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Abstract

Background: Convolutional neural networks (CNNs) have been extensively applied to two-dimensional (2D)
medical image segmentation, yielding excellent performance. However, their application to three-dimensional (3D)
nodule segmentation remains a challenge.

Methods: In this study, we propose a multi-view secondary input residual (MV-SIR) convolutional neural network
model for 3D lung nodule segmentation using the Lung Image Database Consortium and Image Database
Resource Initiative (LIDC-IDRI) dataset of chest computed tomography (CT) images. Lung nodule cubes are
prepared from the sample CT images. Further, from the axial, coronal, and sagittal perspectives, multi-view patches
are generated with randomly selected voxels in the lung nodule cubes as centers. Our model consists of six
submodels, which enable learning of 3D lung nodules sliced into three views of features; each submodel extracts
voxel heterogeneity and shape heterogeneity features. We convert the segmentation of 3D lung nodules into voxel
classification by inputting the multi-view patches into the model and determine whether the voxel points belong
to the nodule. The structure of the secondary input residual submodel comprises a residual block followed by a
secondary input module. We integrate the six submodels to classify whether voxel points belong to nodules, and
then reconstruct the segmentation image.

Results: The results of tests conducted using our model and comparison with other existing CNN models indicate
that the MV-SIR model achieves excellent results in the 3D segmentation of pulmonary nodules, with a Dice
coefficient of 0.926 and an average surface distance of 0.072.

Conclusion: our MV-SIR model can accurately perform 3D segmentation of lung nodules with the same
segmentation accuracy as the U-net model.

Keywords: Deep learning, Multi-view, Medical image, Three-dimensional segmentation, Secondary input, Residual
block
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Introduction
The American Cancer Society estimated that, in 2018,
lung cancer remains the leading cancer type in 1.73 mil-
lion new cancer patients, and hundreds of thousands of
patients die of lung cancer every year [1]. CT is the most
commonly used modality in the management of lung
nodules and automatic 3D segmentation of nodules on
CT will help in their detection and follow up. Accurate
segmentation and positioning of computer-assisted 3D
lung nodules can help the discovery and treatment of
lung nodules and prerequisites for liver and tumor resec-
tion [2]. Recent research has shown that convolutional
neural networks (CNNs) can automatically learn the
characteristics of medical images, and thus can be ap-
plied in segmenting medical images with high accuracy
[3–5]. Manual marking of each patient’s lesion location
by physicians and radiologists is generally accepted as
the gold standard for medical image segmentation. How-
ever, because the number of 3D image slices generally
reaches up to several hundreds, the calibration process
is time consuming and experts face immense workload
due to shortage of experienced physicians and radiolo-
gists. Moreover, With the continuous development of
medical technology, people are more and more con-
cerned about their health, resulting in a significant in-
crease in the number of CT every year. The burdens of
doctors and radiologists are getting heavier, and patients
have to wait longer for results, which is not conducive to
the healthy development of medical and health services.
The development of computer-aided intelligent segmen-
tation classification of 3D medical images improves the
processing speed of medical images, enhances the accur-
acy of diagnosis of diseases by doctors, and reduces the
burden of physicians and radiologists [6]. The combin-
ation of artificial intelligence deep learning and medical
image 3D segmentation can more accurately perform 3D
segmentation of lung nodules, which is helpful for doc-
tors to find and follow up lung nodules. CNNs have cur-
rently made great progress in 2D segmentation of
medical images, but their application in 3D segmenta-
tion is still a challenging task. The reasons for this diffi-
culty are as follows. First, the learning process of CNNs
requires a large amount of 3D medical image data and
their ground truths to produce good prediction results;
however, there is still a lack of such large amount of data
[7, 8]. Second, the class balance between negative and
positive samples in a 3D dataset is a challenge. In gen-
eral, there are far more negative non-nodular samples
than positive nodular ones. For example, in lung CT im-
ages, some lung nodules are only 3–5 mm in diameter
with extremely low volume [9]. Therefore, if a deep-
learning CNN is provided with sufficient training data
and a better class balance, the loss function of the CNN
can be easily minimized and a good model can be

effectively trained [10]. 3D CNNs consume considerable
amount of computing resources, such as graphic cards and
memory, during training. In the model prediction process,
the trained network requires high hardware requirements
and has certain restrictions on the promotion of its applica-
tion. Therefore, the algorithm needs to be optimized to ren-
der it simple and dexterous such that it is more conducive
to 3D medical image segmentation tasks [11].
In this study, we propose a multi-view secondary input

residual (MV-SIR) model for 3D segmentation of pul-
monary nodules in chest CT images. We extract lung
nodules into voxel cubes, adding 10 pixels in each of the
six directions of the nodule to include additional non-
nodule tissues inside. After that, extract a certain
amount of the voxel points in the lung nodule part, and
extract equal numbers of voxel point in the expansion
part to balance the positive and negative samples. In the
lung nodule cube, scale patches in the axial, coronal, and
sagittal views are extracted centered on randomly se-
lected voxel points. Selecting a part of the voxel points
randomly in the lung nodule cube can easily and effi-
ciently capture most of the image features of the lung
nodules, avoiding that most voxel points are too close
together, which causes the extracted patches to be too
similar and data redundancy. Each view extracts voxel
heterogeneity (VH) features and shape heterogeneity
(SH) features. The density and shape of tumor tissue are
quite different from those of normal tissue, and there is
a high correspondence between the judgment of nodules
and their heterogeneity. In CT images, VH reflects gray-
scale heterogeneity and tissue density information, and
SH reflects tissue shape information. And then we con-
struct an SIR submodel for feature learning for two
patches of each view; thus, six submodels are con-
structed. Then, we integrate the six SIR submodels into
the MV-SIR model and learn whether the patches ex-
tracted at each point in the cube belong to the pulmon-
ary nodules. Overall, the proposed MV-SIR model has
the following contributions:

(1) To the best of our knowledge, it is the first time a
combination of the secondary input and residual
block is added to a CNN model of segmentation of
CT images of 3D pulmonary nodules. This
combination can provide reference for the
application of the CNN model in medical image
classification and segmentation tasks.

(2) Using multi-view (axial, coronal, and sagittal) and
multi-image (VH and SH) features as input to the
MV-SIR model, full feature extraction can be per-
formed on 3D CT medical images, which improves
the accuracy of 3D lung nodule segmentation.

(3) Integration of six SIR submodels from three views
to one model improves the performance of the
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model. The model thus constructed has faster
prediction speed and consumes lower equipment
computing power than the 3D segmentation model
of convolutional kernels.

Related work
In recent years, an increasing number of studies have de-
veloped artificial intelligence deep learning CNN tools in
the field of medical image segmentation classification
[12, 13]. In 2D CNN models, a 3D medical image is
sliced into 2D images for feature learning, and then 3D
medical image segmentation is performed on the basis
of the prediction result of the 2D CNN model [14–16].
Wang et al. captured detailed texture and nodule shape
information using a scale patch strategy as the input to
the MV-CNN and obtained segmentation results with
an average surface distance (ASD) of 0.24 [17]. Xie et al.
decomposed 3D nodules into nine fixed views to learn
the characteristics of 3D pulmonary nodules, and the
segmentation result of the model had an accuracy of
91.60% [18]. Another method treats a 3D image as a
series of 2D slices and learns the 2D slices through a
CNN model to segment the image [19]. Christ et al. seri-
ally connected two fuzzy neural network (FNN) models
as the region-of-interest (ROI) input of the second FNN,
and segmented the liver and its lesions. The results
showed that the liver and lesion segmentation of the
model had a Dice score of greater than 94% [20]. Tomita
et al. extracted the radiological features of each CT
image using a deep CCN and integrated them into an
evaluation system. The segmentation results had an ac-
curacy of 89.2% [21]. Furthermore, Ronneberger et al.
used a U-net model to achieve high-speed end-to-end
training with limited images, which provided excellent seg-
mentation results [22]. Jonathan et al. established a “com-
pletely convolved” network that accepts inputs of any size
and produces outputs of corresponding size through effect-
ive reasoning and learning [23]. In another method, 3D vol-
ume segmentation of medical images is directly performed
by inputting 3D medical images into a 3D depth learning
model to learn [24–27]. For volumetric image segmenta-
tion, Çiçek et al. introduced a 3D U-net model, which
learns from sparsely annotated volumetric images [28].
Milletari et al. proposed a 3D image segmentation method,
V-net, based on a volumetric fully convolutional neural net-
work, to achieve end-to-end training and learning, which
enable prediction of the entire volume [29].

Method
The implementation of the proposed MV-SIR model in-
volves the following procedures: (1) Extract lung nodule
cubes from the Lung Image Database Consortium
(LIDC) and Image Database Resource Initiative (IDRI)
(LIDC-IDRI) CT dataset and extract patches from the

three views by taking a voxel point in the cube as the
center. (2) Extract VH and SH features from the slices of
lung nodules. (3) Build the SIR submodel and train it
with the patches extracted from the three views. (4)
Combine the six branches of the lung nodule into the
MV-SIR model, obtain the training results, and perform
3D reconstruction on the image segmentation results.

Dataset and multi-view patch extraction
The LIDC-IDRI dataset was collected by the National
Cancer Institute to study early cancer detection in high-
risk populations. The LIDC-IDRI dataset is composed of
chest medical image files (such as CT images, X-ray films)
and corresponding diagnostic result lesions. A total of
1018 research samples were included in the dataset. For
each of the images in the sample, a two-stage diagnostic
labeling was performed by four experienced chest radiolo-
gists. In the first stage, each radiologist independently di-
agnosed and labeled the patient’s nodule location,
categorized as follows: 1) > =3mm nodules, 2) < 3mm
nodules, and 3) > =3mm non-nodules. In the second
stage, each radiologist independently reviewed the com-
ments of the remaining three radiologists and determined
that there were no errors, and then gave their own final
marking results. The results of the four radiologists are re-
corded in LIDC-IDRI. In this paper, we use the average re-
sults of the four radiologists as the marked area of the
lung nodules. Such a two-stage annotation can mark all
results as completely as possible while avoiding forced
consensus. We selected a total of 874 clearly marked lung
nodules, 600 lung nodules were used for model training
and validation, of which the validation set accounted for
10%, and 274 lung nodules were used for model testing.
All study samples were processed in the same way, so use
LIDC-IDRI-0001 as an example., which is a matrix of
133 × 512 × 512, a total of 133 slices, each of size 512 ×
512. According to the spatial resolution of the chest CT
scan, we resampled the pixel values into voxels based on
the standard size of 1.0 mm× 1.0 mm× 1.0mm, and fi-
nally obtained the voxel cube of 133 × 512 × 512mm3 to
complete the 3D reconstruction of CT images [30]. We
extracted the nodules from the entire CT image based on
the center position of the nodule and the ROI provided by
the radiologists. We prepared a lung nodule cube consist-
ing only of voxel grayscale values and added 10 voxels in
the six directions of the cube, namely, top side 、bottom
side、front side 、back side、left side、right side to bal-
ance the class between negative and positive samples. Al-
though the obtained lung nodules have different cube
sizes, the 2D patches we extracted are the same and uni-
form, which does not affect the training of our model. We
extracted multi-view patches centered on a random voxel
in the lung nodule cube from axial, coronal, and sagittal
views. Research indicates that the best slice size is 30 × 30
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[21]. Figure 1 presents the voxel points randomly selected
as the center and 30 × 30 slices extracted around them in
the axial, coronal, and sagittal views.

VH and SH extraction
As 3D image segmentation needs to be converted into 2D
image classification, we must classify the patches extracted
from the lung nodule cubes into nodules and non-nodules be-
fore the model is used for classification training. Based on the
ROI marked by the radiologist on the CT image, we obtain a
polygon with the lung nodule boundaries. To judge whether a
patch belongs to the lung nodule, we only need to distinguish
whether the randomly located patch point is inside the poly-
gon. This is determined by the ray method wherein a ray is
drawn from the center point and the number of intersections
the ray makes with the boundaries of the polygon is calcu-
lated. If the number of intersection points is odd, the point is
inside the polygon, otherwise the point is outside the polygon.
The patches that belong to the pulmonary nodules are de-
noted as 1, while those that do not belong to the pulmonary
nodules are denoted as 0. On each slice, 4000 patches are ex-
tracted, with each lung nodule obtaining a patch of 4000×m;
the total number of patches is obtained as

Patches ¼
Xn
i¼1

4000�m ið Þ; ð1Þ

where m represents the number of layers of lung nod-
ules and n is the total number of lung nodules extracted.

In this way, we can select one quarter to one half of the
pixels in the lung nodule cube, and the extracted 2D
patch can contain most of the information of the lung
nodule.
As Fig. 1 shows, the extraction of VH and SH features

is based on the voxel values of the CT images and the
ROI calibrated by the radiologists. VH is represented by
the difference in the grayscale values of the voxels and
can be directly obtained from the lung nodule cube. SH
is represented by different shapes. We convert the voxel
grayscale value image into a binary image based on the
ROI, which better reflects its shape feature.

SIR submodel
SIR submodels are composed of two residual blocks and
one secondary input block and are connected with several
fully connected layers, pooled layers, and convolution
layers. As shown in Fig. 2, the 30 × 30 image is first input
into convolutional layer C1 and pooled layer P2. Convolu-
tional layer C1 contains 32 × 3 × 3 convolution kernels,
and 30 × 30 × 32 feature maps are obtained. Then, the fea-
ture map is input into P2 with 2 × 2 kernels and a step size
of 2 × 2; 15 × 15 × 32 characteristic maps are obtained.
Next, in an identical residual block, the upper path is

the “shortcut path” and the lower path is the “main
path”. The “upper path” belongs to the shortcut of the
residual block, The “main path” is the main structure of
the model. The “main path” includes the first convolu-
tion layer with a filter size of 1 × 1, a step size of 1 × 1,

Fig. 1 Structure of the MV-SIR model and the model training process
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and padding = “valid” is no fill convolution; the second
convolution layer with a filter size of 3 × 3, a step size of
1 × 1, and padding = “same” is the same convolution; and
the third convolution layer with a filter size of 1 × 1, a
step size of 1 × 1, and padding = “valid” is no fill convo-
lution. The shortcut path is to input information by
shortcut to the module with the “Layeradd” function,
and then the ReLU activation function is applied. The
constant residual block input and output are the same,
so a 15 × 15 × 32 feature map is obtained. The residual
block protects information integrity by directly passing
the input information to the output. The entire network
only needs to learn the input and output differences,
thus simplifying the learning objectives and complexity.
This process is conducive to improve the efficiency of
CNN learning; the specific improvement principle will
be analyzed in detail in the discussion.
The secondary input is made via another path. After

the original image is passed through a few convolution
operations, it is stitched to the output of the first re-
sidual block using the concatenate function. Note that,
as shown in Fig. 2, the “Layeradd” function is different
from the “Layerconcatenate” function. The former dir-
ectly adds the value of one matrix to another matrix,
and the resulting matrix dimensions are unchanged, al-
though the values of the matrix change. The latter func-
tion changes the dimensions of a matrix by splicing one
matrix onto another, keeping the values of the matrix
unchanged. The 30 × 30 image is input into convolu-
tional layer EC1 and pooled layer EP2, and 15 × 15 × 32
secondary characteristic maps are obtained. After spli-
cing of the matrix using the “Layerconcatenate” func-
tion, we obtain a 15 × 15 × 64 feature map matrix as the
input to the subsequent layer.
Next, the image is input to pooling layer P3 and con-

volution layer C4. Because our image size is small, in
order to better preserve the integrity of the image infor-
mation, the image is input again into a constant residual
block and a pooling layer, and an 8 × 8 × 128 feature

graph matrix is obtained. Finally, the image is sequen-
tially input to two 1 × 1 × 256 fully connected layers, F7
and F8. This completes the construction of our second-
ary input residual (SIR) submodel.

MV-SIR model
As shown in Fig. 1, the MV-SIR model is composed of
six SIR submodels. The submodel inputs are VH and SH
patches from axial, coronal, and sagittal views. In each
lung nodule cube, 6 × 4000 ×m patches are input to the
MV-SIR model. We extracted 600 pulmonary nodules
for training 274 lung nodules for testing. The total num-
ber of patches is given:

All − Patches ¼
X674
i¼1

4000�6�mi; ð2Þ

A fully connected layer fuses all submodels and is
connected to the classification layer of a neuron. The ac-
tivation function of the output layer of a neuron is a
two-class problem, so we use the classical Sigmoid func-
tion, given as follows:

zð Þ ¼ 1
1þ e − z

∈ 0; 1½ �; z∈ − ∞;þ∞ð Þ; ð3Þ

where z is the output of the model. For the loss function,
binary_cross_entropy, which is a binary entropy class, is
selected. There are only two types, 0 or 1, which can
overcome the problem that the variance cost function
update weight is too slow [31]. The loss function L is
given by the following formula:

L ¼ −
1
n

Xn
i¼1

y ið Þ logŷ ið Þ þ 1 − y ið Þ
� �

log 1 − ŷ ið Þ
� �h i

;

ð4Þ

Here, y(i) is the true result of the calibration and ŷðiÞ is
the model prediction result. We use the adaptive learn-
ing rate optimization method Adam to calculate the

Fig. 2 Structure of the MV-SIR submodel, and the submodel training process
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adaptive learning rate of each parameter. Practical appli-
cation of Adam has demonstrated that it is better than
other adaptive learning methods in that it is simple to
implement, is efficient in calculation, consumes less
memory, is extremely interpretative, and usually requires
no adjustments or only minor fine-tuning as well as the
parameter update in the algorithm is not affected by gra-
dient transformation [32]. The learning rate and weight
decay are 0.0001 and 0.01, respectively, and the batch
size is 2000.
Figure 3 presents the 3D segmentation prediction by

the MV-SIR model; it shows the lung nodule cubes of
the test set, the patches prepared point by point, and the
recorded position of each voxel. The model predicts
whether a patch is within a lung nodule, and the predicted
value of each voxel is rearranged according to the position.
Subsequently, the threshold image is binarized to obtain a
mask of the segmented image; this mask is overlaid onto
the original image to complete the pulmonary nodule and
the 3D segmentation of the image. In this way, our MV-
SIR model can obtain VH and SH of medical image fea-
tures; their shallow, middle, and deep layer information;
and information of different views for comprehensive
judgment. Thus, effective improvement of image recogni-
tion and segmentation and enhancement of 3D segmenta-
tion accuracy can be realized.

Evaluation
In order to evaluate the proposed model, the results pre-
dicted by the model are compared with the ground truth
in terms of the metrics, the Dice coefficient, average sur-
face distance (ASD), and Hausdorff distance (HSD). In

addition, we measure the sensitivity (SEN) and positive
predictive value (PPV) to determine the ability of the
model to segment the ROI in the segmentation experi-
ment. These metrics are calculated by the following
formulas:

DICE ¼ 2� Vsegand Vgt
� �

Vseg þ Vgt
� � ; ð5Þ

PPV ¼ V Gt∩Segð Þ
V Segð Þ ; ð6Þ

SEN ¼ V Gt∩Segð Þ
V Gtð Þ ; ð7Þ

HSD ¼ max supxϵX inf yϵY d x; yð Þ; supyϵY inf xϵX d x; yð Þ
n o

;

ð8Þ

ASD ¼ 1
2
meaniϵGt minjϵseg d x; yð Þ þmeaniϵseg minjϵGtd x; yð Þ� �

;

ð9Þ

Here, Vgt is the calibration ground truth, Vseg is the
model segmentation result, and x and y are the coordi-
nates of the midpoint of the image, supxϵXinfyϵY is the
shortest distance from a point in a point set to another
point set, meaniϵGtminjϵseg is average of the closest dis-
tance between two points.
The software used for the implementation of the

model is the Keras-gpu 2.2.4 platform developed by
Google, and the hardware is Dell Workstation running
on Windows®10, executed on Inter(R)Xeon(R) Gold

Fig. 3 Graph of the prediction confidence matrix, where the arrow points to the predicted value of a single voxel point

Dong et al. Cancer Imaging           (2020) 20:53 Page 6 of 13



6130 CPU @2.10 GHZ (16 cores), with a 256 GB RAM,
and a NVIDIA Quadro P5000 GPU.

Result
Learning curve
After 100 epochs of training, the MV-SIR model com-
pletely converged. The accuracy of the training set
(ACC) and that of the verification set (Val_ACC)
reached 99.10 and 98.91%, respectively. The loss of the
training set (loss) and the verification set (Val_loss) de-
creased to 0.0321, and 0.0318, respectively.
Figure 4 indicates that the ACC values of the training

set and the verification set increase rapidly 30 epochs
after the training starts, then this increase rate reduces;
finally, after 100 epochs, ACC remains constant. The
same trend is observed for the loss values as well. These ob-
servations indicate that our MV-SIR model fully converges
after 100 epochs, and a high ACC is achieved. The MV-SIR
model generally takes only 2 h to complete the training
process, its best performing training steps require only 100
epochs, and the prediction process is completed within 5min;
thus, the segmentation efficiency of the model is improved.

Comparison of model structures
We analyzed the effect of different model structures on the
3D segmentation performance. For this analysis, we designed
three model structures: the traditional multi-view input
CNN (MV-CNN) model, the multi-view input residual block
CNN (MV-I-CNN) model, and our MV-SIR model. The

results indicate that with the improvement of the model
structure, the 3D segmentation performance improves.
Figure 5 presents the segmentation effect maps of the

2D slices obtained from the 3D segmentation results
from the different models. Note that in the segmented
lung nodule image predicted by the MV-CNN model, the
internal pulmonary nodules are incomplete and the exter-
nal image exceeds the lung nodule boundary, indicating
the low accuracy of the model prediction and the presence
of high false negatives and positives. The MV-I-CNN
model performs better, but there are still a certain number
of false positives. By contrast, our model achieves a satis-
factory 3D segmentation effect. Table 1 presents the com-
parison of the 3D segmentation performances of our
model and other models in terms of the metrics Dice,
ASD, HSD, PPV, ACC, and SEN. The values indicate good
performance of the MV-SIR model in terms of Dice, SEN
compared to the other two models. In particular, the Dice
value is 0.926, nearing the current high level in the 3D
medical image segmentation industry and consistent with
the result of 3D U-net medical image segmentation [28];
other parameters have a similar trend. In summary, we
can conclude that the secondary input original image and
residual block positively contribute to the improvement of
model segmentation performance.

Comparison of different inputs
Figure 5 also presents the comparison of the 3D seg-
mentation performances of the MV-SIR model with

Fig. 4 Learning curve of the MV-SIR model
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Fig. 5 Comparison of model structures and different inputs. Columns from left to right are the original CT image, radiologist marker image, MV-
SIR result, and 2D segmentation effect map. The top to bottom rows sequentially present the results of the MV-CNN, MV-I-CNN, the MV-SIR with
VH input, the MV-SIR with SH input, the MV-SIR with combined VH and SH input, and secondary input MV-SIR. The 2D segmentation map can
intuitively show that our model has achieved the best segmentation effect

Table 1 Comparison of the 3D segmentation performances of different model structures

Models ASD HSD Dice PPV SEN

MV-CNN 0.20 ± 0.030 2.78 ± 0.52 0.86 ± 0.18 0.939 ± 0.026 0.921 ± 0.095

MV-I-CNN 0.18 ± 0.07 4.80 ± 1.61 0.87 ± 0.03 0.917 ± 0.005 0.9620 ± 0.001

MV-SIR 0.072 ± 0.033 1.293 ± 0.533 0.926 ± 0.035 0.936 ± 0.022 0.981 ± 0.113
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different inputs, that is, VH features alone, SH features
alone, VH and SH combined, and VH and SH combined
along with the secondary input. It is noted that VH and
SH together as input effectively improve the perform-
ance of medical image segmentation. Nevertheless, our
secondary input model performs the best, indicating that
the secondary input can significantly improve the 3D
segmentation effect of the model.
In general, when the VH or SH features alone are input

in the MV-SIR model, the image segmentation effect map
in the 2D slice from the 3D segmentation result is incom-
plete, and the non-pulmonary nodules are identified as
lung nodules. However, with VH and SH together as the
input to the MV-SIR model, the apparent segmentation
effect is considerably improved, with decreased false nega-
tives and false positives of the predicted results. Moreover,
the segmentation performance is the best in case of VH
and SH together as the input along with the secondary in-
put to the MV-SIR model.
Table 2 indicates that using VH or SH features alone

as the MV-SIR model input results in the main disad-
vantage that more false positives appear in the predic-
tion results. From Table 2, we can draw the following
conclusions in terms of the Dice, ASD, HSD, PPV, and
SEN indicators: the MV-SIR model performs the best in
3D segmentation, and the results of comparing different
inputs prove that the secondary input can improve the
accuracy of the model 3D segmentation.

Receiver operating characteristic curve (ROC) and model
performance
To further confirm the effectiveness of our MV-SIR
model in improving the 3D segmentation performance,
we draw ROC curves for models with different inputs
and different structures. In Section 3.4, we mentioned
that in the process of model prediction and 3D recon-
struction of segmentation, we need to choose an optimal
threshold for binarization of reconstructed images. The
ROC curve is a powerful tool to study the generalization
performance of deep learning from the perspective of
threshold selection. The value of the point closest to the
upper left corner is the optimal threshold. The ROC
curves for each model are plotted to the same coordi-
nates to visually identify the pros and cons of the model.
The model represented by the ROC curve near the
upper left corner has the highest accuracy.

Figures 6 and 7 present seven ROC curves drawn in
two graphs, where the positive error ratio is the abscissa
and the correct discipline is the ordinate. The figure in-
dicates that the MV-SIR model performs better in 3D
image segmentation than MV-CNN and MV-I-CNN.
The optimal threshold of the MV-SIR model is less than
those of the other two models. The result shows that the
prediction results obtained by the MV-SIR model are
relatively high. Figure 6 confirms the same conclusion
that the MV-SIR model performs the best in medical
image segmentation when considering the four different
input models. In addition, the confidence of the predic-
tion results obtained by the model is the highest.
Table 3 presents the results of the comparison of our

model with other models. Our model achieves better
performance in terms of Dice, SEN, PPV, HSD, and
ASD. The Dice value of our model is comparable to that
of the classic 3D U-net model, while other parameter
values somewhat exceed the values of the U-net model.
Figure 8 presents the results of 3D reconstruction of

the original CT image, the GT map of the expert calibra-
tion, and the prediction map of our model. The 3D seg-
mentation predicted by our model is very close to the
GT map of the expert calibration, which intuitively im-
plies that our model has achieved superior results in 3D
segmentation of pulmonary nodules.
We use the QIN LUNG CT public data set to test our

model. The computed tomography (CT) image data of
this data set comes from patients diagnosed with non-
small cell lung cancer (NSCLC). We are very pleased to
see that our model has an average DICE of 0.920 ± 0.027
in 47 cases on this dataset. It shows that our model has
good segmentation results for different data sets in the
segmentation of lung nodules.

Discussion
3D medical image segmentation has always been a chal-
lenging task. Our goal is to improve the accuracy and
confidence of 3D medical image segmentation to assist
physicians in clinical diagnosis and treatment. In this
study, we proposed the MV-SIR model to improve the
performance of medical image 3D segmentation.
By presenting the MV-SIR with color scale patches ex-

tracted around a particular pixel, the CNN can simply be
used to classify each pixel in the image [4]. We extracted
the characteristic patches from three perspectives, namely,

Table 2 Comparison of the 3D segmentation performances of the model with different inputs

Models ASD HSD Dice PPV SEN

VH 0.624 ± 0.242 7.79 ± 3.23 0.713 ± 0.196 0.914 ± 0.036 0.807 ± 0.106

SH 0.652 ± 0.043 4.632 ± 0.899 0.837 ± 0.034 0.953 ± 0.097 0.965 ± 0.028

VH + SH 0.422 ± 0.104 5.086 ± 1.968 0.889 ± 0.049 0.955 ± 0.005 0.972 ± 0.005

MV-SIR 0.072 ± 0.033 1.293 ± 0.533 0.926 ± 0.035 0.936 ± 0.022 0.981 ± 0.113
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axial, coronal, and sagittal views, in the lung nodule cube.
Multi-view patches help improve image quality and anat-
omy and extend the field of view [36].
For each patch, we further extracted VH and SH fea-

tures. As shown in Fig. 1 VH can predominantly learn

grayscale value information, whereas SH can predomin-
antly learn boundary information when they are used
separately as the input to the model. By combining them
as the input to the model, the model learns greater patch
information and thus gains more sense of vision. To

Fig. 6 ROC curves of MV-CNN, MV-I-CNN, and MV-SIR

Fig. 7 ROC curves of MV-SIR with different inputs, namely, VH, SH, VH and SH together, and the secondary input MV-SIR
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validate this concept, we compared the performance of the
MV-SIR model under different inputs, namely VH, SH, and
VH and SH together. We found that VH and SH together as
the input to the model yields greatly improved Dice, HSD,
SEN, and other parameter values. In addition, the ROC
curve clearly indicates the superior 3D segmentation result
obtained by the model with the combined VH and SH input.
We believe that multi-view and VH and SH feature

maps together as the input yield improved 3D segmenta-
tion performance of the model mainly because the
model can extract more information of the image, fields
of view, and boundaries as well as pixel values, produ-
cing excellent mutual effect. This conclusion is consist-
ent with the previous studies [37–39].
The difference in the layers of the network implies

that different features of different levels can be ex-
tracted [40, 41]. The more layers of the network, the

deeper feature information extracted from the image.
In the proposed model, we include a residual block to
the traditional CNN; we skip the three-layer convolu-
tion by connecting the input information of P2 and
calculate the output of the residual block F(x) + x.
This process results in the two matrices being added,
with the dimensions of the matrix unchanged. This
implies that we add the feature information of the
first two layers directly to the subsequent output, and
the value of the matrix changes. Characteristic infor-
mation of different levels can be extracted to a cer-
tain extent. We add another residual block to the
network and input the image the second time, but in
another path. Then, after only one convolution and
pooling, the obtained feature matrix is spliced to the
fast residual output. Note that we use a matrix spli-
cing function, where the values in the matrix remain

Table 3 Comparison of the 3D segmentation performances of our model and other models

Models ASD HSD Dice PPV SEN

Shahzad R [33] 1.553 ± 0.376 9.408 ± 3.059 0.885 ± 0.028 0.907 ± 0.052 0.867 ± 0.046

Tziritas G [34] 2.157 ± 0.503 19.723 ± 4.078 0.867 ± 0.047 0.861 ± 0.062 0.889 ± 0.108

U-net [28] 0.940 ± 0.193 8.628 ± 3.390 0.926 ± 0.016 0.940 ± 0.028 0.916 ± 0.048

Roth HR [17] 0.240 ± 0.330 15.086 ± 1.968 0.776 ± 0.157 0.775 ± 0.158 0.837 ± 0.207

Zeng G [35] 1.050 ± 0.360 11.730 ± 6.620 0.905 ± 0.028 0.912 ± 0.168 0.897 ± 0.106

MV-SIR 0.072 ± 0.033 1.293 ± 0.533 0.926 ± 0.035 0.936 ± 0.022 0.981 ± 0.113

Fig. 8 MV-SIR model 3D segmentation result. Top left: the lung nodule original image; top right: ground truth (GT) map of expert calibration; and
bottom: the MV-SIR prediction map
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unchanged, while the size of the matrix becomes
twice as large.
Different characteristics of different network layers can

be obtained at the final fully connected layer. The shal-
low information and the deep information are used to-
gether as the basis for judgment in our 3D image
segmentation, thus improving the performance of 3D
segmentation by our model.
Further, we designed three network structure models:

MV-CNN, MV-I-CNN, and MV-SIR. The results of seg-
mentation indicators such as Dice, HSD, SEN, and seg-
mentation rendering all indicate that the segmentation
effect of the proposed model is superior, in turn, con-
firming the validity of our concepts based on which the
model has been designed. Moreover, the ROC curves
obtained from our model and the previous models as
well as our model with different inputs confirm that the
MV-SIR model achieves superior performance in 3D
medical image segmentation. In future work, we hope to
design a network model with multiple iterations to fur-
ther validate our concepts.
One challenge is how to apply our model to real-world CT

images. we hope to expand the cube containing lung nodules
to a whole 3D volume. In the training process, a larger
amount of calculation is required to complete the automatic
3D segmentation of the whole 3D volume. Another feasible
solution is that the doctor calibrates the position of the lung
nodule cube to assist our model in 3D segmentation.

Conclusion
In this study, we provide a well-structured deep learning
model MV-SIR for 3D segmentation of pulmonary nod-
ules. Our model consists of six SIR submodels, each of
which adds two fast residual blocks and one secondary in-
put module to the traditional CNN. From the LIDC-IDRI
dataset, 19 million patches were extracted from 600 lung
nodules used for model training and 274 lung nodules
used for model testing. The test results indicate that the
MV-SIR model achieved excellent performance in 3D pul-
monary nodule segmentation, with a Dice of 0.926 and an
ASD of 0.072. In future work, we plan to include more re-
peated inputs in the model, and test the segmentation per-
formance of the MV-SIR model on different datasets.
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