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Abstract

Background: To establish pharmacokinetic parameters and a radiomics model based on dynamic contrast enhanced
magnetic resonance imaging (DCE-MRI) for predicting sentinel lymph node (SLN) metastasis in patients with breast cancer.

Methods: A total of 164 breast cancer patients confirmed by pathology were prospectively enrolled from December 2017
to May 2018, and underwent DCE-MRI before surgery. Pharmacokinetic parameters and radiomics features were derived
from DCE-MRI data. Least absolute shrinkage and selection operator (LASSO) regression method was used to select
features, which were then utilized to construct three classification models, namely, the pharmacokinetic parameters model,
the radiomics model, and the combined model. These models were built through the logistic regression method by using
10-fold cross validation strategy and were evaluated on the basis of the receiver operating characteristics (ROC) curve. An
independent validation dataset was used to confirm the discriminatory power of the models.

Results: Seven radiomics features were selected by LASSO logistic regression. The radiomics model, the pharmacokinetic
parameters model, and the combined model yielded area under the curve (AUC) values of 0.81 (95% confidence interval
[CI]: 0.72 to 0.89), 0.77 (95% CI: 0.68 to 0.86), and 0.80 (95% CI: 0.72 to 0.89), respectively, for the training cohort and 0.74
(95% CI: 0.59 to 0.89), 0.74 (95% CI: 0.59 to 0.90), and 0.76 (95% CI: 0.61 to 0.91), respectively, for the validation cohort. The
combined model showed the best performance for the preoperative evaluation of SLN metastasis in breast cancer.

Conclusions: The model incorporating radiomics features and pharmacokinetic parameters can be conveniently used for
the individualized preoperative prediction of SLN metastasis in patients with breast cancer.
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Background
Breast cancer is a common malignancy in women and a
major cause of cancer deaths [1]. Axillary lymph node
status is one of the strongest prognostic factors in pa-
tients with breast cancer and is crucial for the treatment
of this disease [2]. Since the 1990s, the sentinel lymph
node biopsy (SLNB) for breast cancer has replaced axil-
lary lymph node dissection (ALND) as the standard of
care for primary treatment of early breast cancer [3].
However, this method is invasive and carries the risk of
dye allergies and false negative results [4]. Therefore, a
noninvasive and accurate method for the detection of
sentinel lymph node (SLN) metastasis would be crucial
in avoiding unnecessary postoperative complications and
selecting the optimal therapy in clinical practice.
Breast cancer generally features distinct histological, mo-

lecular, and clinical phenotypes and may manifest as radio-
logic heterogeneity. Radiomics can transform image data
into high-resolution image feature data that can be mined
and provide deep quantitative information that cannot be
determined by the naked eye of clinicians [5]. Radiomics is
predictive of malignancy, response to neoadjuvant chemo-
therapy, prognostic factors, molecular subtypes, and
recurrence risk in breast cancer [6, 7] and thus shows
promising use in assessing and predicting SLN metasta-
sis in tumors [8, 9].
Magnetic resonance imaging (MRI) has been widely

used in the diagnosis and staging of breast cancer be-
cause of its advantages of non-radiation, high soft tissue
contrast and functional imaging. Although studies have
showed that MRI has superior performance than some
other techniques such as ultrasound or mammography,
its efficacy in identifying axillary lymph node status is
unsatisfactory [10, 11]. Dynamic contrast enhanced mag-
netic resonance imaging (DCE-MRI) can provide phar-
macokinetic parameters, including semiquantitative and
quantitative parameters, and is a sensitive technique that
reflects the extent of tumor angiogenesis [12]. Previous
studies have demonstrated that pharmacokinetic param-
eters can potentially be used as prognostic or predictive
biomarkers [13]. Bahri et al. [14] found that the Ktrans
and Kep values of metastatic lymph nodes are higher
than those of nonmetastatic lymph nodes in breast can-
cer. However, using combined pharmacokinetic parame-
ters and DCE-MRI radiomics features to predict SLN
metastasis has not yet been demonstrated.
Therefore, the aim of our study was to construct and

validate a noninvasive model from preoperative DCE-MRI
to predict SLN metastasis in patients with breast cancer.

Methods
Patients
This prospective study was approved by the ethics com-
mittee, and written informed consent was obtained from

all patients. We identified 257 consecutive patients with
newly histologically proven invasive breast cancer from De-
cember 1, 2017 to May 1, 2018. The inclusion criteria were
1) had undergone pathological evaluation of SLN; 2) cancer
focus with longest diameter > 5mm; and 3) single mass
enhancement. Exclusion criteria were 1) nonmass-like
enhancement on DCE-MR images; 2) incomplete clinical
or pathologic characteristics; and 3) undergone radiation
therapy or chemotherapy treatment. In this study, all cases
underwent axilla ultrasound. Patients with negative axilla
by ultrasound underwent SLNB at the time of surgery. If
the SLN was positive, ALND was performed. If patient was
found to have suspicious positive axillary lymph node by
ultrasound, an ultrasound-guided fine needle biopsy was
performed. If there was a histologically positive lymph node
on needle biopsy, the patient received ALND. If the biopsy
result was negative, the patient received a SLNB.
Finally, 164 patients (78 positive for SLN and 86 nega-

tive for SLN) were included in this study. The training
cohort included 124 cases from December 2017 to
March 2018, and the validation cohort included 40 cases
from April 2018 to May 2018.

MRI acquisition
All images were obtained with a 3.0 T MRI system (GE
Discovery 750W) using an 8-channel breast-dedicated coil
in prone position. The MRI sequences included axial T1-
weighted imaging (T1WI) (repetition time [TR]/echo time
[TE] = 520ms/9ms, slice thickness/gap = 5mm/1mm) and
axial T2-weighted imaging (T2WI) (TR/TE = 5200ms/90
ms, slice thickness/gap = 5mm/1mm). DCE-MRI was per-
formed with volume acceleration sequence in the axial
plane (TR/TE = 6.2 ms/2.3 ms; slice thickness/gap = 2
mm/0 mm; FOV = 360 × 360 mm2; matrix = 288 × 320;
and flip angles: 5°, 10°, and 15°). The contrast agent
(Omniscan, 0.2 mmol/kg body) was injected after the
acquisition of one set of precontrast images by using a
high-pressure syringe at a rate of 2.8 ml/s, followed by
the injection of equivalent volume of saline at the same
rate to wash out the residual contrast agent in the tube.
The scanning time of each phase was 16 s for a total of
30 phases. In this study, we used the peak enhanced
phase of the multiphase contrast-enhanced MRI se-
lected in accordance with the time intensity curve be-
cause the image lesions had the largest amount of
contrast with the background [15].

Pharmacokinetic parameter extraction
DCE-MRI data were transferred to an off-line worksta-
tion and analyzed by using specialized quantitative ana-
lysis software (Omni Kinetics; GE Healthcare, China,
Shanghai). Two experienced radiologists (with 10 years
of experience in breast imaging diagnosis) who were
blinded to the histopathological results independently
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performed the data analysis. Before parameter calculation,
a nonlinear registration framework utilizing the Free Form
Deformation algorithm was used to correct misalignment
caused by body motion between consecutive DCE scans,
and signal intensity was converted into omniscan concen-
tration using the variable flip angle method. An arterial in-
put function was extracted by manually drawing on the
thoracic aorta. The two-compartment extended Tofts
model was selected to calculate pharmacokinetic parame-
ters, including the quantitative parameters volume transfer
constant (Ktrans), reverse reflux rate constant (Kep),
volume fraction of extravascular extracellular space
(Ve), and volume fraction of plasma (Vp), as well as
semiquantitative parameters, including time to peak
(TTP), maximum concentration (MaxCon), maximal
slope (MaxSlope), and area under curve (AUC). The
entire tumor maximum layer was selected as the re-
gion of interest (ROI), and necrotic or cystic areas
were excluded from the evaluation.

Radiomics feature extraction
Prior to image feature extraction, the original MRI image
must be preprocessed; preprocessing steps include MRI sig-
nal intensity standardization and Gray-level quantization
[16, 17]. On the basis of time signal intensity curves, the
strongest enhanced phase was selected and the ROI was
manually drawn by a radiologist with more than 10 years of
experience and who was blinded to the pathological results
(Fig. 1). As shown in Table 1, a total of 396 radiomics fea-
tures classified as first-order, shape, and texture features
were extracted from the ROI. This process was performed
with AK software (Artificial Intelligence Kit; GE Healthcare,
China, Shanghai).

Feature selection
Intra- and inter-observer agreement was analyzed on the
basis of intra- and inter-class correlation coefficient (ICCs)
for all radiomics features extraction. A total of 30 random
patients were selected, and radiologist A and radiologist B
extracted the features of these 30 patients. Radiologist A
then repeated the same procedure 1 week later. The ICCs
greater than 0.75 indicated good consistency.
The LASSO logistic regression algorithm, which is

suitable for the regression of high-dimensional data, was
used to select the most useful predictive features from
the primary data set.

Predictive model building
The enrolled cases were randomly divided into two inde-
pendent subsets at a ratio of 3:1, wherein 124 patients
were used as the training cohort, and 40 patients were
used as the independent validation cohort.
The logistics regression models were used to establish the

radiomics model, the pharmacokinetic parameters model,
and the combined model to predict SLN metastasis in
breast cancer. The predictive efficiency of the predictive
model was assessment by using receiver operating charac-
teristics (ROC) curve in the training and validation cohorts.

Statistical analysis
Patients age and tumor diameter were compared between
the SLN-positive and SLN-negative groups by t test.
Histological grade and molecular subtype were tested for
trends using the chi-square test. All numerical data were
presented as mean standard deviation. LASSO logistic re-
gression was performed on the basis of 10-fold cross valid-
ation. Multivariate logistic regression was used to develop
three models: the radiomics model, pharmacokinetic

Fig. 1 Radiomics workflow
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parameters model, and the combined model. ROC curve
were used to evaluate the diagnostic performance of the
three models. Sensitivity, specificity, and accuracy were
calculated for each model. A two-sided p value of less than
0.05 was considered to indicate significant difference. All
statistical tests were carried out in R3.5.1.

Results
Clinical characteristics
As shown in Table 2, age, tumor diameter, histological
grade, and molecular subtype did not significantly differ be-
tween the SLN-positive and SLN-negative groups (P > 0.05).

Feature selection and predictive performance of the
model
The intra-observer ICC ranged from 0.869 to 0.894, and
the inter-observer ICC ranged from 0.851 to 0.926, indi-
cating favorable feature extraction reproducibility.
The training cohort had 396 selected radiomics features

for LASSO logistic regression analysis. A total of seven
radiomics features including Sum Entropy, Compactness-
1, Inertia, Cluster Prominence, Correlation, GLCM En-
tropy, Kurtosis were selected by the LASSO logistic re-
gression model (Fig. 2). SLN metastasis prediction models
were developed using a multivariate logistic regression
model based on pharmacokinetic parameters (Ktrans,

Kep, Ve, Vp, TTP, MaxSlope, AUC, and MaxCon) and
radiomics features.
In the training cohort, the radiomics model, pharma-

cokinetic parameters model, and the combined model
yielded AUC values of 0.81 (95% CI: 0.72 to 0.89), 0.77
(95% CI: 0.68 to 0.86), and 0.80 (95% CI: 0.72 to 0.89),
respectively. In the validation cohort, the pharmacoki-
netic parameters model, the radiomics model, and the
combined model yielded AUC values of 0.74 (95% CI:
0.59 to 0.89), 0.74 (95% CI: 0.59 to 0.90), and 0.76 (95%
CI: 0.61 to 0.91), respectively (Fig. 3).
The results for the validation cohort showed that the ac-

curacy, sensitivity, and specificity of the pharmacokinetic
parameters model were 69, 71, and 77%, respectively. The
accuracy, sensitivity, and specificity of the radiomics
model were 67, 64 and 79%, respectively. The accuracy,
sensitivity, and specificity of the combined model were 76,
72 and 81%, respectively. The combined model results
showed that the effect was higher than another (Table 3).

Discussion
In this study, the multivariate logistic regression model
was used to establish prediction models for predicting
SLN metastasis. The results showed that the combin-
ation of radiomics and hemodynamic characteristics can
obtain an improved preoperative prediction model with

Table 1 Radiomic features derived from the images

Calculation
Methods

Radiomics Features Feature
Numbers

Histogram Frequency size, Quantile, Variance, Kurtosis, Skewness, etc. 42

GLSZM Size Zone Variability, Large Area Emphasis, High Intensity Emphasis etc. 11

Haralick matrix HaraEntroy, Contrast, Inverse Difference Moment, Sum Average, Sum Variance 10

Form factor matrix Maximum 3D Diameter, Spherical Disproportion, Sphericity, Surface Area, etc. 9

GLCM ClusterProminence_AllDirection_offset1, Correlation_AllDirection_offset1, GLCMEnergy_angle45_offset4, etc. 144

RLM Grey Level Non-Uniformity All Direction, High Grey Level Run Emphasis Angle Offset, Run Length Non-
uniformity Angle Offset, etc.

180

Table 2 Clinical and Histopathological Characteristics

Patients with positive SLN (n = 78) Patients with negative SLN(n = 86) p value

Age (mean ± SD) 55.71 ± 8.6 54.40 ± 11.1 0.483

Tumor size (mean ± SD) 2.24 ± 1.0 2.21 ± 1.2 0.698

Histological grade 0.171

I 4 (5.15%) 25 (11.6%)

II 33 (42.3%) 41 (47.7%)

III 41 (52.6%) 20 (40.7%)

Molecular subtype 0.220

Luminal A 30 (38.5%) 31 (36%)

Luminal B 37 (47.4%) 33 (38.4%)

HER2 over-expression 6 (7.7%) 8 (9.3%)

Basal-like 5 (6.4%) 14 (16.3%)
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a

b

Fig. 2 LASSO algorithm for feature selection. a Selection of adjustment parameters (lambda) in the LASSO model used 10-fold cross-validation via
minimum criteria; b LASSO coefficient profiles of the features against the log (λ)
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promising performance in the prediction of SLN metas-
tases with an AUC of 0.76 in the validation set. These
results might help clinical decision-making with respect
to axillary surgery, potentially avoiding invasive proce-
dures in patients at a low risk of SLN metastases.
Assessing axillary lymph node metastasis as early as pos-

sible is essential for breast cancer surgical planning, adju-
vant therapy planning, and prognostication. Determining
axillary lymph node status remains a mandatory require-
ment of diagnostics. The SLNB and ALND are common
methods for the estimation of axillary lymph node status.
However, they are invasive [18]. Therefore, a noninvasive
approach with high accuracy is necessary to preoperatively
evaluate SLN metastasis. Developing a tool that accurately
and noninvasively predicts axillary lymph node metastasis
preoperatively provides great advantage. Yang used the
radiomics of mammography to preoperatively predict SLN
metastasis [19]. However, X-ray is limited by difficult de-
tection of the complete picture of the lesion, the easy
overlap between the lesion site and glandular tissue, and
the easily missed diagnosis. MRI can completely show the
type, range, and internal structure of lesions and clearly
show the multicenter lesions. At the same time, DCE-MRI
has a good diagnostic effect for tumor recurrence foci and
multicentric cancer [20].
DCE-MRI can provide multiple pharmacokinetic pa-

rameters, including semiquantitative parameters and
quantitative parameters, which can reveal the perfusion
and vascular distribution of tissue at the molecular level
[21]. The DCE-MRI-derived parameters Ktrans and Kep
enable the estimation of tumor angiogenesis and prolif-
eration in breast cancer [22]. Previous studies show that

quantitative parameters can improve diagnostic accuracy
and provide insight into the underlying biological charac-
teristics of breast lesions [23]. Compared with semiquanti-
tative parameters, quantitative parameters are less affected
by the wide variability in MRI scanners, scanning
sequence, temporal resolution, contrast media injection,
and image postprocessing calculation [24]. In this study,
we combined quantitative parameters (Ktrans, Kep, Ve,
and Vp) with semiquantitative parameters (TTP, Max-
Slope, AUC, and MaxCon), and demonstrated satisfactory
performance in the diagnosis of SLN metastasis with an
AUC of 0.77 in the training dataset and AUC of 0.74 in
the validation dataset; these results indicate that the good
effect of our model for the differentiation of SLN metasta-
sis is better than that of previously reported methods [25].
Radiomics, an emerging technique that can convert

digital medical images into mineable data for analysis for
texture feature extraction, helps characterization within
heterogeneous tumor lesions [26]. This approach can
help clinicians improve detection, diagnosis, stage, and
prediction power. Only a few studies have shown that
DCE-MRI can predict the occurrence of SLN metastasis
with high accuracy by radiomics [27, 28]. In 2018, Liu
first attempted to predict SLN metastasis in breast can-
cer noninvasively by using DCE-MRI radiomics and

Fig. 3 ROC curves of prediction models in the training (a) and validation (b) cohorts

Table 3 Diagnostic performance of validation cohort

accuracy sensitivity specificity

pharmacokinetic parameters model 0.69 0.71 0.77

Radiomics model 0.67 0.64 0.79

Combined model 0.76 0.72 0.81
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demonstrated promising prediction performance in an in-
dependent validation set [29]. However, this study was
retrospectively designed, whereas our study was a pro-
spective study with radiomics from breast cancer. Our
study sequence was standardized, and our evidence for
clinical application was stringent. Previous studies only
used DCE-MRI for feature extraction, and the accuracy of
the comprehensive analysis of pharmacokinetic parame-
ters was unknown. In our study, the model that combined
radiomics features and pharmacokinetic parameters with
an AUC of 0.76 in the validation cohort had higher pre-
diction ability than any single model. The combined
model indicates microcirculation function and informa-
tion regarding tissue morphological characteristics, which
can provide a comprehensive description of the tumor.
Recently, radiomics analysis based on other MRI se-

quences has been reported. In 2017, Dong applied T2-WI
and DWI texture features to predict SLN metastasis [30].
Most of lesions on DWI and T2W images show reduced
resolution and exacerbated distortion, and segmenting the
lesions completely is difficult. In this study, DCE-MRI was
used to derive DCE parameters and radiomics analysis,
which clearly show the lesion boundaries. DCE-MRI has
numerous scanning phases. Han et al. [28] extracted
radiomics features from the axial first phase of the T1-
weighted images of the DCE images of primary tumors to
predict SLN metastasis. In this study, we used the peak
enhanced phase of multiphase contrast enhanced MRI se-
lected in accordance with the time intensity curve, which
show the lesion boundaries clearly and have the greatest
association with potential tissue information [15].
This study has several limitations. First, it is a prelim-

inary exploratory study with a small sample size, and a
large sample is necessary. Second, the manual method
was applied to image segmentation although the satisfac-
tory inter- and intra-observer reproducibility of radio-
mics features extraction was achieved. Moreover, over
90% of features had good reproducibility [31]. However,
the automated method for image segmentation may have
high stability [32, 33]. Third, our study lack external val-
idation for the model. Multicenter validation is needed
to acquire high-level evidence for clinical application.
We will continue our research in future studies.

Conclusions
In conclusion, our prospective research shows that
pharmacokinetic parameters and the radiomics com-
bined model represent a noninvasive predictive tool
that shows good application prospects for the detec-
tion of SLN metastasis in patients with breast cancer.
A multicenter validation study with a large sample
size should be conducted to improve efficiency in
subsequent works.
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