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Abstract

Background: Hepatocellular carcinoma (HCC) is associated with a dismal prognosis, and prediction of the
prognosis of HCC can assist in therapeutic decision-makings. An increasing number of studies have shown that the
texture parameters of images can reflect the heterogeneity of tumors, and may have the potential to predict the
prognosis of patients with HCC after surgical resection. The aim of this study was to investigate the prognostic
value of computed tomography (CT) texture parameters in patients with HCC after hepatectomy and to develop a
radiomics nomogram by combining clinicopathological factors and the radiomics signature.

Methods: In all, 544 eligible patients were enrolled in this retrospective study and were randomly divided into the
training cohort (n = 381) and the validation cohort (n = 163). The tumor regions of interest (ROIs) were delineated,
and the corresponding texture parameters were extracted. The texture parameters were selected by using the least
absolute shrinkage and selection operator (LASSO) Cox model in the training cohort, and a radiomics signature was
established. Then, the radiomics signature was further validated as an independent risk factor for overall survival
(OS). The radiomics nomogram was established based on the Cox regression model. The concordance index (C-
index), calibration plot and decision curve analysis (DCA) were used to evaluate the performance of the radiomics
nomogram.
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Results: The radiomics signature was formulated based on 7 OS-related texture parameters, which were selected in
the training cohort. In addition, the radiomics nomogram was developed based on the following five variables: α-
fetoprotein (AFP), platelet-to-lymphocyte ratio (PLR), largest tumor size, microvascular invasion (MVI) and radiomics
score (Rad-score). The nomogram displayed good accuracy in predicting OS (C-index = 0.747) in the training cohort
and was confirmed in the validation cohort (C-index = 0.777). The calibration plots also showed excellent
agreement between the actual and predicted survival probabilities. The DCA indicated that the radiomics
nomogram showed better clinical utility than the clinicopathologic nomogram.

Conclusion: The radiomics signature is a potential prognostic biomarker of HCC after hepatectomy. The radiomics
nomogram that integrated the radiomics signature can provide a more accurate estimation of OS than the
clinicopathologic nomogram for HCC patients after hepatectomy.

Keywords: CT texture analysis, Hepatocellular carcinoma, Overall survival, Prediction, Nomogram

Background
HCC is the fifth most common malignancy and ranks as
the third most common cause of cancer-related death
worldwide [1, 2]. Surgical resection is the preferred
treatment option for individuals with HCC [3]. However,
the long-term prognosis of patients with hepatocellular
carcinoma after resection is dismal, as the 5-year survival
rate is only 25–55% and the 5-year recurrence rate is 60-
100% [4–7]. The prognosis of HCC is influenced by
numerous factors, and thus, early prediction of the
prognosis is of great significance for the long-term
management and effective treatment of patients with
this disease. Currently, the Barcelona Clinic Liver Cancer
(BCLC) system is the most recognized staging system
for HCC worldwide and is a widely used tool that guides
prognostic prediction and treatment decisions [3].
Despite this, the BCLC classification is still controversial
and has limited predictive power [8–10]. Therefore, it is
worthwhile to explore additional reliable and pragmatic
methods that can be used to evaluate the prognosis of
HCC.
Previous imaging studies were based on the shape,

density and enhancement of tumors [11], which did not
quantify the information of the images and were easily
affected by the subjectivity of the radiologists. It is
known that malignant tumors are composed of hetero-
geneous cells and their surrounding microenvironment,
and that intra-tumor heterogeneity is associated with
tumor angiogenesis and biological behavior, which can
be assessed through imaging traits. Radiomics is an
emerging field, in which high-dimensional information
can be extracted from medical images. Texture analysis
(TA), an image post-processing technique, can be used
to evaluate the potential heterogeneity of lesions based
on a large set of quantitative features [12–14]. Emerging
studies have shown that texture features have the poten-
tial to differentiate tumor types, monitor therapeutic
response, identify regional lymph node metastasis of
malignant tumors and predict prognosis [15, 16]. Huang

et al. [17] developed a radiomics nomogram, which ex-
hibited favorable accuracy for the preoperative predic-
tion of lymph node metastasis in patients with colorectal
cancer. Wu et al. [18] developed a radiomics nomogram
for the preoperative prediction of lymph node metastasis
in bladder cancer and found that CT texture parameters
were independent predictors of response to chemother-
apy. Ahn et al. [19] demonstrated that lower skewness in
the 2D analysis and a narrower SD in the 3D analysis
were useful predictors of chemotherapeutic response in
patients with colon cancer liver metastasis. In addition,
the radiomics signature could be used to predict pre-
operative individualized MVI status and early recurrence
of HCC [20, 21]. Furthermore, previous studies have
shown that radiomics features are correlated with gene
expression, gene mutations and epigenetic alterations
through capturing the tumor phenotypes, which are as-
sociated with underlying gene expression patterns of
cancer and may reflect cellular proliferation, invasion,
metastasis and drug resistance of the tumors [22–26].
Segal et al. [23] reported that variations in 116 gene
modules can be reconstructed from 28 imaging traits.
However, due to the limited number of studies, add-
itional studies are needed to confirm the potential asso-
ciation between radiophenotype and gene expression
[27, 28]. In the future, accurate and quantitative imaging
information based on an artificial intelligence automatic
image recognition and diagnosis system in combination
with clinical data can help doctors evaluate patient sur-
vival. It plays an important role in clinical decision mak-
ing, treatment planning and postoperative long-term
follow-up, and provides new opportunities for individual
precise treatment.
The underlying correlation among radiomics features,

pathology and survival is not clear, and relatively few
studies have addressed the efficacy of TA in prognostic
prediction. The intratumor heterogeneity can reflect the
biological characteristics of the tumor, which may be of
prognostic significance. The purpose of this study is to
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explore the prognostic value of preoperative CT texture
parameters for patients who underwent radical hepatec-
tomy. In addition, a prognostic nomogram is proposed
on the basis of texture parameters to provide useful
references for precision medicine.

Methods
Patients
In all, 544 consecutive patients with HCC who under-
went hepatectomy in the Department of Liver Surgery at
West China Hospital between January 2013 and Decem-
ber 2016 were enrolled according to the following
inclusion criteria: (1) patients who underwent initial rad-
ical hepatectomy with pathologically confirmed HCC;
(2) Child-Pugh A or B liver function; (3) no preoperative
treatments such as radiofrequency ablation, transcathe-
ter arterial chemoembolization (TACE) and chemother-
apy; and (4) preoperative contrast-enhanced CT
performed within 4 weeks. The exclusion criteria were as
follows: (1) CT images with invisible lesions or severe
artifacts; (2) patients with benign or mixed types of liver
tumor; (3) those who underwent simultaneous hepatec-
tomy and radiofrequency ablation; (4) liver transplant-
ation performed during the course of disease; (5)
incomplete clinical or follow-up data. We randomly di-
vided the eligible patients at a ratio of 7:3 into 2 groups:
the training cohort (n = 381) and the validation cohort
(n = 163). This study was approved by the Committee of
Ethics of West China Hospital of Sichuan University.
The clinicopathologic variables were collected, including
patient demographics, laboratory data, tumor character-
istics, surgical outcomes, and postoperative pathological
data.

Patient follow-up and surveillance
All patients were followed-up by telephone or outpatient
visit during the first month after surgery and then every
3 months thereafter until November 2019. The routine
examinations, which included serum AFP levels, routine
blood tests, serum biochemistry, hepatitis B virus deoxy-
ribonucleic acid (HBV-DNA), abdominal ultrasonog-
raphy and contrast-enhanced CT/MRI, were performed
at each outpatient follow-up visit. OS was calculated as
the period from the time of surgery to the time of either
death or last follow-up.

Image acquisition and imaging texture analysis
All CT scans of the liver were acquired on a Siemens
scanner (Siemens Somatom Definition FLASH, Siemens
Healthcare, Erlangen, Germany). After 6 h of fasting, pa-
tients received an intravenous administration of 1.5 ml/
kg of Iohexol (Jiangsu Yangtze River Pharmaceutical
Group Co., Ltd., Taizhou, China; 300 mg of iodine/ml)
at a rate of 2–3 ml/s. Then, images acquisition was

performed in the arterial phase and venous phase at 25
and 70 s, respectively. The following scan parameters
were used: tube voltage of 120–140 kV, tube current of
210 mA, pitch of 4.0, matrix size of 512 × 512, slice
thickness of 5 mm, and a high spatial resolution
algorithm.
The target images were retrieved from the Picture Ar-

chiving and Communication System in Digital Imaging
and Communications in Medicine (DICOM) format and
transferred to Mazda software (version 4.6) for further
TA. All manual segmentations were performed by an ab-
dominal radiologist with 5 years of experience and were
verified by a senior radiologist with 20 years of experi-
ence. The two-dimensional regions of interest (ROIs) de-
lineated the largest cross-sectional area of the tumors on
the preoperative portal venous phase images. For pa-
tients with multifocal HCCs, the ROIs of the largest
tumor were selected for further analysis. The CT images
on the portal venous phase were used for radiomics fea-
ture extraction because hypovascular HCC may influ-
ence the accuracy and reproducibility of the ROIs
delineation on the arterial phase [29], and the previous
studies showed the excellent predictive performance of
texture features in this phase [30, 31].
According to the segmented tumors, 270 texture fea-

tures that reflected tumor heterogeneity were extracted,
including the following 5 categories: (1) histogram fea-
tures; (2) co-occurrence matrix; (3) run-length matrix;
(4) autoregressive model; (5) wavelet transform [32]. De-
tailed information on the texture features is available in
Supplementary Table S1.

Feature selection and radiomics signature building
We used the LASSO Cox regression model to select the
features that were most associated with the survival sta-
tus of the training cohort, and a 10-fold cross validation
was used to reduce overfitting [33]. LASSO is a data
analysis method that can shrink the coefficients of vari-
ables unrelated to survival to zero, and thus, the features
with non-zero coefficient were selected [34]. The opti-
mal tuning parameter was determined by minimum cri-
teria (minimum lambda). The radiomics signature was
built via a linear combination of selected features multi-
plied by their corresponding non-zero coefficients. Then,
the Rad-score was calculated for each patient.

Model construction and evaluation
The patients were stratified into either the high-risk or
low-risk groups according to the threshold of the Rad-
score calculated by ROC curve analysis. The difference
between the survival curves of the high-risk and low-risk
groups was assessed in the training cohort and then vali-
dated in the validation cohort. Univariate and multivari-
ate Cox regression analyses were performed in the

Liu et al. Cancer Imaging           (2020) 20:82 Page 3 of 14



training cohort to determine the potential independent
risk factors. Then a radiomics nomogram that integrates
the radiomics signature and the independent clinico-
pathological risk factors according to the result of the
multivariate analysis was constructed to predict postop-
erative survival status. The discrimination ability of the
nomogram was evaluated using the C-index. The cali-
bration performance was measured by the calibration
curve, which described the agreement between the pre-
dicted and observed survival probability. The clinical
value of the nomogram was assessed in the whole cohort
by DCA [35], which was generated by calculating the net
benefits at different threshold probabilities.

Statistical analysis
The statistical analysis was performed with SPSS version
22.0 software (Chicago, IL, USA) and R software (version
3.5.1; http://www.R-project.org). Continuous variables
were presented as the mean ± standard deviation for
normally distributed variables or as the median (inter-
quartile range) for non-normally distributed variables.
Differences between the two groups were compared
using the t-test or Mann-Whitney U test. Additionaly,
categorical variables were expressed by frequency (per-
centage) and assessed by Pearson’s chi-square test or
Fisher’s exact test. ROC curve analysis was used to de-
termine the optimal cutoff values based on the max-
imum Youden index. Survival curves were calculated
using the Kaplan-Meier method and were compared
using the log-rank test. The Cox regression analysis was
used for both univariate and multivariate analyses. Vari-
ables with P-values < 0.10 in the univariable analysis
were introduced into the multivariate Cox proportional
hazards model to further determine the independent
prognostic factors with a backward stepwise selection.
The LASSO Cox regression model analysis was based on
the glmnet package. The nomogram and calibration
curve were established using the rms package, while the
DCA was performed using the dca. R package. The pre-
dictive performance of the nomograms was evaluated by
the C-index and was compared using the Rcorrp.cens
package in Hmisc in R. A P value < 0.05 was considered
statistically significant.

Results
Patient demographics and clinicopathological
characteristics
In all, 544 patients who met the inclusion criteria were
retrospectively analyzed. The comparison of the clinico-
pathological characteristics between the training cohort
(n = 381) and the validation cohort (n = 163) is shown in
Table 1. The median follow-up time was 28.8 months
(range, 15.1–40.5 months) in the training cohort and
27.2 months (range, 16.9–39.5 months) in the validation

cohort. No significant differences were observed in the
baseline characteristics between the two groups (P >
0.05), which suggests similarity between the cohorts.

Construction and validation of the radiomics signature
We evaluated the ROIs of hepatic tumors from preopera-
tive CT images and extracted a total of 270 texture features.
Then, the LASSO Cox regression model was used to select
the most significant features for survival prediction (Fig. 1).
When the minimum lambda was 0.034, seven potential
predictors of OS-related features with non-zero coefficients
were screened out in the training cohort. A radiomics sig-
nature was constructed with the selected features and their
respective weights. The Rad-score for each patient can be
calculated using the following formula: Rad-score = S (0,1)
Correlat *0.026 + S (0,3) Correlat*0.036 +Horzl_GLev-
NonU*0.312 + 45dgr_RLNonUni*0.024 + 45dgr_GLevNon
U*0.036 + Sigma*(− 0.068) +WavEnLH_s-4*0.037). Accord-
ing to the optimum cut-off Rad-score based on the
maximum Youden index in the training cohort, all patients
were classified into the high-risk group (Rad-score ≥ −
0.559) or the low-risk group (Rad-score < − 0.559). The OS
was compared between the two groups using a Kaplan-
Meier analysis (Fig. 2) in both the training and validation
cohorts. The 1, 3 and 5-year OS rates of the low-risk group
were 91.7, 82.1 and 78.7%, respectively, which were signifi-
cantly higher than those of the high-risk group in the
training cohort (71.0, 45.5 and 35.5%, P < 0.001). The per-
formance of the radiomics signature was confirmed in the
validation cohort, and a significant difference was observed
in the 1, 3 and 5-year OS rates between the high-risk and
low-risk groups (72.3, 40.9, 36.8% vs. 93.8, 83.4, 81.0%, P <
0.001). We also observed that patients with lower Rad-
scores generally had a better OS.
To further evaluate the association between the radiomics

signature and the clinicopathological features, the clinico-
pathological data of the high-risk and low-risk groups were
compared (Table 2). In the training cohort, no significant
difference was found between the low-risk and high-risk
groups with regard to age, sex, BMI, HBsAg, HBV-DNA,
liver cirrhosis, Child-Pugh classification, previous abdom-
inal surgery, comorbidities, CEA, CA19–9, TBIL, DBIL,
ALT, Albumin, NLR, ASA grade, tumor number, hepatec-
tomy, and differentiation. However, the high-risk group was
positively associated with higher AFP (P = 0.007), higher
AST (P < 0.001), higher PLR (P = 0.001), larger tumor size
(P < 0.001), more hemorrhage (P < 0.001), higher incidence
of intraoperative transfusion (P = 0.019), the presence of
MVI (P = 0.003), an incomplete tumor capsule (P < 0.001)
and higher Rad-score (P < 0.001).

Development and validation of the radiomics nomogram
The results of the univariate analysis based on the train-
ing cohort are displayed in Table 3. According to the
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Table 1 Clinicopathological factors of 544 patients who underwent radical hepatectomy

Variables Training cohort (n = 381) Validation cohort (n = 163) P

Age, years 51.3 ± 11.2 50.2 ± 11.5 0.301

Sex 0.410

Male 324 (85.0%) 143 (87.7%)

Female 57 (15.0%) 20 (12.3%)

BMI, Kg/m2 0.713

< 18.5 27 (7.1%) 12 (7.4%)

18.5–25 258 (67.7%) 116 (71.2%)

≥ 25 96 (25.2%) 35 (21.5%)

HBsAg 0.327

Positive 328 (86.1%) 135 (82.8%)

Negative 53 (13.9%) 28 (17.2%)

HBV-DNA (copies/ml)

< 103 176 (46.2%) 79 (48.5%) 0.645

≥ 103 205 (53.8%) 84 (51.5%)

Liver cirrhosis 0.142

Present 263 (69.0%) 102 (62.6%)

Absent 118 (31.0%) 61 (37.4%)

Child-Pugh classification 0.204

A 367 (96.3%) 161 (98.8%)

B 14 (3.7%) 2 (1.2%)

Previous abdominal surgery 0.705

Present 61 (16.0%) 24 (14.7%)

Absent 320 (84.0%) 139 (85.3%)

Comorbidities 0.012

Present 73 (19.2%) 17 (10.4%)

Absent 308 (80.8%) 146 (89.6%)

AFP, ng/mL 0.091

< 400 233 (61.2%) 87 (53.4%)

≥ 400 148 (38.8%) 76 (46.6%)

CEA, ng/mL 0.575

Normal 297 (78.0%) 131 (80.4%)

Abnormal 84 (22.0%) 32 (19.6%)

CA19–9, U/ml 0.588

Normal 233 (61.2%) 104 (63.8%)

Abnormal 148 (38.8%) 59 (36.2%)

TBIL, umol/L 14.0 (10.9–17.8) 13.7 (11.0–18.4) 0.794

DBIL, umol/L 5.4 (4.1–6.8) 5.3 (4.2–6.8) 0.853

ALT, IU/L 38.0 (27.0–56.8) 39.0 (25.0–62.0) 0.974

AST, IU/L 38.0 (30.0–58.0) 39.0 (30.0–59.0) 0.875

Albumin, g/L 0.909

<35 27 (7.1%) 12 (7.4%)

≥ 35 354 (92.9%) 151 (92.6%)

NLR 2.2 (1.7–3.1) 2.3 (1.6–3.2) 0.776

PLR 92.9 (65.1–128.3) 84.7 (64.0–135.9) 0.
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univariate analysis, HBsAg, HBV-DNA, AFP, NLR, PLR,
largest tumor size, hemorrhage, intraoperative transfu-
sion, differentiation, MVI, capsule and Rad-score were
potential risk factors for OS. However, the results of the
multivariate analysis suggested that only AFP (HR 1.566;
CI 1.101–2.226; p = 0.013), PLR (HR 1.004; CI 1.001–
1.007; p = 0.010), largest tumor size (HR 1.084; CI
1.027–1.145; p = 0.003), MVI (HR 2.509; CI 1.751–3.594;
p<0.001) and Rad-score (HR 1.398; CI 1.188–1.646; p<
0.001) were independently associated with an unfavor-
able postoperative survival. The radiomics nomogram
was constructed with the 5 independent risk predictors
identified above to predict the personalized survival
status of the patients, while the clinicopathologic nomo-
gram incorporated only the independent clinicopatho-
logical risk factors. The C-index of the clinicopathologic
nomogram was 0.726 (95% CI 0.705–0.748) in the
training cohort and 0.720 (95% CI 0.686–0.755) in the
validation cohort. The radiomics nomogram yielded a C-

index of 0.747 (95% CI, 0.727–0.768) in the training co-
hort and 0.777 (95% CI, 0.748–0.806) in the validation
cohort. The radiomics nomogram showed improved dis-
crimination performance when the radiomics signature
was integrated into the clinicopathologic nomogram
(P = 0.002 in the training cohort, p < 0.001 in the valid-
ation cohort; Table 4). The radiomics nomogram and
the corresponding calibration curve are presented in
Fig. 3. The calibration curve demonstrated satisfactory
consistency between the nomogram-predicted survival
and the actual observed survival in both the training and
validation cohorts.

Clinical utility
The DCA of the radiomics and clinicopathologic nomo-
grams is presented in Fig. 4. The net benefit was calcu-
lated by adding the true positives and subtracting the
false positives. The straight line represents the assump-
tion that all patients will die, and the horizontal line

Table 1 Clinicopathological factors of 544 patients who underwent radical hepatectomy (Continued)

Variables Training cohort (n = 381) Validation cohort (n = 163) P

ASA grade 0.088

II 316 (82.9%) 125 (76.7%)

III 65 (17.1%) 38 (23.3%)

Largest tumor size, cm 5.0 (3.2–7.8) 5.6 (3.4–9.0) 0.106

Tumor number 0.965

Solitary 358 (94.0%) 153 (93.9%)

Multiple 23 (6.0%) 10 (6.1%)

Hepatectomy 0.297

Anatomical 213 (55.9%) 99 (60.7%)

Nonanatomical 168 (44.1%) 64 (39.3%)

Hemorrhage, ml 0.498

<200 133 (34.9%) 52 (31.9%)

≥ 200 248 (65.1%) 111 (68.1%)

Intraoperative transfusion 0.606

Yes 30 (7.9%) 15 (9.2%)

No 351 (92.1%) 148 (90.8%)

Differentiation 0.927

poor 169 (44.4%) 73 (44.8%)

Well-moderate 212 (55.6%) 90 (55.2%)

MVI 0.477

Present 124 (32.5%) 48 (29.4%)

Absent 257 (67.5%) 115 (70.6%)

Capsule 0.789

Incomplete 215 (56.4%) 94 (57.7%)

Complete 166 (43.6%) 69 (42.3%)

ASA American Society of Anesthesiologists, BMI Body mass index, AFP α-fetoprotein, ALT Alanine transaminase, AST Aspartate aminotransferase, NLR Neutrophil-to-
lymphocyte ratio, PLR Platelet lymphocyte ratio, MVI Microvascular invasion
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represents the assumption that no patients will die.
The DCA demonstrated that the nomograms added
more net benefit compared with the treat-all strategy
or treat-none strategy with a threshold probability of
10% or greater. Moreover, the radiomics nomogram
provided a higher net benefit than the clinicopatho-
logic nomogram in terms of survival prediction in
HCC patients.

Discussion
Surgical resection is the mainstay curative treatment for
individuals with HCC, but the prognosis varies from

patient to patient. The prediction of survival status in
patients with HCC after surgery is important for clinical
decision-making. Among the numerous prognostic fac-
tors, tumor heterogeneity is one of the most important
contributions, which may relate to different natural his-
tories, environmental susceptibility and individual gen-
etic tendencies [36]. Intra-tumoral heterogeneity can
reveal tumor growth, metastatic potential and response
to treatment and may thus be a potential prognostic pre-
dictor of disease outcome [37]. However, previous stud-
ies were mainly based on clinicopathological factors [38,
39] and either seldom involved imaging information or

Fig. 1 Radiomics feature selection using the LASSO Cox regression model. a The partial likelihood deviance was plotted versus log (lambda). The
y-axis indicates the partial likelihood deviance, while the lower x-axis indicates the log (lambda) and the upper x-axis represents the average
number of predictors. Dotted vertical lines were drawn at the optimal values using the minimum criteria and 1 standard error of the minimum
criteria. The tuning parameter (λ) was selected in the LASSO model via 10-fold cross-validation based on minimum criteria. b LASSO coefficient
profiles of the 270 radiomics features. The coefficients (y-axis) were plotted against log (lambda) and 7 features with nonzero coefficients were
selected to build the radiomics signature

Fig. 2 Kaplan-Meier analyses of overall survival according to the risk groups. a The overall survival of patients in the high- and low-risk groups in
the training cohort. b The overall survival of patients in the high- and low-risk groups in the validation cohort
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Table 2 The clinicopathological data of patients according to the risk-stratified groups in the training cohort

Variables high-risk group (n = 201) low-risk group (n = 180) P

Age, years 51.7 ± 11.3 50.8 ± 11.0 0.409

Sex 0.551

Male 173 (86.1%) 151 (83.9%)

Female 28 (13.9%) 29 (16.1%)

BMI, Kg/m2 0.258

<18.5 17 (8.5%) 10 (5.5%)

18.5–25 129 (64.2%) 130 (72.2%)

≥ 25 55 (27.4%) 40 (22.2%)

HBsAg 0.367

Positive 170 (84.6%) 158 (87.8%)

Negative 31 (15.4%) 22 (12.2%)

HBV-DNA (copies/ml) 0.068

<103 84 (41.8%) 92 (51.1%)

≥ 103 117 (58.2%) 88 (48.9%)

Liver cirrhosis 0.086

Present 131 (65.2%) 132 (73.3%)

Absent 70 (34.8%) 48 (26.7%)

Child-Pugh classification 0.738

A 193 (96.0%) 174 (96.7%)

B 8 (4.0%) 6 (3.3%)

Previous abdominal surgery 0.285

Present 36 (17.9%) 25 (13.9%)

Absent 165 (82.1%) 155 (86.1%)

Comorbidities 0.242

Present 43 (21.4%) 30 (16.7%)

Absent 158 (78.6%) 150 (83.3%)

AFP, ng/mL 0.007

< 400 110 (54.7%) 123 (68.3%)

≥ 400 91 (45.3%) 57 (31.7%)

CEA, ng/mL 0.543

Normal 159 (79.1%) 138 (76.7%)

Abnormal 42 (20.9%) 42 (23.3%)

CA19–9, U/ml 0.639

Normal 121 (60.2%) 112 (62.2%)

Anormal 80 (39.8%) 68 (37.8%)

TBIL, umol/L 14 (11.1–18.1) 14.0 (10.7–17.3) 0.948

DBIL, umol/L 5.6 (4.2–7.0) 5.4 (4.0–6.8) 0.375

ALT, IU/L 38.0 (26.0–56.5) 37.0 (27.0–56.5) 0.880

AST, IU/L 43.0 (31.0–72.0) 36.0 (28.0–45.8) < 0.001

Albumin, g/L 0.483

< 35 16 (8.0%) 11 (6.1%)

≥ 35 185 (92.0%) 169 (93.9%)

NLR 2.2 (1.7–3.1) 2.2 (1.7–2.9) 0.113

PLR 92.9 (65.1–128.3) 83.7 (62.6–114.3) 0.001
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only considered a small number of subjective imaging
parameters [40, 41]. Moreover, a large amount of
tumor-related information that can be extracted from
images is ignored. Radiomics can capture the potential
heterogeneity of lesions using a large number of quanti-
tative imaging features, which may be a valuable supple-
ment to the existing predictors.
Medical imaging plays an important role in pre-

operative diagnosis, choice of therapy, therapeutic ef-
fect evaluation and disease surveillance. However, the
interpretation of medical imaging is often based on
physicians’ personal expertise and experience, which
are subjective and qualitative. Radiomics can be used
to analyze the texture parameters extracted by a com-
puter and can allow the quantitative assessment of
the pixel differences in images to provide more com-
prehensive information about tumors that may not be
detected by the human eye. In addition, the temporal

and spatial heterogeneity of the tumor can be evalu-
ated by whole tumor analysis instead of in limited bi-
opsy samples [42]. Medical imaging analysis can
reveal the tumor biological processes and microenvir-
onment characteristics and may assist in therapeutic
decision-making. However, few studies have focused
on the prognostic prediction in patients with HCC.
Therefore, this study aimed to develop a radiomics
signature to predict the prognosis of patients with
HCC after surgical resection based on selected radio-
mics features. Moreover, a nomogram was con-
structed based on the independent risk factors, which
allows for more precise prognostication, better clinical
management and more appropriate adjuvant therapy.
This study introduced a noninvasive, low cost and re-
producible method to predict the outcomes in pa-
tients with resectable HCC, which is of great
significance for personalized medicine.

Table 2 The clinicopathological data of patients according to the risk-stratified groups in the training cohort (Continued)

Variables high-risk group (n = 201) low-risk group (n = 180) P

ASA grade 0.199

II 162 (80.6%) 154 (85.6%)

III 39 (19.4%) 26 (14.4%)

Largest tumor size, cm 7.0 (5.0–10.0) 3.7 (2.5–5.0) <0.001

Tumor number 0.709

Solitary 188 (93.5%) 170 (94.4%)

Multiple 13 (6.5%) 10 (5.6%)

Hepatectomy 0.245

Anatomical 118 (58.7%) 95 (52.8%)

Nonanatomical 83 (41.3%) 85 (47.2%)

Hemorrhage, ml < 0.001

< 200 53 (26.4%) 80 (44.4%)

≥ 200 148 (73.6%) 100 (55.6%)

Intraoperative transfusion 0.019

Yes 22 (10.9%) 8 (4.4%)

No 179 (89.1%) 172 (95.6%)

Differentiation 0.068

poor 98 (48.8%) 71 (39.4%)

Well-moderate 103 (51.2%) 109 (60.6%)

MVI < 0.001

Present 87 (43.3%) 37 (20.6%)

Absent 114 (56.7%) 143 (79.4%)

Capsule < 0.001

Incomplete 137 (68.2%) 78 (43.3%)

Complete 64 (31.8%) 102 (56.7%)

Rad-score −0.1(−0.3 ~ 0.5) −0.8(−1.0 ~ −0.7) < 0.001

ASA American Society of Anesthesiologists, BMI Body mass index, AFP α-fetoprotein, ALT Alanine transaminase, AST Aspartate aminotransferase, NLR Neutrophil-to-
lymphocyte ratio, PLR Platelet lymphocyte ratio, MVI Microvascular invasion, Rad-score Radiomics score
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Table 3 Univariate and multivariate Cox regression analyses for patients in the training cohort

Variables Univariate analysis Multivariate analysis

HR (95%CI) p HR (95%CI) p

Age, years 0.986 (0.971–1.000) 0.052

Sex, male vs. female 1.675 (0.964–2.911) 0.067

BMI, Kg/m2

<18.5vs.18.5–25 0.944 (0.455–1.957) 0.876

25vs.18.5–25 1.171 (0.539–2.541) 0.691

HBsAg, Positive vs. Negative 1.950 (1.079–3.523) 0.027

HBV-DNA, copies/ml, <103 vs. ≥ 103 1.740 (1.223–2.476) 0.002

Liver cirrhosis, Present vs. Absent 0.826 (0.583–1.171) 0.283

Child-Pugh classification, B vs. A 1.684 (0.825–3.438) 0.152

Previous abdominal surgery, Present vs. Absent 0.893 (0.562–1.420) 0.632

Comorbidities, Present vs. Absent 1.016 (0.668–1.546) 0.941

AFP, ng/mL,≥ 400vs.<400 1.931 (1.388–2.688) < 0.001 1.566 (1.101–2.226) 0.013

CEA, ng/mL, Normal vs. Abnormal 0.656 (0.419–1.027) 0.065

CA19–9, U/ml, Normal vs. Abnormal 1.131 (0.807–1.585) 0.474

TBIL, umol/L 1.000 (0.988–1.013) 0.940

DBIL, umol/L 0.999 (0.982–1.016) 0.901

ALT, IU/L 1.000 (0.999–1.002) 0.823

AST, IU/L 1.000 (0.999–1.002) 0.423

Albumin, g/L, <35vs.≥ 35 1.322 (0.732–2.390) 0.355

NLR 1.085 (1.030–1.143) 0.002

PLR 1.006 (1.004–1.009) < 0.001 1.004 (1.001–1.007) 0.010

ASA grade, III vs. II 1.362 (0.910–2.039) 0.133

Largest tumor size, cm 1.193 (1.145–1.244) < 0.001 1.084 (1.027–1.145) 0.003

Tumor number, Solitary vs. Multiple 1.314 (0.710–2.432) 0.384

Hepatectomy, Anatomical vs. Nonanatomical 0.755 (0.538–1.060) 0.105

Hemorrhage, ml, ≥ 200vs.<200 1.927 (1.310–2.836) 0.001

Intraoperative transfusion, Yes vs. No 1.860 (1.104–3.132) 0.020

Differentiation, poor vs. Well-moderate 1.598 (1.148–2.225) 0.006

MVI, Present vs. Absent 3.524 (2.524–4.921) <0.001 2.509 (1.751–3.594) <0.001

Capsule, Incomplete vs. Complete 1.891 (1.324–2.702) < 0.001

Rad-score 1.493 (1.324–1.684) < 0.001 1.398 (1.188–1.646) <0.001

ASA American Society of Anesthesiologists, BMI Body mass index, AFP α-fetoprotein, ALT Alanine transaminase, AST Aspartate aminotransferase, NLR Neutrophil-to-
lymphocyte ratio, PLR Platelet lymphocyte ratio, MVI Microvascular invasion, Rad-score Radiomics score

Table 4 Performance of the radiomics and clinicopathologic nomogram for Prediction of OS

Nomogram The training cohort The validation cohort

C-index P-value C-index P -value

Radiomics 0.747 (0.727–0.768) 0.002 0.777 (0.748–0.806) < 0.001

Clinicopathological 0.726 (0.705–0.748) 0.720 (0.686–0.755)
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In our study, 5 optimal features were selected from
270 radiomics features of the portal venous phase via
the LASSO method to build a radiomics signature, after
which the patients were divided into the high-risk and
low-risk groups according to the Rad-score threshold.
The results indicate that patients with higher Rad-scores

were more likely to have a worse OS than those with
lower Rad-scores. In the multivariate analysis, the radio-
mics signature was further demonstrated to be an inde-
pendent predictor of OS. This study provides a method
for prognosis-related high-dimensional data selection.
LASSO is a penalized regression approach that selects

Fig. 3 The radiomics nomogram for the prediction of survival status (a). The calibration curves of the radiomics nomogram in the training cohort
(b) and the validation cohort (c)

Liu et al. Cancer Imaging           (2020) 20:82 Page 11 of 14



covariates with non-zero coefficients among numerous
covariates to avoid overfitting, thus improving the pre-
diction efficiency [43]. Those radiomic features provided
a quantitative description of the position, intensity and
inter-relationship of the pixels [12, 44] to reveal tumor
phenotypic differences and to evaluate the intra-tumor
heterogeneity, which is related to tumor proliferation,
hypoxia, angiogenesis and necrosis. Increased homogen-
eity in colorectal cancer was related to a poor prognosis,
while increased heterogeneity in oesophageal cancer and
gastric cancer was associated with a poor prognosis [45–
48]. Entropy and uniformity are common texture parame-
ters, and higher entropy and lower uniformity reflected in-
creased tumor heterogeneity [49]. However, a large
number of texture parameters related to tumor aggressive-
ness have not been well studied.
The present study showed that AFP, PLR, largest

tumor size, MVI and the radiomics signature were in-
dependent risk factors for OS. In agreement with the
previous study, these clinicopathologic factors are
known to be effective predictors of the clinical out-
come [50–53].It has also been noted that inflamma-
tory markers were related to HCC aggressiveness, and
in our study, PLR was included in the final model
[54]. However, the tumor number and tumor differen-
tiation were not associated with survival status in our

study. The possible reasons for this are the limited
cases of multifocal lesions and the short follow-up
time in the present study. Furthermore, in the sub-
group analysis, patients in the high-risk group tended
to show higher AFP, higher AST, higher PLR, larger
tumor size, more hemorrhage, more intraoperative
transfusion, the presence of MVI and an incomplete
tumor capsule, which are demonstrated prognostic in-
dicators of HCC [38, 39, 55, 56], indicating the po-
tential association between the radiomics signature
and clinicopathologic factors. Therefore, texture pa-
rameters are linked to clinicopathologic factors, which
could assist clinicians in prognostic evaluation.
We established a combined nomogram that incorpo-

rates clinicopathologic factors and a radiomics signature
for prognostic prediction at the individual level. The re-
sults indicated that the radiomics nomogram showed
improved predictive accuracy over the clinicopathologic
nomogram, which indicates that the radiomics signature
can provide additional prognostic and biologic informa-
tion; this is consistent with previous studies. Meng et al.
[57] performed a study in 108 consecutive patients with
locally advanced rectal cancer, and the results implied
that the combined model (C-index = 0.788) exhibited
improved predictive ability of the 3-year disease-free sur-
vival compared with the radiomic (C-index = 0.767) and
clinicoradiologic models (C-index = 0.644). Li et al. [58]
explored the prognostic value of radiomics in 181 pa-
tients with gastric cancer following curative resection
and revealed that the radiomics nomogram (C-index =
0.82) showed better predictive ability than the clinical
nomogram (C-index = 0.71) and the radiomics signature
(C-index = 0.74). Based on the results of our study,
aggressive precautions can be taken in patients with pre-
dicted poor prognoses, which would facilitate the effect-
ive therapeutic management of these patients and
reduce the risk of recurrence.
The limitations of this study are as follows: (1) this

study is a retrospective single-center study with a small
sample size, and the results of the study are limited. In
addition, the model was only verified internally and
lacked external validation. (2) Contrast-enhanced CT
was used in our study, whereas contrast-enhanced MRI
can capture more microstructural characteristics of the
tumors and may provide more comprehensive informa-
tion pertaining to tumor heterogeneity [59]. (3) In our
study, only the largest cross-section of a lesion in the
portal phase was analyzed, while whole tumor analysis in
both the arterial and portal phases may improve the effi-
ciency of survival prediction in individuals with HCC.
(4) Although the ROIs were derived from manual seg-
mentation by two radiologists, their subjective bias could
not be completely eliminated. Therefore, further studies
are warranted to confirm our results.

Fig. 4 Decision curve analysis of the radiomics and clinicopathologic
nomogram in the entire cohort (n = 544). The y-axis represents the
net benefit, and the x-axis represents the threshold probability. The
black line represents the assumption that no patients exhibited
long-term overall survival (OS). The grey line represents the
assumption that all patients exhibited long-term OS. The decision
curves indicated that the radiomics nomogram (red line) showed
better clinical utility than the clinicopathologic nomogram
(blue line)
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Conclusion
In conclusion, the radiomics signature provided a quan-
titative method for the assessment of survival status in
patients with HCC after hepatectomy. The patients with
high Rad-scores may experience a higher risk of
recurrence and metastasis. Moreover, the radiomics
nomogram that integrates clinicopathological factors
and the radiomics signature may serve as an effective
tool to guide the individualized management and
tailored follow-up of HCC patients. In the future, multi-
center prospective studies are needed to further investi-
gate the potential value of the radiomics signature in
clinical practice.
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