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Abstract

Recently, radiomic texture quantification of tumors has received much attention from radiologists, scientists, and
stakeholders because several results have shown the feasibility of using the technique to diagnose and manage
oncological conditions. In patients with hepatocellular carcinoma, radiomics has been applied in all stages of tumor
evaluation, including diagnosis and characterization of the genotypic behavior of the tumor, monitoring of
treatment responses and prediction of various clinical endpoints. It is also useful in selecting suitable candidates for
specific treatment strategies. However, the clinical validation of hepatocellular carcinoma radiomics is limited by
challenges in imaging protocol and data acquisition parameters, challenges in segmentation techniques,
dimensionality reduction, and modeling methods. Identification of the best segmentation and optimal modeling
methods, as well as texture features most stable to imaging protocol variability would go a long way in
harmonizing HCC radiomics for personalized patient care. This article reviews the process of HCC radiomics, its
clinical applications, associated challenges, and current optimization strategies.
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Introduction
Hepatocellular carcinoma (HCC) is characterized by an
increasing incidence, higher mortality, and morbidity
burden. Currently, it is the second most common cause
of cancer-related death worldwide, with about 50 % of
all cases occurring in China alone [1]. The high mortal-
ity and morbidity burden mostly results from the late
presentation of the disease in the majority of patients. In
most cases, the diagnosis and follow-up of hepatocellular
carcinoma, especially in the setting of cirrhosis can be
effectively achieved using computed tomography (CT)
and magnetic resonance (MR) imaging without the need
for histological confirmation [2]. In recent years, there is

an increasing need for better characterization of tumor
heterogeneity and prediction of survival outcomes to
permit individualized patient care. In this regard, the
conventional qualitative CT and MR imaging modalities
have fallen short, and consequently, the growing demand
for more objective quantification of texture features.
Quantitative texture analysis of medical images – con-

sidered as a virtual biopsy technique – explores the
microscopic details of a tumor by taking advantage of
the spatial distribution and variation in the gray-level in-
tensities of the pixels/voxels that make up the tumor im-
ages [3]. It has been expanded into the field of
radiomics, which is an evolving research area that entails
extracting large texture data to generate predictive
models for prognostication, better tumor
characterization, and assessing treatment responses. Al-
though the Barcelona Clinic Liver Cancer (BCLC) is still
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the most popular treatment guideline, HCC radiomics
analysis has proven useful in the guidance of treatment
strategies and the prediction of therapy response. Des-
pite its convenience and advantages, the full clinical ap-
plication of radiomics analysis has been hampered by
the absence of a standard execution guideline, delaying
the clinical validation of the aforementioned applica-
tions. Promising studies on HCC applied radiomics dif-
ferently in terms of the imaging protocol, segmentation
methods, and model construction. However, for patients
to fully benefit from a clinically validated radiomics, cer-
tain challenges about HCC texture quantification need
to be addressed in the multi-step process of radiomics.
This article explores the prospects and challenges in data
acquisition, segmentation and modeling methods by
reviewing recent developments in the clinical applica-
tions of HCC radiomics, which is vital for guiding its
clinical applications to ensure a personalized medicine
with optimized treatment strategies for better patient
prognosis.

Data acquisition and challenges
Most texture quantification of HCC is carried out using
CT or MRI, as indicated in previous literature [4–6].
The universal problem associated with texture quantifi-
cation in all available CT and MRI imaging modalities is
in choosing the best imaging protocol, tumor segmenta-
tion methods, stable texture parameters, and the radio-
mic software tools used for analysis. In clinical work,
different authors use different imaging parameters, de-
pending on the equipment available in their institutions,
which can account for the heterogeneity in tumor quan-
tification [7, 8]. However, not all imaging parameters sig-
nificantly affect the robustness of texture features; some
vital parameters such as variations in scanner model,
contrast injection rates, pixel resolutions, signal-to-noise
ratio (SNR), and reconstruction algorithms have an obvi-
ous influence on the quantification of HCC texture fea-
ture. Therefore, it is important to develop a multi-
parameter model that automatically corrects the vari-
ation in the various key data-acquisition parameters, or
establish a comprehensive algorithm with a controlled
imaging protocol that can provide stable texture features
and enable an objective comparison between HCC
radiomics studies, thereby promoting its clinical
validation.

CT-based radiomics
In general, CT-based radiomics studies have shown that
the variation of image acquisition parameters such as
slice thickness, reconstruction algorithms, image reso-
lution, contrast medium, and scanner type has the most
significant influence on texture quantification [9–11]. In
particular, reconstruction algorithms, pixel resolution,

changes in contrast injection rates, and scanner models
have been specifically implicated in HCC radiomics [9,
10, 12]. Regarding slice thickness, thinner image slices
(1.25 and 2.5 mm) yield more quantitative texture infor-
mation than thick slices (5 mm) [11]. Furthermore, the
reconstruction algorithms: adaptive statistical iterative
reconstruction (ASIR), model-based iterative reconstruc-
tion (MBIR) and the filtered back-projection (FBP) have
each been shown to affect the quantification of certain
texture features of liver lesions (p < 0.002) [10]. And in
patients who had a retest contrast-enhanced CT scan 2
weeks apart, Perrin et al. showed that the variations in
pixel resolutions and contrast injection rates could affect
the number of reproducible texture features (gray-level
co-occurrence matrix, GLCM; gray-level run-length
matrix, GLRLM; intensity histogram and local binary
patterns) between test and retest scans (concordance
correlation coefficient of > 0.9) [9]. Also, each scanner
model comes with a unique built-in pitch setting that
can also influence the type of radiomics features ex-
tracted by the scanner. Finally, all other things being
equal, the change in tube current and voltage [13], and
the radiation dose [10] have no significant impact on
HCC texture feature quantification.

MRI-based radiomics
In contrast to CT, determining the effect of data acquisi-
tion parameters on MR texture features can be more
complicated because the imaging parameters, as well as
contrast agents, bear no linear relationship with the sig-
nal intensity [14]. Generally, changes in echo time (TE),
repetition time (TR), sampling bandwidth (SBW), spatial
resolution, signal-to-noise ratio (SNR), field strength,
scanner model, reconstruction algorithm, and parallel
imaging acceleration factor, have been implicated in
MRI-based radiomics [15–17]. Mayerhoefer et al. dem-
onstrated that at a higher resolution, TE, TR, and SBW
had a negligible effect on GLCM derived features in a
phantom study using polystyrene spheres and an agar
gel solution (PSAG) [15]. Generally, increasing spatial
resolution and SNR improves the exploration of tumor
heterogeneity [18]. In contrast, variation in the slice
thickness of MR images doesn’t significantly affect the
robustness of texture features [19, 20].

CT VS MRI-based radiomics
The superior diagnostic performance of MRI compared
to CT in HCC has been documented [21] but their per-
formance in radiomics analysis, however, has not been
compared. As MRI has relatively higher sensitivity with
a better spatial resolution and soft-tissue
characterization, it might offer more robust texture fea-
tures for tumor heterogeneity assessment than the CT
[22]. A recent study compared the repeatability of CT
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and MR (using volumetric interpolation breath-hold
examination (VIBE) and true fast MRI with steady state
precession (TRUFISP) texture features of non-small cell
lung cancer and showed 12 significant models that ac-
curately predict overall survival but not tumor response.
CT and MRI had a fairly similar predictive accuracy;
54.4% of CT texture features, 64.4% of TRUFISP and
52.6% of VIBE texture features were reproducible with a
concordance correlation coefficient of ≥0.9 [23]. How-
ever as mentioned previously, simulation of the ground-
truth textural composition of tissues of MR images can
be more difficult, since the image signal intensities of tis-
sues are strongly influenced by the MR acquisition pa-
rameters; moreover, images are more prone to artifacts
that affect the quantitative analysis of texture features
(especially the Gibbs ringing) compared to CT [14].
Thus, MRI-based radiomics signature may likely be
more predictive of tumor heterogeneity but might be

more susceptible to variations in imaging parameters
compared to CT-based radiomics.
For both CT and MRI-based radiomics, good reprodu-

cibility of texture quantification is vital to the texture
quantification. The reproducibility of the texture features
is in turn affected by the imaging protocol and
parameters.
Therefore, to improve the reproducibility of texture

features, it is essential to understand how the alterations
in the imaging protocol affect different texture features
to allow the selection of suitable features under different
imaging parameters (Table 1 below). This is because cer-
tain tumor texture features are less susceptible to even
the most influencing parameter alterations. For example,
some phantom studies [15–17] have demonstrated that
GLCM-based features have greater reproducibility as
they are more stable to variations in imaging parameters.
Further studies using HCC phantoms are needed to

Table 1 Studies that evaluated the impact of variation in imaging parameters on HCC texture quantification

Author Study Suitable Features
extracted

Parameters Parameter
Variation

Impact on texture
quantification

Conclusion

Perrin et al. [9] CECT 254 features:
GLCM,
GLRLM,
LBP,
ACM,
IH,
FD

Contrast Injection
rate (CIR)

Change in CIR 0.15
ml/s (range 0–2.5)

68/254features reproducible
when variation CIR < 15%
50/254 features reproducible
with variations of 50%

Quantification of features
reduced as variability in
CIR increases.

Pixel resolution Pixel resolution
difference 7.27%
(range 0–30.8%)

34/254 features reproducible
with 15% variation in
resolution.
> 60 features reproducible
with resolution variation < 5%

Quantification of features
reduced as variability in
pixel resolution increases

Scanner model 75/254 features reproducible
with same scanner and 35/254
with different scanner

Quantification of features
reduced when > 1 scanner
is used

Solomon et al.
[10]

CECT 23 GLCM-features:

Contrast, correlation,

energy, homogeneity,
entropy

Reconstruction
algorithms:

Different
reconstruction
algorithm

Contrast:
32% lower with MBIR than
with FBP

MBIR and ASIR significantly
improved the quantification
of texture features.

MBIR, FBP and
ASIR

Correlation: 37% higher with
MBIR than FBP
Energy: not significantly
affected by algorithm

Radiation dose had no
significant effect on texture
features

Radiation dose Homogeneity: 15% higher
with MBIR than FBP
Entropy: unaffected
No significant impact on
texture features

Mayerhoefer
et al. [15]

3 T
MRI

GLCM, GLRLM, IH,
ARM, WAV based
features

NA, TR, TE, SBW
and pixel
resolution

NA, TR, TE, SBW
and pixel resolution
at different values

Clinical resolution
(MTX = 32 X 32; pixel
size = 0.88 mm2):
GLCM and GLRLM more
sensitive to changes in
NA, TR, SBW, TE than IH,
ARM and WAV.
Lower resolution:
Sensitivity of all features
to NA, TR, TE and SBW
reduced

GLCM derived features
were most robust to
variations

CIR contrast injection rate, GLCM gray-level co-occurrence matrix, GLRLM gray-level run-length matrix, LBP local binary pattern, ACM angular co-occurrence matrix,
IH intensity histogram, FD fractal dimension, ARM autoregressive model, WAV wavelet transform, MTX matrix size, MBIR model-based iterative reconstruction, FBP
filter back projection, ASIR adaptive statistical iterative reconstruction, NA number of acquisitions, TR repetition time, TE echo time, SBW sampling bandwidth
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determine if similar findings would be obtainable for
hepatic malignancies.

The process of HCC radiomics
Texture quantification has been outlined in length in
various studies [24–26]. Various software tools and stat-
istical algorithms could be used on extracted image fea-
tures to interpret tumor characteristics objectively and
to determine the relationship between the tumor surface
and the surrounding parenchyma [27]. A vast amount of
texture features (currently around 50–5000) [28] from
tumors can be converted into a mineable data from
which radiomics and delta-radiomics signatures can be
developed and then utilized for individualized patient
care [29]. The process of HCC radiomics analysis begins
with segmentation followed by feature selection, con-
struction of radiomics signature, model building, and
validation [4, 6] (Fig. 1).

Segmentation
The segmentation of the whole or part of a tumor using
a radiomic software on a delineated region or volume of
interest (ROI/VOI) for extraction is the first step in ana-
lyzing the texture of an image. The extracted features
are described as semantic and quantitative. Segmenta-
tion can be manual, semiautomatic, or automatic. How-
ever, the semiautomatic segmentation method is
currently more acceptable because it is less associated
with bias from intra- or inter-observer variability com-
pared with the manual delineation [8, 30] and less com-
plex than the automatic method [31]. A study
comparing the inter-observer variability of manual and
semiautomatic segmentation showed that the

semiautomated algorithm showed less variability com-
pared with manual delineations (an interclass coefficient
of 0.856 vs 0.776) [30]. The automated algorithms are
limited by computational complexity, heterogeneity in
HCC sizes and shape, and the need for a large amount
of data set [30].
Current semiautomated segmentation algorithms pro-

posed in the literature are broadly categorized into two:
image intensity and tumor border-based methods [14].
The contour-based algorithms utilize the tumor contour
detail while the intensity-based algorithms employ the
tumor-parenchyma intensity gradient difference to exe-
cute segmentation. Algorithms that use tumor boundary
information or intensity differences to segment tumors
include region-growing (like the GrowCut), GraphCut,
watersheds, livewires and active contours. GrowCut and
GraphCut have become popular methods for semiauto-
mated segmentation. Table 2 below summarizes the
semiautomated segmentation algorithms.

Semantic features Semantic features are the “apparent”
tumor radiological features observed in daily practice.
They include tumor location, size, and shape; enhance-
ment characteristics, effusions, etc. [36]. Segal et al. used
28 semantic CT texture features to decode 78% of the
genes expressed in liver cancers [37]. Similarly, two
other studies used semantic features including liver-
tumor interface difference and hypointense halo to de-
velop a radiomic signature, which to some extent pre-
dicted microvascular invasion (MVI) of HCC [38, 39].
Although less affected by variations in imaging protocol,
the semantic features suffer more subjectivity and vari-
ability, thus limiting their robustness [40]. However, they

Fig. 1 schematic diagram summarizing the steps in HCC radiomics
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are still very useful, especially when combined with the
quantitative features [41, 42].

Quantitative features Quantitative features are those
tumor characteristics that cannot be seen by mere obser-
vation of images; they require deciphering using various
approaches including statistical-, model-, transform-
based and structural methods [43, 44]. By and large, the
statistical-based method is widely used in clinical prac-
tice for quantitative texture analysis. Quantitative fea-
tures in the statistical model are grouped into first-
order, second-order and higher-order statistics (Table 3),
which have been used to represent the texture feature,
and the second and higher-order statistics are of high
importance for the evaluation of tumor characteristics in
many HCC studies.

Challenges in tumor segmentation
A big challenge in tumor segmentation is in choosing
the part of the tumor to be used in mining the radiomic
data. Different studies take a different approach to per-
form tumor segmentation; some authors use part of the
tumor while others use the whole tumor. Furthermore,
other authors included the tumor and peritumoral

region, and recently, Blanc-Durand et al. segmented the
entire liver to build a whole-liver radiomics [47]. Fran-
cesca et al. showed a texture analysis of the entire tumor
to yield more feature information, because texture char-
acteristics of a particular ROI in the tumor, just like a bi-
opsy sample, may not be the true representation of the
entire tumor heterogeneity [48]. While some authors ad-
vocated exclusive segmentation of the tumor [5], more
recently, others extended into the adjacent peritumoral
tissue to generate a combined intra and peritumoral
ROI/VOI. The latter approach has been shown to pro-
vide more detail on tumor heterogeneity, especially
about MVI status [29, 49, 50]. A recent study demon-
strated that variations in the methods of tumor segmen-
tation affected the quantification and robustness of
tumor texture features and emphasized the need for
adopting a segmentation method from which the most
stable radiomics features could be extracted [8].

Radiomic model
After segmentation of the ROI/VOI, appropriate texture
features are selected to build, train, and validate a pre-
dictive radiomic model.

Table 2 common semiautomated segmentation algorithms used in HCC

Segmentation Algorithm Description Performance Setback

Image intensity
based [8, 32, 33]

Region growing e.g.
GrowCut

Uses region-growing seed
points to segment a tumor

Fast, low computational complexity,
good reproducibility strong correlation
with macroscopic tumor diameter

Segmentation errors due to boundary
leakages, unsuitable for highly
heterogenous tumors

GraphCut Constructs an image-graph
of voxels connected by
weighted edges

Can deal with tumors with odd
shapes and mosaic intensity

Over segmentation or undesired
ROIs when there are artefacts

Water shed
transformation

Segments tumor from
parenchyma based on
difference in gray scale
intensity

Global segmentation Over segmentation sensitive to
poor tumor margins

Contour-based
approach [34,
35]

Active contours,
level-set and Live
wires

Iteratively marks tumor
contour from starting points
on tumor edge

Faster than region growing methods Rely on good initialization points
and speed functions, sensitive to
noise and poor tumor margins

Table 3 The summary of the statistical model used in texture quantification

Statistical Model

First-order Second-order Higher-order

Meaning Frequency distribution of pixel/voxel
gray-values without considering
their spatial orientation [45].

Spatial distribution of pixel/voxel
gray-levels in relation to their
relative positions [46]

Characterizing images based on a
unique interaction between the
pixels/voxels that constitute the
image [25].

Computation method Histogram from which several
texture features can be derived

Texture features obtained from
the joint probability distribution
of neighboring pixels

Mathematical algorithms that
evaluate pixel intensities in relation
to their neighboring pixels

Examples mean gray-level intensity, uniformity,
entropy, standard deviation,
skewness, kurtosis

GLCM, GLRLM NGTDM, NSZM, wavelet, and Gabor
transform

GLCM gray-level co-occurrence matrix, GLRLM gray-level run-length matrix, NGTDM neighborhood gray-tone difference matrix, NSZM neighborhood size
zone matrix
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Feature selection
Because the number of texture features obtained from a
tumor can be quite large, the purpose of the feature se-
lection step is to select only clinically relevant texture
features that would be incorporated into a radiomic
model. Extracted features are often narrowed to not
more than the sample size [51] to avoid the curse of di-
mensionality, which occurs when the model is over-
fitted with so many features: including redundant and ir-
relevant features. This affects the model’s performance
on a new dataset due to high variance, leading to errone-
ous predictions [52]. There are various feature selection
methods [53] but the most commonly employed ap-
proach is the filtration technique that is used to remove
noise from selected features by highlighting texture fea-
tures of specified size on the spatial scaling factor (ran-
ging between 2 and 6mm) [54]. Relevant and stable
filtered features are computed by statistical methods in-
cluding intraclass correlation coefficient (ICC), Students
t-test, Mann-Whitney U test, etc. [26].

Model building and training
Since there are no established standard guidelines, re-
searchers use different methods to build predictive
models; however, regardless of the modeling method ap-
plied, the technique should be fully documented in a
pellucid and easily reproducible manner [24]. Modeling
can generally be supervised, semi-supervised or unsuper-
vised. The commonly adopted method is the supervised
approach in which a model is trained to characterize

tumor heterogeneity or predict an outcome by feeding it
with specific ground truth clinical labels and then tested
for its performance [26]. If all the different models had
the same predictive performance, comparison between
studies would have been easier; however, because differ-
ent modeling methods have different predictive accur-
acies, there is a need to identify the model with the best
performance to achieve the desired clinical endpoint. On
this regard, Ni et al. demonstrated that a combination of
the LASSO+GBDT models (least absolute shrinkage and
selection operator plus gradient boosting decision tree)
had a higher diagnostic accuracy (highest area under the
curve) for MVI of HCC compared to the back-
propagation neural network (BPNet), K nearest neigh-
bors (KNN), support vector machine (SVM), random
forest (RF), decision tree (DT), and Bayesian models
[55]. Moreover, recent studies on HCC quantitative ana-
lysis have shown that a combined radiomic nomogram
composed of clinical, laboratory, semantic, and radiomic
signatures, has better predictive power than a single
radiomic model (Fig. 2). This is because variables such
as the alpha-fetoprotein levels (AFP level), Child-Pugh
score, and HBV status influence tumor heterogeneity
[42]. For example, Kim and colleagues [42] improved the
performance of their radiomic model in predicting sur-
vival form a hazard ratio of 7.42 to 19.88 (p < 0.0001) by
incorporating alpha-fetoprotein (AFP) levels, liver func-
tion status (Child-Pugh score) and tumor size. Similarly,
high AFP (> 400 ng/ml) and AST (> 40 U/L) levels are
two clinical parameters that independently predicted

Fig. 2 Illustration of a radiomic nomogram using clinical, laboratory and radiomics signature, AFP = alpha-fetoprotein, HBV = hepatitis B virus [56]
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MVI of HCC with an accuracy of 72.4 and 65.5%, re-
spectively. When combined with radiomic signatures,
the accuracy of the combined model improved to 82.8%
(AUC of 0.889) [29]. Another study showed that both
clinical (consisting of patients age, AFP, HBsAg, and
tumor size) and radiomic models performed poorly in
predicting MVI (AUC of 0.734 and 0.783, respectively).
But when combined together, the performance of the
clinical-radiomic significantly improved (to AUC of
0.835) [56].

Validation
After generating a suitable model, the final step is to val-
idate its capability in accurately predicting the desired
clinical outcome for which it is being built. Models can
be validated internally by either using split or cross-
validation methods, or more preferably externally using
independent patient cohorts not included in the model
construction. Several statistical methods are used to val-
idate a model’s performance including the concordance
index (C-index) and time-dependent receiver operating
characteristic curve (ROC), which are generally used for
models built to predict survival outcomes. For models
built to predict a particular event such as MVI; the area
under the curve (AUC), sensitivity, specificity, and cali-
bration are utilized for validation [26] (summarized in
Table 4 below). The best model is the combined model
(clinical-radiomic model) with the maximum AUC
values in most studies and should be recommended in
texture quantification analysis due to its highest
performance.

Challenges
The performance of models varies because each model-
ing technique has its unique limitations. Thus, the main
challenge associated with modeling is the dare need for
selecting an appropriate method for a particular event to
be predicted [55]. Notably, the supervised learning

models often require large amounts of training variables,
which sometimes may not be enough to achieve optimal
training to permit selection of the most relevant features.
For this reason, a semi-supervised modeling method can
be used to respond to insufficient data labels [26].

Clinical application
Texture analysis of CT and MR images using tumor
alone, a combination of the tumor and peritumoral re-
gion, or the whole liver (including all lesions) to generate
a single radiomics signature or a combined clinical-
pathologic-radiomic model has been applied to
characterize and grade HCCs, assess MVI, monitor
treatment response, and predict clinical endpoints.

Tumor characterization
Texture quantification of CT and MR images has proven
quite useful in the characterization of liver lesions and
particularly in atypical HCC in the non-cirrhotic liver
where the diagnosis can be challenging even with the
liver-specific contrast-enhanced MRI [61]. Stocker et al.
used GLRLM, GLCM and gray-level histogram derived
features to differentiate between HCCs and benign le-
sions in non-cirrhotic livers [12]. Texture features from
spectral attenuated inversion recovery (SPAIR) T2W im-
ages have also been used to differentiate HCC from hep-
atic hemangioma and liver metastasis [62]. Also, a
combined clinical and radiomic model has been used to
predict MVI in HCC [58]. Moreover, some authors have
used texture analysis to assign specific treatment options
to patients based on their tumor textural characteristics
[63, 64].

Response assessment
Texture quantification has been successfully used in
monitoring response after both surgical and locoregional
treatment of HCC. By quantifying change in tumor het-
erogeneity, radiomics analysis has the potential of

Table 4 summary of studies showing the predictive performance of radiomics signature, clinical-radiological and the combined
models

Study Objectives No. of subjects The area under the ROC
curve

Sensitivity Specificity Best
model

RS CM COM RS CM COM RS CM COM

Ma et al. [56] Preoperative prediction of MVI 157 (T:110, V: 47) 0.793 0.761 0.801 0.656 0.944 0.889 0.944 0.655 0.759 COM

Yang et al. [41] Prediction of MVI 208 (T: 146, V: 62) 0.837 0.759 0.861 0.842 0.737 0.895 0.744 0.674 0.814 COM

Xu et al. [29] Prediction of MVI and survival 495 (T:350, V:145) 0.806 N/A 0.889 0.755 0.653 0.898 0.719 0.760 0.792 COM

Zhang et al. [57] Prediction of MVI 267 (T:194, V:73) 0.820 0.721 0.858 0.692 0.269 0.808 0.809 0.936 0.861 COM

Zhu et al. [58] Prediction of MVI 142 (T:99, V:43) 0.773 N/A 0.794 0.750 N/A 0.812 0.815 N/A 0.852 COM

Zhang et al. [59] Prediction of early recurrence 155 (T:108, V:47) 0.728 0.814 0.841 0.696 0.783 0.913 0.708 0.833 0.750 COM

Zhou et al. [60] Prediction of early recurrence 215 0.817 0.781 0.708 0.794 0.784 0.824 0.699 0.619 0.708 COM

T training cohort, V validation cohort, N/A not available, ROC receiver operating characteristic curve, RS Radiomics signature, CM Clinical model, COM
Combined model
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assessing HCC’s response to treatments; however, only a
few studies explored this potential [46]. Kloth et al. com-
pared CT texture analysis with modified response evalu-
ation criteria in solid tumors (mRECIST) and perfusion
CT in assessing tumor response after drug eluting-bead
transarterial chemoembolization (DEB-TACE) and
showed that texture quantification could augment perfu-
sion CT and mRECIST in monitoring treatment re-
sponse [65]. Additionally, Yu JY et al. compared the
texture features of HCC before and after TACE com-
bined with high intensity focused ultrasound (HIFU)
therapy and concluded that skewness (AUC 0.76, p <
0.05) and entropy (AUC 0.736, p < 0.05) from arterial
phase images a week after treatment were strong predic-
tors of early response [66].

Prediction of survival
Texture analysis of HCC has been used to predict the
survival outcomes of patients after various treatment
strategies [47, 63, 67, 68]. A study showed that texture
characteristics could be used to select patients for com-
bined TACE plus sorafenib, as well as to predict survival;
Gabor-1-90 (filter 0) and wavelet-3-D (filter 1.0) from
portal phase CT images were predictive of time to pro-
gression (TTP) and overall survival (OS), respectively.
They proposed that patients having lower Gabor-1-90
(filter 0) and wavelet-3-D (filter 1.0) would benefit from
TACE plus sorafenib [63]. Similarly, preoperative texture
features from MR images have been used to predict early
recurrence of HCC after hepatectomy. The study dem-
onstrated that entropy and uniformity from the arterial
phase images were independent predictors of early re-
currence in patients with tumors ≤3 cm (p = 0.031 and
p = 0.014, respectively) while entropy and skewness from
same phase images were independent predictors of early
recurrence in tumors > 3 cm [22]. And to predict re-
sponse after chemotherapy with sorafenib, entropy from
CT portal venous phase images was significantly (p <
0.05) associated with overall survival in both training
and validation cohorts [68].
Some of the vital clinical applications of HCC radio-

mics are summarized in Table 5 below, and the most ro-
bust texture features are obtained from the second and
higher-order statistics, which are GLCM, GLRLM, Ga-
bor, and wavelet transform.

Relationship between the radiomics features and
Histopathologic correlates
In principle, tumor grading and immunotyping are de-
termined by histopathological examination. Linking ro-
bust radiomics features with specific tumor histological
markers will improve clinical decision-making without
resorting to invasive procedures. But translating this cor-
relation to tumor pathogenesis and outcome is difficult

due to a large number of texture features and heterogen-
eity in HCC radiomics studies.
Zhou et al. linked MRI-based mean intensity and

GLRLM-nonuniformity to histologic grades of HCC.
Low-grade tumors (Edmondson-Steiner grade I and II)
had significantly lower mean intensity and higher GLRL
M-nonuniformity values compared with high-grade tu-
mors (grade III and IV). Lower mean intensity of high-
grade tumors in this study is caused by intratumoral ne-
crosis when the tumors advance and outgrow their
blood supply – equating to reduced contrast delivery.
GLRLM-nonuniformity denotes heterogeneity in tumor
cellularity, vascularity, and mesenchymal distribution;
hence the higher values in more aggressive tumors [76].
High-grade HCCs had significantly higher MPP (pixels
with intensity values greater than 0) and SD compared
with low-grade tumors [69]. In this study, however, the
higher intensity values (indicating more contrast uptake,
i.e. more blood flow) is probably due to angiogenesis,
which is necessary for rapidly growing tumors to meet
nutrient and oxygen requirements [77]. Perhaps intensity
features change with growth and advancement of the
tumor – with higher intensity values in rapidly growing
tumors and lower values when they outgrow their blood
supply and subsequently develop necrosis.

The current optimization strategies to realizing a
standard HCC radiomics
Most studies on the texture quantification were con-
ducted on brain, lung, or breast tumors. Similar studies
on liver tumors are needed to assess further the robust-
ness of texture features extracted from different types of
HCC, as demonstrated by Perrin et al. [9]. Several scien-
tific organizations are making efforts to standardize the
processes of texture analysis to enable its full incorpor-
ation into clinical practice. Recently, the use of radio-
mics software tools that comply with IBSI’s standards
(Imaging Biomarker Standardization Initiative), an initia-
tive that seeks to standardize radiomics feature extrac-
tion, has been advocated [5]. Furthermore, radiomics
analysis using a controlled imaging protocol will reduce
the variability of extracted texture features [7]. To
achieve the best evidence-based medical practice and en-
able a smooth clinical application of radiomics, a full dis-
closure of technical details and a clear description of the
radiomic models and other processes of data analyses is
necessary to enable external validation of results, to fos-
ter a better comparison of different study findings, and
enable sharing of data as proposed by [24].
Our review focused on CT and MR-based HCC radio-

mics because most of the studies in HCC texture quanti-
fication were conducted using CT and MRI and the
challenges associated with their radiomics process have
been better identified and addressed compared to the
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few radiomics studies using other techniques such as
multimodal ultrasound and positron emission tomog-
raphy (PET). However, just like the BCLC algorithm,
which incorporates tumor characteristics and the liver
function status, studies using multimodal imaging tech-
niques, such as the PET, to analyze both tumor and liver
texture signatures are needed. This will help in develop-
ing a robust algorithm that will incorporate not only
HCC radiomics, but also radiomics of the liver function.

Conclusion
Numerous studies have demonstrated the application of
texture quantification, especially when combined with

clinical and pathological variables, in the management of
various forms and stages of HCC. However, the clinical
validation of HCC radiomics has been limited by a lack
of standardization in image acquisition protocol and
optimization of the radiomics analysis procedure. Recent
pioneering studies have identified some robust tumor
radiomics signatures that are most resistant to protocol
variations. Thus, further studies on these robust signa-
tures and the development of a multiparameter-model
that automatically corrects the discrepancies in the most
influential data acquisition parameters or a comprehen-
sive algorithm using a controlled imaging protocol can
help reduce the heterogeneity in the quantification of

Table 5 Summary of the studies on radiomics analysis of HCC
Authors Objectives Study Significant features/model Phase Summary

Oh et al. [69] Predict tumor grade and DFS CECT SD, MPP and skewness AP AP based CCR model correlated
well with tumor grade and DFS
after resection

S. Song et al. [70] Differentiate hypervascular
lesions

CECT Histogram, GLCM and GLRLM AP AP features characterized
hypervascular liver lesions

Mokrane et al. [71] Verify indeterminate
liver nodules

CECT Radiomic signature using KNN,
SVM, and RF

AP and PVP Machine-learning-identified feature
diagnosed HCC in patients with
indeterminate liver nodules

Huang et al. [72] Characterization of HCC
based on gene expression

Gd-EOB-DTPA MRI GLCM, GLRLM and GLSZM-based
signature computed using SVM

AP, PVP, DP,
and HBP

A radiomic model predicted
DPHCC preoperatively

Ma and Peng et al. [56] Prediction of MVI CECT Radiomic signature computed
with SVM and LASSO

PVP CCR model was useful in preoperative
and individualized prediction of MVI

Yang et al. [41] Prediction of MVI Gd-EOB-DTPA MRI Radiomic signature computed
with LASSO

HBP, T1W and
HBP T1 map

HBP T1W and HBP T1 maps radiomic
signature were independent predictors
of MVI

Zhu et al. [58] Preoperative prediction
of MVI

MRI Uniformity, CP, CS and LRLGLE
in CCR

AP CCR model predictive of MVI

Zhang et al. [59] Prediction of ER Gd-EOB-DTPA MRI Histogram, GLCM, HGLRE in
CCR computed with LASSO

T2W, AP, HBP CCR had a better predictive ability
of ER

Zhou et al. [60] Prediction of ER CECT Histogram and GLCM
radiomic signature computed
with LASSO

AP, PVP AP and PVP based CCR was a
significant predictor of ER

Zhang et al. [22] Prediction of ER MRI Uniformity, entropy, and
skewness

AP AP features were independent
predictors of ER.

Brenet Defour et al. [73] Prediction of OS CECT Skewness PVP Skewness associated with OS and
useful for selecting best candidates
for resection.

Zheng et al. [74] Prediction of OS
and TTR

CECT GLCM radiomic signature
computed with LASSO

AP Low rad-score correlated with
aggressive tumor phenotypes and
predictive of postoperative outcome

Song et al. [75] Prediction of RFS MRI Histogram, GRLM, GLCM,
GLSZM based signature
computed with LASSO

PVP Preoperative estimation of RFS

Kim et al. [42] Prediction of survival CECT Histogram, GLCM, GLSZM, and
2 shape-based features
incorporated into CCR using
LASSO

AP A CCR nomogram performed better
in survival prediction

Fu et al. [63] Treatment and prediction
of TTP and OS

CECT Gabor filter and wavelet
transform

PVP Appropriate selection of HCC’s for
TACE plus sorafenib

Kloth et al. [65] Response assessment
after TACE

CECT/pCT Entropy, mean heterogeneity,
uniformity, and skewness

AP/PVP Significant correlation between
texture features and pCT parameters
in prediction of response

AP arterial phase, PVP portal venous phase, CCR combined clinical-radiologic/pathologic radiomic model, LRLGLE Long-run low gray-level emphasis, CP Cluster
Prominence, CS ClusterShade, HGLRE High gray-level run emphasis, GLN gray-level run-length nonuniformity, GLGCM gray-level gradient co-occurrence matrix,
GWTF Gabor wavelet transform texture, OS overall survival, TTP time to progression, TTR time to recurrence, DFS disease free survival, PFS progression free survival,
BCLC Barcelona Clinic Liver Cancer, ER early recurrence, TACE transarterial chemoembolization, RFS recurrence free survival, DPHCC dual-phenotype hepatocellular
carcinoma, pCT perfusion CT, RF random forest, KNN K-nearest neighbor, SVM support vector machine
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tumor texture. Finally, the radiomics signature of tumor
and liver parenchyma maybe useful for simultaneously
assessing both tumor heterogeneity and residual liver
function. Perhaps with further work, such functional
radiomic signatures would prove useful in establishing a
standard HCC radiomic algorithm.
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