, 36─85 years). Three hun-
dred ninety-three patients were excluded for the follow-
ing reasons: (a) the pathology diagnosis was benign
tumor (n = 340) or ductal carcinoma in situ (n = 24), (b)
neoadjuvant chemotherapy was performed before sur-
gery (n = 23), (c) the patient was not treated in our hos-
pital (n = 3), or (d) the SWE image quality was not
suitable for evaluation (n = 3).

SWE analysis
B-mode US and SWE images were obtained using an
Aplio 500 US system (Canon Medical Systems, Tokyo,
Japan) equipped with a 5–14MHz linear-array trans-
ducer, by one of two radiologists (B.K.S and E.K.P. with
18 years and 8 years of experience in breast imaging, re-
spectively). The radiologists were given information
about the clinical history and mammography results at
the time of the US examination. They performed whole-
breast B-mode US and obtained at least two orthogonal
images for each suspicious breast mass. After B-mode
US, SWE was performed for the suspicious mass by the
same radiologist who performed the B-mode US.
The mass was located in the center of the elasticity

boxes on a plane showing the longest diameter, and
SWE images were obtained without compression. The
elasticity boxes included the mass and surrounding tis-
sues. The US transducer was held over the mass for a

few seconds to stabilize the SWE image before the image
was saved for SWE measurements. The elasticity color
map was overlaid on the B-mode image; the softest parts
were displayed in blue and the hardest parts in red.
Quantitative elasticity parameters were measured on the
elasticity color map image using the US system’s built-in
quantification tool. The default quantitative scale ranged
from 0 to 200 kPa. Two round 2-mm-diameter regions
of interests were positioned on the hardest part of the
mass and adjacent adipose tissue.
The US system automatically displayed the SWE pa-

rameters such as average elasticity of the tumor (Eaverage)
with standard deviation, average elasticity of the adjacent
fat with standard deviation, and elasticity ratio between
the tumor’s average elasticity and the average elasticity
of adjacent fat (Eratio) (Fig. 2a). We extracted the two
quantitative SWE parameters Eaverage and Eratio, and used
these to examine the relationships between stiffness pa-
rameters on SWE and immunohistochemical staining
for intratumoral hypoxia in breast cancers. In our hos-
pital, we repeated the SWE examination three times for
each suspicious breast mass and measured Eaverage and
Eratio values three times for each mass. We used the
mean of the three measurements of Eaverage and Eratio for
statistical analysis.

Histopathology analysis
Breast cancer tissues obtained from surgical specimens
were stained immunohistochemically to evaluate the de-
gree of tumor hypoxia using anti-GLUT1 antibody. All
formalin-fixed paraffin-embedded tissues were sectioned
at a thickness of 4 μm for staining. Sections were depar-
affinized in xylene and rehydrated for 5 min per session
in a graded series of 100, 95, 80, and 70% alcohol. Anti-
gen retrieval was performed by heating in a pressure

Fig. 1 Flowchart of patients included
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cooker for 15 min. To reduce nonspecific background
staining, tissue sections were incubated in a hydrogen
peroxide blocking agent. The slides were washed in
Tris-buffered saline and incubated with the protein
block (Novolink polymer detection kit; Leica Biosystems,
Newcastle upon Tyne, UK). Primary rabbit anti-GLUT1
antibody (ab15309; Abcam, Cambridge, UK) was diluted
1:200 with goat serum. For GLUT1 staining, hypoxic
areas stain brown.
Automated digital microscopic image analysis was

used for the quantitative assessment of the degree of
staining. A pathologist (H.J. with 14 years of experience)
evaluated the slides under low magnification (× 40) and
chose the most positively stained areas for each tumor.
Subsequently, three nonoverlapping fields were selected
under high magnification (× 100) for each slide. Images
of these fields were captured with the camera and then
imported to the digital image analysis software (Eclipse
Ni and NIS-Elements BR; Nikon, Ofuna, Japan). The
area fraction of positive reactions for immunohisto-
chemistry was measured [26]. Each color image was con-
verted to a binary image. The positive areas—brown area
for GLUT1 staining—were converted to red (Fig. 2b–c).
The area fraction of positive reaction was determined as
the percentage of red pixels in the binary image. The
area fraction was measured in three nonoverlapping
fields on each slide, and the mean value of the area frac-
tion was used for statistical analysis. The necrotic sites
were not included in the evaluation.
We reviewed the histology reports for evaluation of

prognostic biomarkers of breast cancer and dichotomized

the results according to the tumor grade and the status of
lymph node metastasis, ER, PR, HER2, and Ki67. Tumor
grade was classified as 1, 2, or 3 using the Nottingham
scoring system and then dichotomized as low (grades 1
and 2) and high (grade 3) [27]. For the ER and PR, the
Allred scoring system was used, and a score > 2 was consid-
ered as positive [28]. HER2 overexpression was considered
positive when membranes were graded 3+ or 2+ HER2
staining on immunohistochemistry with HER2 gene amplifi-
cation in silver-stained in situ hybridization. The Ki67 index
was defined as positive if the expression was > 20%. Based on
the ER, PR, HER2, and Ki67 results, the cancers were divided
into four molecular subtypes: luminal A cancer (ER and/or
PR+, HER2–, and Ki67–); luminal B cancer (ER and/or PR+,
HER2–, and Ki67+, or ER and/or PR+, HER2+, and Ki67±);
HER2-overexpressing cancer (ER–, PR–, and HER2+), and
triple-negative cancer (ER–, PR–, and HER2–) [29].

Statistical analysis
Spearman’s rank correlation analysis was used to identify
correlations between SWE values (Eaverage and Eratio) and
the area fraction of positive reactions in GLUT1 staining.
The Mann–Whitney U test (for data without a normal
distribution) or t test (for data with a normal distribu-
tion) was used to identify correlations between SWE pa-
rameters and histologic biomarkers such as tumor grade
and lymph node, ER, PR, HER2, and Ki67 status. SWE
parameters were compared between the four molecular
subtypes of breast cancer using the Kruskal–Wallis test
and pairwise comparisons with the Bonferroni post hoc
correction. To compare SWE values and the status of

Fig. 2 Quantitative measurement of tumor stiffness on shear-wave elastography (SWE) and immunohistochemical staining. a. Quantitative
elasticity parameters were measured on the elasticity color map image. Two round 2-mm-diameter regions of interests were positioned on the
hardest part of the mass and adjacent adipose tissue. The ultrasound system automatically displayed average elasticity of the tumor (Eaverage) with
standard deviation, average elasticity of the adjacent fat with standard deviation, and elasticity ratio between the tumor’s average elasticity and
the average elasticity of adjacent fat (Eratio). Two quantitative SWE parameters, Eaverage (yellow box) and Eratio (green box), were extracted to
investigate the relationships between stiffness parameters on SWE and immunohistochemical staining. b–c. On immunohistochemical staining,
the area fraction of positive reactions was measured. Each color image was converted to a binary image. The positive areas—brown area for
glucose transporter-1 protein (GLUT1) staining (× 100) (b)—were converted to red (c). The area fraction of positive GLUT1 reaction was
determined as the percentage of red pixels in the binary image
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histologic biomarkers and molecular subtypes based on
the area fractions of positive GLUT1 staining (≤ the me-
dian vs > median), the Mann–Whitney U test, t test, or
Kruskal–Wallis test was used. Univariable and multivari-
able logistic regression analysis was performed to assess
correlations between GLUT1 expression and SWE values
and histologic features. Multivariable regression analysis
was performed to identify variables that were independ-
ently associated with GLUT1 expression using the statisti-
cally significant variables in the univariable analysis. P
values < 0.05 were considered to indicate significant differ-
ences. Statistical analysis was performed by a biostatisti-
cian (J.C.) using commercially available statistical software
(SPSS, version 25.0; IBM Corp., Armonk, NY, USA).

Results
The mean size of the breast cancer was 21.9 mm (range,
8–50 mm). The histological types of the 82 invasive
breast cancers included invasive ductal carcinoma (n =
75, 91.5%), invasive lobular carcinoma (n = 3, 3.7%), in-
vasive micropapillary carcinoma (n = 2, 2.4%), tubular
carcinoma (n = 1, 1.2%), and mucinous carcinoma (n = 1,
1.2%) (Table 1).

Correlations between SWE values and tumor hypoxia and
histologic biomarkers
In the 82 invasive breast cancers, the mean Eaverage was
105.5 ± 30.6 kPa (range, 23.5–150.5 kPa; median, 113.4
kPa) and the mean Eratio was 14.8 ± 8.4 (range, 3.0–60.8;
median, 13.9). The mean area fraction of positive reac-
tion in GLUT1 staining was 35.4 ± 15.0% (range, 6.6–
78.4%; median 32.9%). The Spearman’s rank correlation
coefficients between SWE values and the area fractions
of positive reaction in GLUT1 staining were 0.676 for
Eaverage and 0.411 for Eratio, which were moderate corre-
lations [30]. The correlations between SWE values and
GLUT1 staining were significant (p < 0.001 for all).
Table 2 shows the relationships between SWE values

and histological biomarkers in the 82 invasive breast
cancers. Eaverage values were significantly higher in breast
cancers with ER negativity (p = 0.006), PR negativity (p =
0.009), Ki67 positivity (p = 0.002), and high grade (p =
0.002). However, Eaverage and Eratio was not associated
with lymph node metastasis or HER2 overexpression
(both p > 0.05). Eratio was significantly higher in breast
cancers with lymph node positivity (p = 0.027), Ki67
positivity (p = 0.048), and high grade (p = 0.003). Eratio
values were not significantly associated with ER, PR, or
HER2 status (all p > 0.05).
Eaverage differed significantly between the four molecu-

lar subtypes of breast cancer (p = 0.009). Eaverage was sig-
nificantly higher in triple-negative cancers than in
luminal A cancers when compared using the Kruskal–
Wallis test and pairwise comparisons with Bonferroni

correction (p = 0.030). Eaverage was higher in HER2-
overexpressing cancers (p = 0.065) and luminal B cancers
(p = 0.187) than in luminal A cancers, but these were not
statistically significant. Eratio did not differ between the
molecular subtypes (p = 0.094).

Factors influencing tumor hypoxia
The cancers were divided into two groups based on the
median area fraction of GLUT1 staining (≤ the median
vs > median). Lymph node metastasis, ER, PR, HER2,
Ki67, and tumor grade status, and molecular subtypes
were compared between the two groups (Table 3). Can-
cers with high GLUT1 expression had higher Eaverage
(mean, 85.4 kPa vs 125.5 kPa, p < 0.001) and Eratio
(mean, 11.7 vs 17.9, p < 0.001) and higher rates of ER

Table 1 Patient characteristics

Characteristics No. of Tumors (n = 82)

Histological type

invasive ductal carcinoma 75 (91.5)

invasive lobular carcinoma 3 (3.7)

invasive micropapillary carcinoma 2 (2.4)

tubular carcinoma 1 (1.2)

mucinous carcinoma 1 1.2)

Lymph node status

negative 46 (56.1)

positive 36 (43.9)

ER status

negative 23 (28.0)

positive 59 (72.0)

PR status

negative 26 (31.7)

positive 56 (68.3)

HER2 status

negative 66 (80.5)

positive 16 (19.5)

Ki67 status

negative 41 (50.0)

positive 41 (50.0)

Tumor grade

1 or 2 54 (65.9)

3 28 (34.1)

Molecular subtype

luminal A cancer 26 (31.7)

luminal B cancer 35 (42.7)

HER2-overexpressing cancer 8 (9.8)

triple-negative cancer 13 (15.8)

Data are value with percentages in parentheses
ER estrogen receptor, PR progesterone receptor, HER2 human epidermal
growth factor receptor 2
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negativity (21.7% vs 78.3%, p = 0.001), PR negativity
(26.4% vs 73.1%, p = 0.004), HER2 positivity (25.0% vs
75.0%, p = 0.026), Ki67 positivity (31.7%% vs 68.3%, p =
0.001), grade 3 cancer (28.6% vs 71.4%, p = 0.005), and
HER2-overexpressing (25.0% vs 75.0%) and triple-
negative (23.1% vs 76.9%) subtypes (p = 0.001).
All variables except lymph node status were signifi-

cantly associated with the area fraction of GLUT1 stain-
ing in the univariable regression analysis (Table 4). In
the multivariable logistic regression analysis, Eaverage was
strongly associated with GLUT1 expression (p < 0.001)
but the remaining variables were not related to GLUT1
expression (p> 0.05).

Discussion
In this study, we found that SWE tumor stiffness was re-
lated to the degree of tumor hypoxia as well as the status
of histologic biomarkers. The SWE parameters, Eaverage
(r = 0.676) and Eratio (r = 0.411) correlated significantly
with GLUT1, a hypoxia-related endogenous protein (p <
0.001). SWE parameters were significantly associated
with histologic biomarkers such as the status of the

lymph nodes, ER, PR, Ki67, tumor grade, and molecular
subtypes (all p < 0.05), all of which can affect tumor
prognosis and treatment planning. When we divided the
cancers into two groups based on the area fraction of
GLUT1 staining (≤ the median vs > median), cancers
with a higher GLUT1 expression had increased Eaverage
and Eratio on SWE and higher frequencies of aggressive
histologic biomarkers. However, only Eaverage remained
significantly related to GLUT1 expression in the multi-
variable logistic regression analysis (p < 0.001).
Our study have strengths. Our exploratory study is

perhaps the first to report the tumor stiffness values of
SWE to act as an indicator for tumor hypoxia, which
can be easily incorporated in clinical practice to predict
prognosis and risk stratification. Our study provides in-
formation showing that tumor hypoxia may be the root
cause of tumor stiffness on SWE. The hypoxic tumor
microenvironment is strongly associated with cancer
proliferation, metastasis, and resistance to treatment
[17]. Because breast cancer is heterogeneous, sometimes
the characteristics of the entire cancer cannot be repre-
sented as a single molecular subtype in the pathology

Table 2 Relationship between SWE values and histologic biomarkers of breast cancers

Eaverage *p value Eratio *p value

Lymph node

negative (n = 46) 108.1 (104.4 ± 31.6) 0.695 12.8 (12.8 ± 6.4) 0.027

positive (n = 36) 115.1 (106.8 ± 29.7) 16.2 (17.3 ± 10.1)

ER

negative (n = 23) 126.3 (118.5 ± 29.1) 0.006 15.9 (17.6 ± 11.2) 0.122

positive (n = 59) 109.0 (100.4 ± 29.9) 13.0 (13.7 ± 6.9)

PR

negative (n = 26) 124.8 (117.7 ± 27.9) 0.009 16.2 (17.6 ± 11.3) 0.134

positive (n = 56) 108.1 (99.8 ± 30.4) 13.1 (13.5 ± 6.5)

HER2

negative (n = 66) 111.6 (103.4 ± 31.7) 0.256 13.0 (13.6 ± 6.3) 0.085

positive (n = 16) 119.7 (114.1 ± 24.6) 15.6 (19.7 ± 13.5)

Ki67

negative (n = 41) 102.9 (95.0 ± 32.8) 0.002 12.8 (12.6 ± 5.8) 0.048

positive (n = 41) 119.2 (116.0 ± 24.5) 14.7 (17.0 ± 10.0)

Tumor grade

1 or 2 (n = 54) 104.4 (98.2 ± 30.9) 0.002 12.4 (13.3 ± 8.8) 0.003

3 (n = 28) 120.9 (119.5 ± 25.2) 17.2 (17.6 ± 7.0)

Molecular subtype

luminal A cancer (n = 26) 94.8 (91.4 ± 30.7) 0.009 12.4 (12.1 ± 5.5) 0.094

luminal B cancer (n = 35) 115.3 (108.2 ± 27.1) 14.2 (15.1 ± 7.5)

HER2-overexpressing cancer (n = 8) 127.6 (118.0 ± 32.1) 22.4 (24.1 ± 16.5)

triple-negative cancer (n = 13) 123.2 (118.5 ± 30.8) 13.2 (13.7 ± 4.9)

Data are displayed as median (mean ± standard deviation)
*p values indicate comparisons between two groups using the Mann–Whitney U test or t test and four groups using the Kruskal–Wallis test
ER estrogen receptor, PR progesterone receptor, HER2 human epidermal growth factor receptor 2
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results, and the treatment response and prognosis may
also differ within the same molecular subtype. Even if
the molecular subtype has a pathologically good progno-
sis (e.g. luminal-A type), breast cancers with a high SWE
value may be considered for aggressive treatments such
as addition of anticancer drugs as well as routine anti-
hormonal therapy. Our results provide information that
may be helpful for improving patient outcomes by classi-
fying patients into risk groups according to numerical
categories based on the quantitative SWE values. This
may improve the ability for predicting future prognosis
at diagnosis, planning of optimal individualized treat-
ments, and personalized monitoring.
Tumor cellularity, fibrosis, angiogenesis, or hypoxia

are possible causes of tumor stiffness [2, 31–33]. In the
present study, we focused on the tumor hypoxia. Be-
cause hypoxia stimulates angiogenesis and fibrogenesis,
it can be a major factor of tumor stiffness and

prognostic outcomes of breast cancer. Tumor hypoxia is
common because of the inadequate oxygen delivery to
areas of fast-growing cancer some distance from func-
tional blood vessels. Previous studies have shown that
hypoxia in breast cancer induces tissue stiffness through
the involvement of lysyl oxidase, which promotes colla-
gen crosslinking [2, 14, 15]. Lysyl oxidase is an extracel-
lular amine oxidase that modifies collagens and elastin
in the ECM by catalyzing the covalent crosslinking of fi-
bers. Collagen crosslinking increases ECM tensile
strength and focal adhesions. In breast cancer, increased
expression of hypoxia-inducible factor 1 or hypoxia-
induced lysyl oxidase family members increase collagen
crosslinking and metastasis formation [14, 15]. In
addition, tumor matrix stiffness affects the vascular
endothelium through the CCN1–β-catenin–N-cadherin
pathway and promotes metastasis [18]. Thus, hypoxia in-
creases tumor stiffness by collagen crosslinking and

Table 3 Differences in SWE values and histologic biomarkers according to GLUT1 expression

GLUT1 *p
value≤median (n = 41) >median (n = 41)

Eaverage 85. 4 ± 29.3 kPa 125.5 ± 14.8 kPa < 0.001

Eratio 11.7 ± 5.7 17.9 ± 9.6 < 0.001

Lymph node 0.373

negative 21 (45.7) 25 (54.3)

positive 20 (55.6) 16 (44.4)

ER 0.001

negative 5 (21.7) 18 (78.3)

positive 36 (61.0) 23 (39.0)

PR 0.004

negative 7 (26.9) 19 (73.1)

positive 34 (60.7) 22 (39.3)

HER2 0.026

negative 37 (56.1) 29 (43.9)

positive 4 (25.0) 12 (75.0)

Ki67 0.001

negative 28 (68.3) 13 (31.7)

positive 13 (31.7) 28 (68.3)

Tumor grade 0.005

1 or 2 33 (61.1) 21 (38.9)

3 8 (28.6) 20 (71.4)

Molecular subtype 0.001

luminal A cancer 21 (80.8) 5 (19.2)

luminal B cancer 15 (42.9) 20 (57.1)

HER2-overexpressing cancer 2 (25.0) 6 (75.0)

triple-negative cancer 3 (23.1) 10 (76.9)

Data refers to the numbers of subject included, means ± standard deviation for continuous variables and counts (%) for categorical variables
*p values indicate comparisons between two groups using the Mann–Whitney U test or t test and four groups using the Kruskal–Wallis test
GLUT1 glucose transporter-1 protein, ER estrogen receptor, PR progesterone receptor, HER2 human epidermal growth factor receptor 2
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fibrosis, and tumor stiffness promotes tumor progression
and metastasis by changes in the vascular endothelium.
After all, tumor hypoxia leads tumor hardness, progres-
sion, metastasis, and treatment resistance. Therefore, if
we find a correlation between imaging characteristics
and tumor hypoxia, imaging features can be used as a
promising imaging biomarker to predict prognosis and
treatment plans.
In this study, we analyzed the relationships between im-

munohistochemical GLUT1 staining and SWE tumor
stiffness values (Eaverage and Eratio), histologic biomarkers,
and molecular subtypes. Cancer metabolism is character-
ized by high rates of glucose consumption. Hypoxia leads
to upregulated glycolysis [24]. GLUT1 is the first member
of the GLUT family and increased GLUT1 expression in
cancer tissue reflects increased glycolytic metabolism.
Thus, in breast cancer, GLUT1 expression indicates ag-
gressive behavior and worse prognosis [20, 23, 24]. Previ-
ous studies have reported that GLUT1 is associated with
high tumor grade, positive Ki67, negative hormone recep-
tor, and triple-negative subtype in breast cancer [20, 23,
34]. Therefore, the GLUT1 expression level implies the
degree of tumor proliferation and may be helpful guiding
treatment planning. Our results are consistent with those
of previous studies [20, 23, 24]. In this study, cancers with
high GLUT1 expression had higher rates of ER negativity,

PR negativity, HER2 positivity, Ki67 positivity, high-grade,
and HER2-overexpressing and triple-negative subtypes. In
addition, we found novel aspects in SWE such as that can-
cers with high stiffness values have significantly higher
GLUT1 expression and that the average tumor elasticity
(Eaverage) of SWE was the only independent factor influen-
cing tumor hypoxia in our multivariable logistic regression
analysis. Our results suggest that the tumor stiffness on
SWE in breast cancer may be an expression of tumor hyp-
oxia, a primary poor prognostic indicator.
The correlations between SWE quantitative parame-

ters and biomarkers of poor prognosis in breast cancer
observed here are consistent with associations reported
in previous studies [7–10]. In our study, the average
tumor elasticity, expressed as Eaverage, was significantly
higher in breast cancers with ER negativity, PR negativ-
ity, Ki67 positivity, and high grade [9, 10]. The elasticity
ratio between the average tumor elasticity and average
elasticity of adjacent fat, expressed as the Eratio, was sig-
nificantly higher in breast cancers with Ki67 positivity
and high grade [8]. The correlations between SWE pa-
rameters and molecular subtypes in breast cancer ob-
served here are consistent with associations shown in
previous studies. The average elasticity of tumors is
higher in triple-negative or HER2-overexpressing cancer
compared with luminal type cancer [10]. In previous

Table 4 Univariable and multivariable logistic regression analysis of factors influencing GLUT1 expression

Variable Univariable analysis Multivariable analysis

β
coefficient

Odd ratio (95% CI) p
value

β
coefficient

Odd ratio (95% CI) p
value

Eaverage 0.088 1.091 (1.049 − 1.135) <
0.001

0.085 1.089 (1.041 −
1.139)

<
0.001

Eratio 0.137 1.147 (1.055 − 1.246) 0.001 0.063 1.065 (0.946 −
1.199)

0.299

Lymph node negative vs positive −0.397 0.672 (0.280 − 1.615) 0.374

ER negative vs positive 1.729 5.635 (1.838 −
17.278)

0.002 20.473 >1000 0.999

PR negative vs positive 1.434 4.195 (1.514 −
11.623)

0.006 0.198 1.219 (0.095 −
15.709)

0.879

HER2 negative vs positive 1.342 3.828 (1.117 −
13.116)

0.033 1.983 7.262 (0.634 −
83.159)

0.111

Ki67 negative vs positive −1.535 0.216 (0.085 − 0.546) 0.001 −0.038 0.962 (0.098 −
9.487)

0.974

Tumor grade 1 or 2 vs 3 1.368 3.929 (1.466 −
10.527)

0.007 −0.358 0.699 (0.116 −
4.226)

0.697

Molecular
subtype

0.003 0.524

luminal A vs luminal B cancer 1.723 5.600 (1.716 −
18.278)

0.004 0.872 2.392 (0.238 −
24.001)

0.459

luminal A vs HER2-overexpressing
cancer

2.534 12.600 (1.934 −
82.087)

0.008 −20.426 0.000 0.999

luminal A vs triple-negative cancer 2.639 14.000 (2.778 −
70.557)

0.001 −17.689 0.000 1.000

GLUT1 glucose transporter-1 protein, ER estrogen receptor, PR progesterone receptor; HER2 human epidermal growth factor receptor 2, CI confidence interval
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studies [13, 35–37], tumor stiffness on SWE was associ-
ated with survival outcomes and the response to neoad-
juvant chemotherapy in breast cancer patients. Evans
et al. [13] reported that the average tumor elasticity,
tumor size on US, and ER status at the preoperative
evaluation were independently associated with breast
cancer-specific survival in a multivariable model. Tumor
stiffness assessment before or during treatment was sig-
nificantly associated with the response to neoadjuvant
chemotherapy in breast cancer patients [35–37]. Produc-
tion of collagen and increased collagen crosslinking in
the ECM, of which collagen is a major component, in
the hypoxic tumor microenvironment promote tumor
stiffness, encourage tumor cell dissemination, and in-
duce drug resistance [2, 14, 15, 18, 19, 38]. Thus, tumor
stiffness affects the prognostic outcomes and drug re-
sponse in cancer patients. Our study shows that SWE
parameters are related to tumor hypoxia and histological
prognostic biomarkers, and that the average tumor elas-
ticity is the only significant independent factor influen-
cing tumor hypoxia.
Our study had several limitations. First, the number of

cancers was small. In our study, tumor stiffness parame-
ters were measured three times on SWE for each lesion,
and the means of the parameters were used for statistical
analysis. Therefore, the measured SWE values were reli-
able for assessing correlations based on histopathological
data. Second, the retrospective study design may have
introduced a selection bias because only invasive breast
cancers with preoperative SWE and surgical excision
with accessible immunohistochemical data were in-
cluded. Advanced cancers requiring neoadjuvant chemo-
therapy before surgery were excluded. Therefore, our
results may not allow definite conclusions for all invasive
breast cancers. Further studies with larger numbers of pa-
tients are needed. Third, we used two SWE stiffness pa-
rameters, Eaverage and Eratio. The US machine used in this
study does not provide a minimum or maximum value for
tumor stiffness, so only two quantitative values could be
extracted. Fourth, in our routine clinical practice, one
radiologist used SWE to assess the tumor stiffness of each
breast tumor, and one of two experienced breast radiolo-
gists obtained the SWE images in this study, but we did
not test the interobserver variability. However, SWE is
known to be highly reproducible, and we used objective
and quantitative SWE values for the analysis [3].

Conclusions
SWE tumor stiffness values for invasive breast cancer
are related mainly to the degree of tumor hypoxia. Hard
cancers have significantly higher GLUT1 expression, an
indicator of hypoxia, and levels of prognostic biomarkers
such as ER negativity, PR negativity, Ki67 positivity, high
grade, and HER2-overexpressing and triple-negative

molecular subtypes. In particular, Eaverage of SWE had
independent prognostic significance for tumor hypoxia
in our multivariable analysis. The hypoxic tumor micro-
environment in breast cancer is associated with cancer
growth, metastasis, and resistance to treatment, all of
which can lead to a poor prognosis. Therefore, quantita-
tive information from SWE may be helpful for identify-
ing the underlying tumor hypoxic microenvironment
and histologic biomarkers, and for effective treatment
planning and risk stratification.
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