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Evaluation of CT-based radiomics signature
and nomogram as prognostic markers in
patients with laryngeal squamous cell
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Abstract

Background:The aim of this study was to evaluate the prognostic value of radiomics signature and nomogram
based on contrast-enhanced computed tomography (CT) in patients after surgical resection of laryngeal squamous
cell carcinoma (LSCC).

Methods: All patients (n = 136) were divided into the training cohort (n = 96) and validation cohort (n = 40). The
LASSO regression method was performed to construct radiomics signature from CT texture features. Then a
radiomics nomogram incorporating the radiomics signature and clinicopathologic factors was established to predict
overall survival (OS). The validation of nomogram was evaluated by calibration curve, concordance index (C-index)
and decision curve.

Results:Based on three selected texture features, the radiomics signature showed high C-indexes of 0.782 (95%CI:
0.656–0.909) and 0.752 (95%CI, 0.614–0.891) in the two cohorts. The radiomics nomogram had significantly better
discrimination capability than cancer staging in the training cohort (C-index, 0.817 vs. 0.682;P= 0.009) and
validation cohort (C-index, 0.913 vs. 0.699;P= 0.019), as well as a good agreement between predicted and actual
survival in calibration curves. Decision curve analysis also suggested improved clinical utility of radiomics
nomogram.

Conclusions:Radiomics signature and nomogram showed favorable prediction accuracy for OS, which might
facilitate the individualized risk stratification and clinical decision-making in LSCC patients.
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Background
Laryngeal cancer is a common malignant tumor of head
and neck, with an incidence of 26,300 new cases and 14,
500 deaths in China [1]. And laryngeal squamous cell

carcinoma (LSCC) accounts for approximately 85–95%
of laryngeal cancer cases [2]. The five-year survival rate
of laryngeal cancer was about 65% [3]. However, the sur-
vival rate did not increase significantly despite the im-
provement of early diagnosis and therapy [4, 5]. The
pathological tumor node metastasis (TNM) staging is
most widely used prognostic factor for long-term sur-
vival [6]. However, pathological evaluation might fail to
predict the response to non-surgical treatments. There-
fore, the novel and effective prognostic markers are of
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great importance for improving risk stratification and
optimizing therapeutic strategies in LSCC patients.
It is well known that the development, therapeutic re-

sponse and prognosis of tumors are associated with the
intratumoral heterogeneity, such as gene mutation-
expression, cellular histology, angiogenesis and tumor
microenvironment [7]. Recent studies have focused on
the texture analysis of computed tomography (CT),
which showed the potential prognostic value in several
tumors, including lung cancer and liver cancer [8, 9].
Image texture is a set of metrics calculated by numerous
mathematical calculations, which provides information
about the spatial arrangement and variation of pixel in-
tensities in gray-scale images [10]. Moreover, the radio-
mics analyses are performed on image processing
systems to estimate the texture features in CT images of
tumors, and represent the intratumoral heterogeneity
[11, 12]. The nomogram, also known as alignment dia-
gram, which uses several scale lines to represent mul-
tiple predictors, then expresses the interrelation between
variables and calculates the probability of events based
on multivariate regression model. In addition, published
studies have suggested that radiomics nomogram had
significant predictive accuracy for lymph node metastasis
and survival outcomes in cancer patients [13, 14].
Although the individual CT texture parameters have

showed significant predictive role of survival and treat-
ment failure in head and neck squamous cell carcinoma
(HNSCC) [15, 16]. The application of radiomics signa-
ture combined with multiple CT texture markers in
LSCC patients has not been well discussed. Therefore,
we aimed to build and validate whether the radiomics
signature and relevant nomogram could be used as ef-
fective prognostic markers for overall survival (OS) in
LSCC patients.

Materials and methods
Patients
The medical records of LSCC patients between January
2011 to December 2015 were reviewed. All patients
underwent surgical resection and pathological examin-
ation. The cancer staging was confirmed based on 8th
edition AJCC-TNM stage [17]. We included patients
who had preoperative contrast-enhanced CT. However,
the CT images of non-identifiable tumors or image arti-
facts were excluded. Patients who underwent neoadju-
vant chemoradiotherapy or being lost to follow-up were
also excluded. Based on the random number, patients
were divided into the training set and the validation set
at a proportion of 7:3. The patients’ demographics (age
and gender), tumor characteristics (location, stage and
histological grade) and treatments were compared be-
tween two cohorts. All the patients were followed up
until death or last follow-up of December 2017. We

analyzed OS as the endpoint, which meant the period
from definite diagnosis to death or last follow-up.

CT imaging protocols and texture analysis
Contrast-enhanced CT images were obtained via a Phi-
lips Brilliance 16-slice CT scanner (Philips Medical Sys-
tem, US). All patients received intravenously nonionic
contrast agent (1.5–2.0 ml/kg, iohexol; Beijing Beilu
Pharmaceutical, China). This study used a free Java soft-
ware called LIFEx (Orsay, France, http://www.lifexsoft.
org) to extract radiomics features from multiple and
consecutive CT images with 1 mm slice thickness [18].
The viewer of LIFEx supports the synchronized display
of 3 directional slices (coronal, sagittal and transaxial)
and maximum display of intensity projection. Images
were labeled with random number and reviewed by
blinded method. An independent experienced radiolo-
gists (HW) manually drew a region of interest (ROI)
around the tumor border. The cervical lymph nodes
were not involved. Finally, 36 texture features were ex-
tracted from LifeX, as described below [11].
(1) First order metrics: histogram and geometry-based

features: skewness (degree of asymmetry of gray-level dis-
tribution), kurtosis (peakedness of distribution), entropy
(disorder or randomness of pixel distribution), energy
(homogeneity or uniformity of pixel distribution), spher-
icity (regularity of volume shape) and compacity (com-
pactness of volume shape). (2) Second order metrics: gray-
level co-occurrence matrix (GLCM): homogeneity (close-
ness of voxel pairs), entropy, energy, contrast (local varia-
tions), correlation (gray-level linear dependence) and
dissimilarity (variation of voxel pairs). (3) Second order
metrics: neighborhood gray-level dependence matrix
(NGLDM): contrast (spatial rate change of intensity) and
coarseness (difference of intensity between regions). (4)
Third order metrics: gray-level run length matrix
(GLRLM) and gray-level zone length matrix (GLZLM),
which were calculated by a single co-occurrence matrix,
then provide information about the size of homogenous
runs for each gray-level directly in three dimensions.

Radiomics signature construction and validation
The least absolute shrinkage and selection operator
(LASSO)-Cox regression algorithm was used to reduce
the dimension of high-dimensional data in training data-
set [19, 20]. Then we calculated the radiomics signature
(Rad-score) by linear combination of features weighted
by LASSO coefficients. Three features with nonzero co-
efficients were selected (Fig. 1). There were high gray-
level run emphasis (HGRE), long-run high gray-level
emphasis (LRHGE) and zone length non-uniformity
(ZLNU). The radiomics score was calculated according
to the following formula: 0.000318616 × GLRLM_
HGRE+(1.83E-05) × GLRLM_LRHGE + 0.001307454 ×
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GLZLM_ZLNU. The cut-off values of radiomics score
were estimated by the area under the curve (AUC) of re-
ceiver operating curve (ROC). The Kaplan-Meier sur-
vival analysis evaluated the unadjusted association
between Rad-score and survival outcome. Then we cal-
culated the hazard ratio (HR) and related 95% confi-
dence interval (CI) by univariate Cox regression analysis
for each variable.

Radiomics nomogram building and assessment
Only significant variables in univariate Cox analyses
were further included in nomogram for training cohort.

The radiomics nomograms containing radiomics signa-
ture and clinicopathologic risk factors were conducted
on multivariate Cox regression model. The Harrell’s
concordance index (C-index) represented the consist-
ence probability between the observed and predicted
survival outcome, which was calculated by a bootstrap
validation with 1000 re-samples. The C-index above 0.9

Fig. 1 Texture feature selection using LASSO Cox regression.a Selection
of tuning parameter (� ) in the LASSO model using 10-foldncross-
validation with minimum criteria. Partial likelihood deviance was plotted
versus log (� ). Vertical line of the optimal values (log (� ) = � 2.573) were
drawn based on the minimum criteria and the 1-standard error of the
minimum criteria.b LASSO coefficient profiles of 36 texture features.
Vertical line was plotted at the selected value via 10-fold cross-validation,
where optimal� resulted in 3 nonzero coefficients

Table 1 Characteristics of patients in the training and validation
cohorts
Characteristic Training cohort

(n = 96)
Validation cohort
(n = 40)

P value

Age 0.925

Median 60 (30–83) 60 (42–86)

< 60 46 (47.0) 18 (45.0)

� 60 50 (52.1) 22 (55.0)

Gender 0.906

Male 90 (93.8) 38 (95.0)

Female 6 (6.25) 2 (5.0)

Tumor location 0.908

Supraglottic 22 (22.9) 8 (20.0)

Glottic 71 (74.0) 31 (77.5)

Subglottic 3 (3.1) 1 (2.5)

T classification 0.733

T1 25 (26.0) 13 (32.5)

T2 32 (33.3) 13 (32.5)

T3 27 (28.1) 8 (20.0)

T4 12 (12.5) 6 (15.0)

N classification 0.525

N0 78 (81.3) 35 (87.5)

N1 11 (11.5) 4 (10.0)

N2 7 (7.3) 1 (2.5)

Cancer stage 0.752

I 25 (26.0) 13 (32.5)

II 28 (29.2) 11 (27.5)

III 29 (30.2) 9 (22.5)

IV 14 (14.6) 7 (17.5)

Histological grade 0.508

Well 37 (38.5) 17 (42.5)

Moderate 36 (37.5) 17 (42.5)

Poor 23 (24.0) 6 (15.0)

Laryngectomy 0.196

Partial 77 (80.2) 28 (29.2)

Total 19 (19.8) 12 (12.5)

Adjuvant therapy 0.792

No 67 (69.8) 27 (67.5)

Yes 29 (30.2) 13 (13.5)

Follow-up time (mo) 0.959

Median 42 (4–86) 40 (5–82)

Rad-score 0.646

Median 4.34 (3.74–6.12) 4.29 (3.95–5.98)
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Fig. 2 Development of the prognostic index based on radiomics score (Rad-score). Distribution of prognostic index in training cohort (a) and
validation cohort (b). Patients were sorted in numerical order according to Rad-score on the x-axes, and divided into high-risk and low-risk
groups. Survival status in training cohort (c) and validation cohort (d) showed higher proportion of death patients in high-risk group. Heatmap of
texture features values in training cohort (e) and validation cohort (f) tended to be higher in high-risk patients

Fig. 3 Kaplan-Meier curves with number of risk and censoring for OS in the training cohort (a) and validation cohort (b). Elevated radiomics
scores were significantly associated with poorer OS
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represents high accuracy, the value within 0.7 to 0.9 in-
dicates moderate accuracy, and C-index of 0.5 suggests
no predictive ability [21]. In addition, we applied calibra-
tion curves and Hosmer-Lemeshow tests to evaluate the
goodness-of-fit [22]. These analyses were performed in
both training cohort and validation cohort. Finally, the
decision curve analysis (DCA) was conducted to meas-
ure the net benefits on threshold probabilities in valid-
ation group [23]. All above analyses were performed on
R version 3.5.3, and p value< 0.05 was regarded as statis-
tically significant.

Results
Patient characteristics
There were 136 eligible patients (128 male and 8 female)
in this study. The median age at the time of initial diagno-
sis was 60 years (range 30–86 years). There was no distant
metastases (M0) in all patients at the first diagnosis. Adju-
vant intensity-modulated radiotherapy (IMRT) and

cisplatin chemotherapy were used. The median period of
follow-up was 42months (range 4–86months). There
were 20 patients (14.7%) died and 46 patients (33.8%) de-
veloped cancer progression. Twenty-seven, seven and four
patients suffered local relapse, metastases of cervical
lymph nodes and distant organs. The complete character-
istics of the training cohort and validation cohort were de-
scribed in Table 1. There was no significant statistical
difference between two cohorts (all P > 0.05).

Assessment of radiomics signature
Through the LASSO-Cox analysis, three features with
nonzero coefficients were selected to calculate the radio-
mics signature (Rad-score). No significant difference of
Rad-score was found between the training cohort and
validation cohort (P = 0.646). The AUCs were 0.783
(95%CI: 0.646–0.921, P = 0.001) for the training cohort
and 0.770 (95%CI: 0.617–0.922, P = 0.037) for the valid-
ation cohort. The optimal cut-off points of Rad-score

Table 2 Univariate Cox analysis of clinicopathological characteristics
Parameters Cut-off value Training cohort Validation cohort

HR 95% CI P value HR 95% CI P value

Age (year) < 60 vs.� 60 2.40 0.75–7.65 0.139 1.03 0.95–1.10 0.537

Gender Female vs. Male 0.30 0.04–2.27 0.242 0.46 0.08–4.06 0.565

Tumor location Glottic vs. Non-glottic 5.86 1.96–17.51 0.002 1.67 0.31–9.14 0.553

T classification T1-T2 vs. T3-T4 2.06 0.72–5.96 0.178 1.90 0.38–9.41 0.432

N classification N0 vs. N1-N2 2.64 0.88–7.88 0.082 4.50 0.82–14.76 0.084

Cancer stage I-II vs. III-IV 2.56 1.03–6.49 0.042 3.21 0.76–7.53 0.178

Histological grade Well-moderate vs. Poor 2.56 0.88–7.38 0.092 1.05 0.49–3.58 0.692

Laryngectomy Partial vs. Total 7.34 2.43–20.34 < 0.001 2.38 1.02–8.25 0.048

Adjuvant therapy No vs. Yes 0.91 0.29–2.90 0.871 2.29 0.46–11.35 0.311

Fig. 4 Radiomics nomogram for the prediction of 1-year and 3-year OS based on the training cohort
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were 4.534 in training cases and 4.283 in validation
cases, then we classified patients into high-risk or low-
risk groups (Fig. 2a,b). It showed that high-risk groups
had more patients in death status (Fig. 2c,d). And the
heatmaps demonstrated that three texture features gen-
erally tended to be higher value in high-risk patients
(Fig. 2e,f). The elevated radiomics signature was signifi-
cantly related with worse OS in the training cohort
(HR = 11.98, 95%CI: 2.68–53.56, p = 0.001; Fig. 3a) and
the validation cohort (HR = 6.75, 95%CI: 1.35–33.70, p =
0.020; Fig. 3b).

Validation of radiomics nomogram
The clinical nomogram contained significant characteris-
tics of tumor location, TN stage and laryngectomy types
in the training set (Table 2). The radiomics signature
and above characteristics were further included in the
radiomics nomogram (Fig. 4). Then we compared the C-
indexes of different models with tumor staging as the
reference (Table 3). The radiomics nomogram model
had higher accuracy compared with cancer staging in

the training cohort (P = 0.009), which also revealed good
predictive performance than cancer staging (P = 0.019)
and clinical nomogram (P = 0.008) in the validation co-
hort. In training set, the calibration curves of 1-year and
3-year OS and nonsignificant Hosmer-Lemeshow test
(P = 0.833; P = 0.706; Fig. 5a) showed good agreement
between predicted and actual OS. Moreover, the radio-
mics nomogram performed well in the validation set
(P = 0.952; P = 0.091; Fig. 5b). The DCA illustrated that
when the threshold probability was approximately within
15 to 55%, the radiomics nomogram had a better net
benefit for decision-making than other models (Fig. 6).

Discussion
In present study, we extracted texture features of pre-
operative contrast-enhanced CT images, and used
machine-learning method to obtain a 3 features-based
radiomics signature. This study extended the individual
texture analysis to the survival assessment of radiomics
based on multiple texture features. The results showed
that radiomics signature was a potential prognostic

Table 3 Discrimination performance of models

Model Training cohort Validation cohort

C-index 95% CI P value C-index 95% CI P value

Radiomics signature 0.782 0.656–0.909 0.170 0.752 0.614–0.891 0.456

Clinical nomogram 0.802 0.690–0.914 0.007 0.807 0.630–0.985 0.192

Radiomics nomogram 0.817 0.693–0.942 0.009 0.913 0.833–0.992 0.019

AJCC staging system 0.682 0.553–0.812 Reference 0.699 0.458–0.941 Reference

Fig. 5 Calibration curves of radiomics nomogram in the training cohort (a) and validation cohort (b). The diagonal dotted line represented a
perfect prediction by an ideal model, and solid line represented performance of the nomogram. The closer fit between the diagonal dotted lines
and solid lines showed good prediction of 1-year and 3-year OS
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marker for OS. Moreover, the radiomics nomogram in-
corporating radiomics signature and other clinicopatho-
logical characteristics was practical in survival
prediction, which had improved discrimination ability
than traditional cancer staging in both training cohort
and validation cohort. Therefore, it indicated that radio-
mics signature and nomogram had additional prognostic
value for OS in patient with LSCC.
Computer tomography (CT) is a widely applied instru-

ment for noninvasive diagnosis and staging of laryngeal
cancer before treatment. Plain CT images reflect the
non-homogeneity of intratumoral tissue and cell density
due to necrosis, hemorrhage and cystic degeneration
[24, 25]. Additionally, enhanced scans reflect the hetero-
geneity of vascular supply, with increased blood supply
in some areas and decreased blood supply in others [26,
27]. Based on CT texture analysis, intratumoral hetero-
geneity can be translated into the heterogeneity in
spatial distribution of density pixels, which was related
with pathological grade, tumor aggressiveness, tumoral
biological index (e.g. hypoxia markers, VEGF) as well as
prognosis and therapeutic response [28–30]. For head
and neck cancer, most of previous studies separately
evaluated the prognostic value of individual CT texture
parameters. For example, the entropy and skewness were
independently associated with OS in HNSCC patients
undergoing TPF chemotherapy [15]. In histogram analysis,

a pixel distribution with higher kurtosis, energy and en-
tropy, and a positive or negative skewness indicated the
enhancement of tumors heterogeneity [31, 32]. The high
homogeneity of PET-CT images also was revealed as pre-
dictors of progression-free survival in pharynx cancer [33].
In terms of third order metrics, significant differences of
GLRLM features were found between regional control
group and local recurrence group in HNSCC patients
treated with chemoradiotherapy [16].
As mentioned, there were hundreds and thousands of

texture features, and their prognostic roles were widely
different in previous studies. Therefore, the analyses of
single texture features were time-consuming and ineffi-
cient. Furthermore, considering the potential overfit-ting
of radiomics features, it was meaningful to reduce and
shrink features before model building. The integrative
radiomics signature would facilitate the application of
CT texture feature. In our study, the radiomics signature
demonstrated favorable discriminative ability in the
training cohort (AUC = 0.783, C-index = 0.782) and val-
idation cohort (AUC = 0.770, C-index = 0.752) compared
with previous studies (AUC = 0.66–0.69) [34]. In
addition, an MRI-based radiomics study of HNSCC con-
cluded moderate C-indexes of 0.73 in training cohort
and 0.71 in validation cohort [35]. These results sug-
gested that radiomics heterogeneity of primary mass ob-
served in CT and MRI images might be helpful to judge
prognosis and guide treatment in cancer patients. No
final conclusion has yet been reached, which still needs
more studies to determine whether radiomics signature
could be effective predictor of prognosis or not.
The TNM staging was traditionally suggested as an in-

dependent prognostic predictor in HNSCC patients [36].
Primary site of LSCC was also associated with survival
results. The prognosis of supraglottic laryngeal cancer
was poorer than that of subglottic and supraglottic can-
cer, which possibly due to common cervical lymph node
metastasis in supraglottic laryngeal cancer [37]. In our
study, survival results of patients undergoing partial lar-
yngectomy was better than patients undergoing total lar-
yngectomy. It was probably because patients with early-
stage cancer often received partial resection than total
resection. Then we incorporated the radiomics signature
and above clinical factors in nomogram to improve the
survival prediction. It has been suggested that single risk
factor without model may be difficult to comprehen-
sively evaluate the postoperative outcome of different
patients, thus a prognostic model is necessary to con-
sider multiple risk factors for each patient, such as
nomogram [14]. Previous MRI-based radiomics studies
also showed significantly higher C-indexes of radiomics
nomogram than TNM staging [34, 38]. However, the ef-
fectiveness of radiomics nomogram still requires further
investigation.

Fig. 6 Decision curve analysis for each model based on the
validation dataset. The risk probability of death was recorded as Pi.
When Pi reached a certain threshold probability (Pt), it was defined
as positive, and some intervention were taken. The net benefit was
calculated by summing the benefits of intervention in true positive
proportion (a) and loss benefit of unnecessary treatment in false
positive proportion (b). Net benefit = a-b [Pt/(1-Pt)]. The horizontal
black line represented all negative samples and no intervention. The
gray dotted oblique represented intervention of all patients. The
radiomics nomogram had the highest net benefit compared with
all-treat scheme or non-treat scheme and other models across the
range of 15–55% in Pt. For example, if the Pt reached 30%, the net
benefit was about 0.10 when using the radiomics nomogram to
determine whether to perform therapies
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There were several shortcomings in the present study.
Firstly, due to retrospective design and small sample of
single-center, the potential selection bias cannot be ex-
cluded, which limited the accuracy and reliability of re-
sults. Secondly, the variation between observed images
should be considered when drawing the outline of ROI
areas. The computer-aided software of this study may
help to reduce variation to some degree. Thirdly, al-
though there was no significant difference in characteris-
tics between the two cohorts, the variables including
therapeutic strategies and complications might act as po-
tential confounders. Furthermore, there were many
kinds of texture features and images processing software,
thus unifying the texture analysis would help to achieve
robust results and spread the application.

Conclusions
Contrast-enhanced CT radiomics signature was inde-
pendently associated with overall survival in LSCC pa-
tients. The radiomics nomogram might act as a
noninvasive and effective model to improve the individu-
alized prognostic evaluation and treatment strategies.
Therefore, more researches are warranted for better esti-
mation, especially the large-scale prospective and multi-
center studies.
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