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Abstract

Purpose: To develop a radiomics nomogram based on computed tomography (CT) images that can help
differentiate lung adenocarcinomas and granulomatous lesions appearing as sub-centimeter solid nodules (SCSNs).

Materials and methods: The records of 214 consecutive patients with SCSNs that were surgically resected and
histologically confirmed as lung adenocarcinomas (n = 112) and granulomatous lesions (n = 102) from 2 medical
institutions between October 2011 and June 2019 were retrospectively analyzed. Patients from center 1 ware
enrolled as training cohort (n = 150) and patients from center 2 were included as external validation cohort (n = 64),
respectively. Radiomics features were extracted from non-contrast chest CT images preoperatively. The least
absolute shrinkage and selection operator (LASSO) regression model was used for radiomics feature extraction and
radiomics signature construction. Clinical characteristics, subjective CT findings, and radiomics signature were used
to develop a predictive radiomics nomogram. The performance was examined by assessment of the area under the
receiver operating characteristic curve (AUQ).

Results: Lung adenocarcinoma was significantly associated with an irregular margin and lobulated shape in the
training set (p =0.001, < 0.001) and external validation set (p =0.016, = 0.018), respectively. The radiomics signature
consisting of 22 features was significantly associated with lung adenocarcinomas of SCSNs (p < 0.001). The
radiomics nomogram incorporated the radiomics signature, gender and lobulated shape. The AUCs of combined
model in the training and external validation dataset were 0.885 (95% confidence interval [Cl]: 0.823-0.931), 0.808
(95% Cl: 0.690-0.896), respectively. Decision curve analysis (DCA) demonstrated that the radiomics nomogram was
clinically useful.
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Conclusion: A radiomics signature based on non-enhanced CT has the potential to differentiate between lung
adenocarcinomas and granulomatous lesions. The radiomics nomogram incorporating the radiomics signature and
subjective findings may facilitate the individualized, preoperative treatment in patients with SCSNs.

Keywords: Computed tomography, Lung adenocarcinoma, Solitary pulmonary nodule, Sub-centimeter

Background

Computed tomography (CT) can demonstrate small lung
nodules that are invisible on chest radiographs. Lung
nodules are classified into 3 subtypes as non-solid, part-
solid and solid according to their attenuation on CT im-
ages [1]. Most lung sub-centimeter solid nodules
(SCSNs) are benign, and approximately 80% are granu-
lomas [2]. On the other hand, lung adenocarcinoma is
the most common histological type of peripheral lung
cancer, and its incidence has been increasing in recent
years [3].

Once identified, pulmonary SCSNs must be evaluated
to determine the likelihood of malignancy, and to deter-
mine management recommendations. The lung imaging
reporting and data system (Lung-RADS) is a risk-
stratifying classification system for the results of low-
dose chest CT performed for lung cancer screening, and
the standard recommendation has been to closely
follow-up SCSNs at frequent intervals (3 to 12 months)
based on nodule size and growth pattern [4]. However,
this recommendation increases health care costs, results
in substantial radiation exposure, and imposes psycho-
logical stress upon individuals [5]. As such, different im-
aging methods have been studied to distinguish
malignant from benign SCSNs in order to facilitate earl-
ier diagnosis and treatment [6—8]. Studies have indicated
that SCSNs with a larger size, lobulated or spiculated
morphology, and irregular margin were more likely to
be malignant [6, 8]. However, inter-reader variability
with respect to manual nodule size measurement and
visual assessment of radiologic features has been re-
ported, which could lead to misdiagnoses [9, 10]. Mean-
while, SCSNs remains a diagnostic challenge in '°F-
labeled fluoro-2-deoxyglucose positron emission tomog-
raphy ("*F-EDG PET/CT) because they are beyond the
resolution of PET/CT [11, 12]. Several studies have re-
ported a relatively lower diagnostic accuracy for smaller
lesions in CT-guided percutaneous fine-needle aspir-
ation biopsy (FNAB), ranging from 52 to 88% [13, 14].

Radiomics is the process of converting medical im-
aging data to quantitative, mineable features through ad-
vanced computational methodologies, which can be used
to develop decision systems to accurately estimate pa-
tient risk and improve individualize treatment [15, 16].
Studies have shown that radiomics features extracted
from chest CT images can be used for predicting lung

nodule malignancy [17], differentiating histological sub-
type [18], determining gene expression [19], and evaluat-
ing post-treatment prognosis [20]. A few investigators
have attempted to distinguish granulomas from malig-
nancies using quantitative radiomics, or computerized
feature-based analysis [21-23]. However, these studies
were limited by small sample size, incomplete normal-
ized enrollment criteria, and the results were not vali-
dated based on multicenter data sets.

Thus, the purpose of this study was to determine if
radiomics nomogram based on non-enhanced chest CT
images can distinguish primary lung adenocarcinomas
from granulomatous lesions in patients with peripheral
SCSNs. Furthermore, we collected datasets from 2 inde-
pendent hospitals, and all methods were independently
evaluated in external dataset.

Methods

Patient selection

This retrospective study was approved by the Ethical Re-
view Boards of the 2 participating hospitals. Because of
the retrospective nature of the study, the requirement of
patient informed consent was waived. We retrospectively
reviewed the medical records of all patients who had
undergone surgical resection for lung adenocarcinomas
and granulomatous lesions that were identified as per-
ipheral SCSNs on chest CT images between October
2011 and June 2019. Criteria for inclusion in the analysis
were: 1) Histopathologically confirmed primary lung
adenocarcinomas or granulomatous lesions of the surgi-
cal resection tissue specimens; 2) Solitary solid periph-
eral lung nodule < 10 mm in diameter; 3) Preoperative
chest CT images with a thin slice thickness (< 1.5 mm);
4) Interval between preoperative chest CT scan and sur-
gery less than 2 weeks. Exclusion criteria were: 1) Soli-
tary sub-solid nodules (non-solid and part-solid); 2)
Obvious calcifications or satellite opacities in the lung
nodule; 3) Pathologic diagnosis by examination of a bi-
opsy tissue specimen, or bronchoscopy; 4) Chest CT im-
ages with artifacts and/or not of sufficient quality for
diagnosis; 5) Patients with a previous medical history of
a malignant tumor.

A total of 150 consecutive patients (83 males and 67
females; mean age, 55.45 + 12.26 years; age range, 20—81
years) from Center 1 were enrolled as training dataset,
with 77 lung adenocarcinomas and 73 granulomatous
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lesions. The independent external validation dataset con-
sisted of 64 consecutive patients from Center 2 (31
males and 33 females; mean age, 56.09 + 11.36 years; age
range, 29-78 years), with 35 lung adenocarcinomas and
29 granulomatous lesions. An overview of the study
methodology is illustrated in Fig. 1.

Chest CT scan technique

All chest CT examinations were included the entire
thorax, and were performed with supine position. Single
scans were obtained during deep inspiration and breath-
hold. CT scans were performed with Somatom Sensation
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16-detector and Dual-energy Force (Siemens Medical
System, Forchheim, Germany), Toshiba Aquilion 64-
slice CT scanner (Toshiba Medical Systems, Japan), or
GE Discovery CT750 64-detector CT scanner (GE Med-
ical Healthcare, Milwaukee, Wisconsin). Scanning pa-
rameters were: 120 kVp; 40-80 mAs with auto exposure
control; pitch 0.875-1.5; detector collimation 0.625-2.5
mm; field of view (FOV) 360 mm X 360 mm. Lung im-
ages were reconstructed with the use of a high-spatial-
frequency algorithm, and mediastinal images with the
use of an intermediate-spatial-frequency algorithm. Con-
tiguous images were reconstructed with a 0.625-1.5 mm
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slice thickness for axial sections, and a 3.0 mm slice
thickness for coronal and sagittal sections.

Chest CT image evaluation

CT images were reviewed using a picture archiving and com-
munication system (PACS). The images were read using a
lung window of — 550 Hounsfield units (HU) and width of
1500 HU, and a mediastinal window of 35 HU and a width
of 250 HU. Two experienced radiologists with subspecialty
training in thoracic radiology (reader 1 with more than 15
years’ experience, and reader 2 with 25years’ experience)
who were unware of the final pathological diagnosis and clin-
ical data reviewed the CT scan images of each nodule inde-
pendently. Nodule characteristics recorded included: 1)
Location; 2) Size; (3) Margin (regular, irregular); (4) Lobu-
lated shape (absent, present); 5) Spiculated sign (absent,
present). Nodule size was determined by the average of the
maximum longest diameter and perpendicular short diam-
eter on the axial CT images on which the nodule was the lar-
gest. A regular margin was defined as sharply demarcated,
with a round or oval smooth shape. Lobulated shape was de-
fined as a part of the nodule surface (except the portions in
contact with the pleura) exhibiting a concave or straightened
configuration. Spiculated sign was defined as the presence of
2-mm or thicker strands extending from the nodule margin
into the lung parenchyma, without reaching the pleural sur-
face [1, 5, 7]. Discrepancies in interpretation between the ob-
servers were resolved by consensus.

Gender, age and subjective CT features were com-
pared between groups with the Wilcoxon Rank Sum test
or Pearson chi-squared test, as appropriate. Univariate
and multivariate logistic regression analyses were con-
ducted. Clinical factors (including gender and age) and
subjective CT features which were significantly different
between groups on univariate analysis were selected and
examined by multivariate logistic regression to develop
the predictive subjective findings model.

Histopathological analysis

Histopathological examinations of the surgical speci-
mens were performed by 2 pathologists with subspe-
cialty training in chest pathological diagnosis (one with
more than 10 years’ experience, and the other with 15
years” experience) who were blinded to the chest CT re-
ports and clinical information. Resected lesions were
classified according to the 2011 International Associ-
ation for the Study of Lung Cancer/American Thoracic
Society/ European Respiratory Society classification sys-
tem, and the 2015 World Health Organization (WHO)
classification of lung neoplasms [4, 24].

Nodule segmentation and radiomics feature extraction
A U-net-based deep learning model was used for volume
of interest (VOI) segmentation, and was primarily
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implemented with Python 2.7 [25]. When inputting the
whole slice tumor image into the U-net based deep
learning model, the boundaries of the lesions were auto-
matically determined without any pre- or post-
processing (Supplementary A0). The whole tumor vol-
ume was then reconstructed on multiple 2-dimensional
(2D) image slices by interpolation [26]. During the re-
construction of the whole volume lesions, wavelet band-
pass filtering, isotropic resampling, and grayscale
discretization were performed to obtain heterogeneity
parameters of different characteristics, and thus improve
the robustness and reproducibility of the extracted het-
erogeneity parameters [27-29].

Radiomics features were divided into 3 categories: 1)
First order features; 2) Intensity and shape-based fea-
tures; 3) Texture-based features. In total, there were 10,
329 radiomics features. Inter-correlation coefficients
(ICCs) were used to assess the reproducibility of the
radiomics features. To assess for segmentation variabil-
ity, one radiologist (Reader 1) randomly selected 30 pul-
monary nodules from the training group. Then, 2 in-
house segmentation methods derived from a fuzzy speed
function-based active counter model (method 2 for 30
lesions) and the U-net-based deep learning model
(method 1 for all lesions) were used to obtain VOI 1 and
VOI 2 [30, 31]. Then, the radiomics features of the same
nodule were extracted from VOI 1 and VOI 2, respect-
ively. The Mann-Whitney U test was used to evaluate
each radiomics feature for differentiation of lung adeno-
carcinomas from granulomatous lesions. The radiomics
features with ICC values > 0.75 and significantly different
between the lung adenocarcinoma and granulomatous
lesion groups were then used in subsequent analyses.

Radiomics feature selection and radiomics signature
model construction

The radiomics features selection and radiomics signature
building process were performed in the following 3
steps: 1) radiomics features reproducibility assessment
and differences evaluation; 2) reservation of top-ranking
features; 3) radiomics signature building with 3 methods.
Firstly, radiomics features with ICC values >0.75 and
statistically significant different (p <0.05 in the Mann-
Whitney U test) between the lung adenocarcinomas and
granulomatous lesions, which were related to lesion het-
erogeneity, were extracted and standardized by Z-score
[32]. Secondly, in the training set, radiomics features
were ranked using the minimum redundancy maximum
relevance (mRMR) algorithm by maximizing the correl-
ation between radiomics features and SCSNs status, and
minimizing the redundancy between radiomics features.
In this study, by removing the redundant features, the
first 25% highest-ranking features in mRMR were re-
served [33]. Thirdly, for radiomics signature building,
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the least absolute shrinkage and selection operator
(LASSO), k-nearest neighbor (KNN) and support vector
machine (SVM) were used in the training dataset with 1
x 10-fold nested cross-validation. Respectively. Three
radiomics signature models were constructed based on
these classifiers, and the model performance was com-
pared through receiver operating characteristic (ROC)
curve analysis. Then, the radiomics signature value
(Rad-score) of each lesion was calculated using the best
radiomics signature model, and the differences of the
radiomics features between the lung adenocarcinomas
and granulomatous lesion were evaluated using the
Mann-Whitney U test.

Radiomics nomogram construction

A multivariate logistic regression model was constructed
using the training set to identify independent factors (in-
cluding clinical factors, subjective CT features, and
radiomics signatures) for differentiating lung adenocar-
cinomas from granulomatous lesions. A radiomics
nomogram was then constructed on the basis of the
multivariate logistic regression.

Performance of the radiomics nomogram in the training
and external validation datasets

Nomogram calibration was measured with a calibration
curve, and the Hosmer-Lemeshow test was performed to
assess the goodness-of-fit of the radiomics nomogram.
ROC analysis was performed to evaluate the perform-
ance of the radiomics nomogram in the training set and
external validation set. The area under the ROC curve
(AUC), sensitivity, specificity, accuracy, positive predict-
ive value (PPV), and negative predictive value (NPV)
were calculated, respectively. The DeLong test was used
to evaluate difference of the ROC curves between vari-
ous models.

Clinical value of the radiomics nomogram

To estimate the clinical utility of the nomogram, deci-
sion curve analysis (DCA) was performed using all data-
sets by calculating the net benefits for a range of
threshold probabilities [34].

Statistical analysis

All statistical analyses were performed using R3.0.1
(http://www.rproject.org) and MATLAB software.
LASSO was done through the “glmnet” package, ROC
analysis and DeLong test were done via “pROC”. The
nomogram was completed by “rms”, and DCA was com-
pleted by “dca.r.” Multivariable logistic regression was
performed with a stepwise backward selection of vari-
ables. All AUCs were presented with bootstrap bias-
corrected 95% confidence intervals (Cls). All statistical
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tests were 2-tailed, and values of p <0.05 were consid-
ered statistically significant.

Results

Clinical characteristics and subjective CT findings of
SCSNs

Patient demographic and CT characteristics of the train-
ing and validation datasets are presented in Table 1. A
total of 214 surgically treated patients (114 males and
100 females; mean age:55.46 + 12.20 years; age range,
20-81 years) were consecutively enrolled from 2 hospi-
tals. In the lung adenocarcinomas group, 76 nodules
were in the upper and middle lobes and 36 were in the
lower lobes. In the granulomatous lesions group, 64
nodules were in the upper and middle lobes, and 38
nodules were in the lower lobes. In the training set,
there were no differences in the nodule location, size,
and spiculated sign between the lung adenocarcinoma
and granulomatous lesion groups (p=0.957, 0.357,
0.078, respectively). However, there were significant dif-
ferences in gender, age, nodule margins and lobulated
shape between the 2 groups (p =0.012, 0.006, 0.001, <
0.001, respectively) (Table 1). Multivariate analyses re-
vealed gender, age and lobulated shape were independ-
ent factors associated with lung adenocarcinomas (odds
ratio (OR) = 0.296, 1.043, 4.687, respectively). The AUCs
in the training set and external validation set were 0.762
(95% CI: 0.686-0.828) and 0.619 (95% CI: 0.489-0.738),
respectively (Table 3).

Radiomics feature selection and radiomics signature
model construction

There were 2969 radiomics features with ICC values >
0.75 and that were significantly different between the
lung adenocarcinoma and granulomatous lesion groups.
Of these, 742 features were selected by the minimum-
redundancy maximum-relevance algorithm. The AUCs
in the training set of the primary radiomics signature
models based on the SVM, KNM, and LASSO classifiers
were 0.755 (95% CI: 0.678-0.821), 0.777 (95% CI: 0.702—
0.841), and 0.834 (95% CIL: 0.764—0.889), respectively.
Based on these results, the LASSO method was selected
for further radiomics features analysis.

22 radiomics features with non-zero weighted coeffi-
cient were saved, and used for building the final radio-
mics signature model (Supplementary Table S1, Fig. 2).
The AUC for radiomics signature model in the training
set was 0.834 (95% CI: 0.764—0.889), and in the external
validation set was 0.798 (95% CI: 0.679—0.888).

In the training dataset, the Rad-score of SCSNs in the
lung adenocarcinoma group was significantly higher
than in the granulomatous lesion group (0.62 +0.17 vs.
0.40 £ 0.15; p <0.001). The similar finding was shown in
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Table 1 Clinical characteristics and subjective CT findings of lung adenocarcinomas and granulomatous lesions in in patients with

SCSNs
Training set (n = 150) External validation set(n = 64)
Lung Adenocarcinomas (77) ~ Granulomatous Lesions (73) P Value  Lung Adenocarcinomas (35)  Granulomatous Lesions (29) P Value
Gender
Male 35 48 0.012* 17 14 0.981
Female 42 25 18 15
Age (mean +SD, years) 5844+ 10.97 52.29+12.82 0.006* 56.60 +9.52 5548+ 1341 0.599
Size (mean+SD, mm) 849+ 143 841£135 0357 878%1.75 820+271 0.608
Location
Upper and Middle 52 49 0957 24 15 0.169
Lower 25 24 1 14
Margin
Irregular 56 34 0.001* 26 13 0.016*
Regular 21 39 9 16
Lobulated sharp
Absence 30 52 <0001* 15 21 0.018*
Presence 47 21 20 8

Spiculated sign

Absence 59 64 0.078 29 26 0676
Presence 18 9 6 3
Rad-score (mean+SD)  062+0.17 040+0.15 <0.001* 0.58+0.19 037+0.16 <0.001*

Note. The differences were assessed by Wilcoxom Rank Sum test or Pearson 2 test, as appropriate. SD: standard deviation. *p < 0.05. SCSNs: sub-centimeter
solid nodules
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the external validation dataset (0.58 +0.19 vs. 0.37 +
0.16; p <0.001) (Table 1, Fig. 3).

We then further investigated the relationships between
radiomics features and lung adenocarcinoma group.
Three core radiomics features as GLV (gray-level vari-
ance)-GLRLM (gray level run length matrix) -0.5-1-
Lloyd-32 (OR =1.993; 95% CI: 1.313-3.023), Entropy-
GLCM (gray-level co-occurrence matrix)-2—0.8-Lloyd-
64 (OR=0.527; 95% CI: 0.344—0.805) and RLV (run-
length variance)-GLRLM-2-2-Equal-64 (OR = 0.585; 95%
CIL: 0.397-0.860) were selected by multivariable logistic
regression (Fig. 4).

Construction and validation of the radiomics nomogram
According to the multivariate analysis, gender (OR =
0.255; 95% CI: 0.101-0.643), lobulated shape (OR =
6.029; 95% CI: 2.392-15.198) and radiomics signature
(OR =8.090; 95% CI: 3.772—17.354) were statistically sig-
nificant independent differentiators of lung adenocarcin-
omas and granulomatous lesions, and they were used to
develop the combined radiomics nomogram (Table 2).
Using the calibration curve, a marked connection be-
tween the predicted and actual data in the training set
was confirmed (Fig. 5). The Hosmer-Lemeshow test
yielded a non-significant statistical difference (p = 0.230).

When subjective CT findings and the radiomics signa-
ture were combined, the AUC was increased to 0.885
(95% CI: 0.823-0.931), which was superior to the model
generated with subjective findings alone in which the
AUC =0.762 (95% CI: 0.686—0.828), and the model cre-
ated with the radiomics signature alone in which the
AUC =0.834 (95% CI: 0.764—0.889) (Table 3).

With regard to validation, the radiomics nomogram
exhibited the best discrimination ability in the external
validation set (AUC =0.808 (95% CI: 0.690-0.896); ac-
curacy = 0.766; sensitivity = 0.714; specificity = 0.828) (Table
3, Fig. 6). Significant differences between the subjective
findings model and radiomics nomogram with respect to
AUCs were found in the training set (Delong test:
p < 0.001) and external validation set (Delong test: p =
0.004), respectively. The NRI (net reclassification index) in-
dicated that the radiomics nomogram had significantly
better predictive performance than the subjective findings
model in both the training set (NRI=0.804 (95% CI:
0.512-1.096); p < 0.001) and external validation set (NRI =
0.981 (95% CI: 0.575-1.388); p < 0.001). As shown in Sup-
plementary Al and Figure S1, the stratified analysis
showed that the performance of radiomic nomogram was
not affected by gender, age, CT scan system, or CT image
thickness (Delong tests: p > 0.05).

Decision curve analysis

The DCA for the radiomics nomogram was presented in
Fig. 7. The decision curve showed that the radiomics
nomogram added more net benefit than the subjective
findings model in differentiating lung adenocarcinomas
from granulomatous lesions within the range of the
threshold probability of 0.13 to 0.98.

Discussion

In the present study, a diagnostic radiomics nomogram
incorporating a radiomics signature and clinical subject-
ive characteristics was developed and validated for differ-
entiating lung adenocarcinomas and granulomatous
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lesions in patients with SCSNs. DCA showed that the
radiomics nomogram was clinically useful.

This study addresses a very important and significant
diagnostic problem that differentiate benign from malig-
nant lesions in lung SCSNs. In the lung cancer high-risk
population it may not be suitable to wait 3 to 12 months
to confirm whether a solid nodule is malignant or be-
nign. This is especially true when the solid nodule has a
higher probability of being an invasive adenocarcinoma,
which is very different from sub-solid nodules which are
slow-growing, have an indolent pathobiological behavior,

Table 2 The parameters of the radiomics nomogram for lung
adenocarcinomas and granulomatous lesions in patients with
SCSNs of the training set

Intercept and Variable B Odds ratio (95% Cl) P value
Intercept -0.115 0.744
Gender -1.365 0.255 (0.101-0.643) 0.004*
Lobulated sharp 1.797 6.029 (2.392-15.198) <0.001*
Radiomics signature 2.091 8.090 (3.772-17.354) <0.001*

Note. B: the regression coefficient. CI Confidence interval. *p value < 0.05
SCSNs Sub-centimeter solid nodules

and can be followed regularly. In addition, the differen-
tial diagnosis of solitary solid pulmonary nodules has
proven to be more difficult than that of sub-solid nod-
ules. Studies of patients who have received surgical re-
sections have shown that more than 90% of sub-solid
nodules can be malignant [35], while the malignancy
rate of solid nodules ranges from 53 to 75% [36, 37].
This highlights the necessity of differentiating the nature
of solid pulmonary nodules in an accurate and timely
manner. Furthermore, SCSNs are not reliably character-
ized by PET/CT scanning, and biopsy is difficult to per-
form [12, 14]. Although an aggressive approach to
resection will identify and treat more early-stage lung
cancers, it can also subject patients with granulomatous
lesions to the inherent risk of invasive surgery. On the
other hand, a conservative approach of watchful waiting
may result in the interval progression of otherwise cur-
able malignancies.

Distinguishing small malignant nodules from the major-
ity of benign nodules on chest CT images is particularly
challenging because their morphologic characteristics are
difficult to discern with visual inspection. The morphology
of small nodules is less distinct, and management should
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Fig. 5 a) A radiomics nomogram incorporating clinical features and a radiomics signature was developed in the training dataset. Calibration
curves of the radiomics nomogram being used in the training dataset (b) and external validation dataset (c). The y-axis represented the actual
lung adenocarcinoma rate, and the x-axis represented the predicted lung adenocarcinoma possibility. The diagonal dashed line indicated the
ideal prediction by a perfect model

Table 3 Predictive performance of subjective findings, radiomics signature and radiomics nomogram models for differentiating lung
adenocarcinomas and granulomatous lesions in patients with SCSNs

Training set (n = 150) External validation set (n = 64)

Subjective findings Radiomics Radiomics Subjective findings Radiomics Radiomics

model signature nomogram model signature nomogram
AUC (95% Cl) 0.762 (0.686-0.828) 0.834 (0.764-0.889) 0.885 (0.823-0.931)  0.619 (0.489-0.738) 0.798 (0.679-0.888) 0.808 (0.690-0.896)
Sensitivity 0.831 (64/77) 0.766 (59/77) 0.727 (56/77) 0.657 (23/35) 4 (25/35) 0.714 (25/35)
Specificity 0.603 (44/73) 0.781 (57/73) 0.904 (66/73) 0.621 (18/29) 0.828 (24/29) 0.828 (24/29)
Accuracy 0.720 (108/150) 0.773 (116/150) 0.813 (122/150) 0641 (41/64) 0.766 (49/64) 0.766 (49/64)
PPV 0.688 (64/93) 0.787 (59/75) 0.889 (56/63) 0.676 (23/34) 0.833 (25/30) 0.833 (25/30)
NPV 0.772 (44/57) 0.760 (57/75) 0.759 (66/87) 0.600 (18/30) 0.706 (24/34) 0.706 (24/34)

Note. C/ Confidence interval; AUC Area under curve; NPV Negative predictive value; PPV Positive predictive value. Numbers in the parentheses were used to
calculate percentages. SCSNs Sub-centimeter solid nodules
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be strongly influenced by the appearance of the nodule ra-  SCSN location is consistent with the natural history of
ther than by size alone. Radiologists typically risk stratify  lung cancer, as primary malignant nodules are commonly
non-calcified pulmonary nodules by interpreting nodule located in the upper lobes [40]. However, granulomatous
characteristics such as location, attenuation, diameter, vol-  lesions also common in the upper lobes, especially in the
ume, and margins [38, 39]. Our findings showed that background of the high tuberculosis incidence in Asia

g_ . — None
N All
oo - - - Subjective findings model
< SN - == Radiomics signature
o N 8g . .
s --- Radiomics nomogram
\\_::\E\
= M ' “‘~
MG_J o_ \~\ “'s*v”\~ -
< el Sl -
8 \\ - \\~ ~\
-— N_ \\ “ ‘. (A)
[} o Al .o v Ny ’.a\
zZ b \‘ 4 \
\/\ Soe \‘I
— \‘ \pq'l ANERY
o] ‘\\ . \\‘:\
o “ \ I\ \\
d— \,\l
I T T T I I
0.0 0.2 0.4 0.6 0.8 1.0
Threshold probability
Fig. 7 Decision curve analysis of the prediction models. The y-axis represented the net benefit. The dotted red line represented the radiomics
nomogram model. The dotted green line represents the subjective findings model. The dotted black line represented the radiomics signature
model. The solid gray line represented the assumption that all patients had lung adenocarcinomas. The solid black line represented the
hypothesis that all patients had granulomatous lesions. The x-axis represented the threshold probability. The threshold probability was where the
expected benefit of treatment was equal to the expected benefit of no treatment. The decision curve showed that the radiomics nomogram
added more net benefit than the subjective findings model within the range of 0.13 to 0.98
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area. Malignant nodules are more likely to have irregular,
lobulated, or spiculated margins due to malignant cells
spreading within the pulmonary interstitium and intra-
tumor fibrosis. Benign nodules are associated with
smooth, rounded borders, and exhibit a benign growth
pattern. There is, however, a significant overlap between
nodules with irregular margins seen in inflammatory/in-
fectious conditions and smooth, rounded margins noted
in up to 20% of primary lung cancers nodules [41]. This
may be the reason why the subjective findings model ex-
hibited poor to moderate performance in two datasets
(AUC =0.762, 0.619, respectively).

Radiomics is a developing field aimed at deriving auto-
mated quantitative imaging features from medical images
that can predict tumor behavior non-invasively. The radio-
mics parameters of SCSNs could not be identified via visual
inspection, but reflected heterogeneity quantitatively and
reproducibility. The proposed radiomics features were cate-
gorized into non-textural and textural features based on
statistical methods. The final predictive model demon-
strated that GLV-GLRLM-0.5-1-Lloyd-32, RLV-GLRLM-2-
2-Equal-64 and Entropy-GLCM-2-0.8-Lloyd-64 were sig-
nificantly related to lung adenocarcinomas. GLV-GLRLM-
0.5-1-Lloyd-32 was a measurement of the variance in the
run gray level intensity. RLV-GLRLM-2-2-Equal-64 was a
measurement of the variance in the run length. We
hypothesize that this non-uniform intensity distribution of
the run length reflects the heterogeneity of adenocarcinoma
tumors. A higher RLV-GLRLM-2-2-Equal-64 value
reflected a more complex texture pattern contained in the
tumor volume, which suggested that adenocarcinomas were
more heterogeneous. Entropy-GLCM-2-0.8-Lloyd-64 was a
measurement of the randomness in neighborhood intensity
values. This entropy-related radiomics feature was signifi-
cantly higher in lung adenocarcinomas, presumably
reflected the more complex and heterogeneous internal
structure of malignant lesions when compared to granu-
lomatous lesions.

Dennie et al. used texture analysis based on non-
contrast CT to differentiate lung cancer and granulomas,
and reported a sensitivity of 88% and specificity of 92%
(AUC =0.90 £ 0.06, p <0.0001) [23]. However, their re-
search sample only included 31 lung cancer patients and
24 granuloma patients, and their model was not vali-
dated on an independent external dataset. Yang et al
studied 302 patients with plain radiomics, and reported
a sensitivity of 75.3% and specificity of 72.3% for differ-
entiating solitary granuloma nodules from lung adeno-
carcinomas. Whereas, the diagnosis was not confirmed
by surgical resection in all patients and only nodule size
was used as the subjective CT finding [21]. Hawkins
et al. demonstrated that radiomics could be applied to
lung cancer CT screening CT to predict risk for lung
cancer (accuracy =80%, AUC=0.75). Although the

Page 11 of 13

majority of study patients had solid nodules (n =338),
non-solid nodules (n=58) and part-solid nodules (n =
41) were also included in the analysis. However, the CT
image slice thickness in their study varied from 1.0 to
5.0mm [17]. In the current study, the combined radio-
mics nomogram model demonstrated adequate discrim-
ination in the training set (AUC =0.885) and external
validation set (AUC =0.808), and demonstrated signifi-
cantly improved predictive ability when compared with
traditional subjective findings model (Delong test:
p < 0.001, = 0.004, respectively).

We acknowledged several limitations to this study.
First, the study design was retrospective, the sample size
was relatively small and only one independent external
validation center. Further studies should enroll more pa-
tients from multi-sites so that the radiomics nomogram
model may be better trained and validated. Second, only
surgically resected SCSNss that were histologically proven
to be lung adenocarcinomas or granulomatous lesions
were included. For this reason, our nodule samples
might have been skewed toward morphologically more
conspicuous or aggressive malignant nodules. In con-
trast, this inclusion criterion warranted a pathologically
homogenous sample of nodules. Additionally, a wide
range of CT scan systems with different scan techniques
were used. These scan parameters may affect image
quality parameters, such as resolution, noise, and the
partial volume effect, which in turn can affect the quality
of the extracted features [42]. However, to minimize
these variabilities, all images included in the current
study were thin-slice thickness CT images (0.625-1.5
mm). Moreover, image normalization and reproducibil-
ity studies were performed in the pre-processing phase,
which is suitable for radiomics features analysis [43]. A
stratified analysis on the version of CT scanners vali-
dated the generalizability of this nomogram.

Conclusion

In conclusion, the radiomics signature identified from
non-enhanced CT images may be useful for differentiat-
ing lung adenocarcinomas and granulomatous lesions in
patients with SCSNs. The radiomics nomogram combin-
ing a radiomics signature and subjective findings maybe
an effective tool for reducing overdiagnosis and over-
treatment of SCSNE.
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