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Abstract

Objective: To predict vascular endothelial growth factor (VEGF) expression in patients with diffuse gliomas using
radiomic analysis.

Materials and methods: Preoperative magnetic resonance images were retrospectively obtained from 239 patients
with diffuse gliomas (World Health Organization grades II–IV). The patients were randomly assigned to a training
group (n = 160) or a validation group (n = 79) at a 2:1 ratio. For each patient, a total of 431 radiomic features were
extracted. The minimum redundancy maximum relevance (mRMR) algorithm was used for feature selection. A
machine-learning model for predicting VEGF status was then developed using the selected features and a support
vector machine classifier. The predictive performance of the model was evaluated in both groups using receiver
operating characteristic curve analysis, and correlations between selected features were assessed.

Results: Nine radiomic features were selected to generate a VEGF-associated radiomic signature of diffuse gliomas
based on the mRMR algorithm. This radiomic signature consisted of two first-order statistics or related wavelet
features (Entropy and Minimum) and seven textural features or related wavelet features (including Cluster Tendency
and Long Run Low Gray Level Emphasis). The predictive efficiencies measured by the area under the curve were
74.1% in the training group and 70.2% in the validation group. The overall correlations between the 9 radiomic
features were low in both groups.

Conclusions: Radiomic analysis facilitated efficient prediction of VEGF status in diffuse gliomas, suggesting that
using tumor-derived radiomic features for predicting genomic information is feasible.
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Introduction
Diffuse gliomas graded from II to IV according to the
World Health Organization (WHO) criteria are the most
common primary malignant tumors of the brain [1]. Surgi-
cal resection combined with radiotherapy and chemother-
apy are the main treatments. With the development of
precision medicine, the molecular classification of gliomas
has become increasingly important with regard to the treat-
ment and prognosis of patients. In 2016, the WHO

introduced molecular phenotyping into the classification
criteria of tumors of the central nervous system. Accord-
ingly, it is now important to determine the molecular sub-
type of gliomas prior to treatment [2, 3].
Angiogenesis, which is regulated by vascular endothelial

growth factor (VEGF), is a marker of the malignancy of
tumor cells. Tumor cells with high expression of VEGF
often result in poor prognosis and short survival [4]. In
addition, VEGF is a well-known biomarker that is of great
significance in the development of tumors, and it is also a
promising target in the treatment of gliomas, especially
recurrent glioblastomas (GBM) [4–6]. Although anti-
angiogenic therapies, such as bevacizumab, have been
proved to increase progression-free survival in patients with
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recurrent GBM, it may not be beneficial for unselected pa-
tients [7]. Therefore, the evaluation of VEGF expression
held great promising in GBM management.
Magnetic resonance imaging (MRI) is widely used clinic-

ally, particularly for the non-invasive imaging of tumors,
and it has become one of the most commonly utilized
methods for the diagnosis of central nervous system tu-
mors [3, 8]. Notably however, current MRI applications
can only analyze the physicochemical characteristics of tu-
mors qualitatively [9, 10]. This ignores a large amount of
the digital information in the image. Radiomics is a non-
invasive method for extracting textural information from
radiological images for analysis and calculation [10–13].
Some studies have applied radiomics technology to tumor
analysis and have shown that the approach is feasible [14–
16]. Some researchers made a convolutional neural
network to determine the Isocitrate dehydrogenase (IDH)
mutation status [17], 1p/19q codeletion, and O6-
methylguanine-DNA methyltransferase (MGMT) promo-
tor methylation status [18]. Some researchers found the re-
lationship between epidermal growth factor receptor
(EGFR) extracellular domain missense mutations and clin-
ical imaging and therapeutic response [19], and established
an imaging signature of EGFRvIII [20]. These radiomics ap-
proaches have been successfully utilized to predict the
genotype of IDH mutation, the expression of EGFR and
Ki67 in gliomas [21–23], laying the foundation for detect-
ing VEGF expression status non-invasively.
In the current study, we extracted a large number of radio-

mics features from preoperative MRI scans of glioma pa-
tients with known VEGF expression levels. We hypothesized
that a radiomic signature could predict the level of VEGF ex-
pression in gliomas via a machine-learning algorithm.

Materials and methods
Patients
A total of 239 patients with gliomas were included in this
study. All the patients received treatment at Beijing Tiantan
Hospital glioma therapy center between June 2010 and Sep-
tember 2012, and met the following criteria: (a) histopatho-
logically confirmed primary glioma, WHO grade II–IV; (b)
preoperative T2-weighted magnetic resonance images avail-
able; (c) VEGF expression status known; and (d) specific
clinical characteristics known (see Additional file 1: Figure
S1). A flowchart depicting the exclusion and inclusion of
patients is shown in Additional file 1: Figure S1.
The patients were randomly assigned to a training group

(n = 160) or a validation group (n = 79), regardless of VEGF
expression level. The random process was performed using
the random number generated from the R software. The
training group was used to establish a machine-learning
model to predict the level of VEGF expression via radio-
mics features, while the validation group was used to assess
the prediction accuracy of the model. Ethics approval for

this retrospective study was obtained from the institutional
review board of Beijing Tiantan Hospital.

Clinical characteristics
The median ages of the patients were 43.0 years in the
training group and 42.5 years in the validation group.
There were 157 males and 82 females in total, and via
random assignment 104 men and 56 women were allo-
cated to the training group and 53 men and 26 women
were allocated to the validation group. The proportions
of patients with low and high VEGF expression were 63/
97 in the training group and 27/52 in the validation set.
The distributions of characteristics in the two groups
were compared using Student’s t-test and the Chi-square
test, and there were no significant differences in age
(p = 0.736), sex (p = 0.749), tumor grade (p = 0.725),
VEGF expression level (p = 0.435), or tumor location
(p = 0.860). Detailed information pertaining to the clin-
ical characteristics of the patients is shown in Table 1.

Data acquisition and region of interest segmentation
MRI scans were performed using 3.0-T scanners (179
patients: Trio, 3.0-T, Siemens; 60 patients: sigma, 3.0-T,
GE). Tumor regions of interest (ROIs) were only seg-
mented on T2-weighted (T2) images because II-IV
grades of gliomas were included in the current study
(identifying tumor borders of low-grade gliomas is hard
on T1-weighted and contrast-enhanced sequences). The
parameters used to acquire T2 images were repetition
time 4500~6000 ms, echo time 84~122.5 ms, section
thickness 3~5 mm, field of view of (180~240) mm ×
(219~256) mm, and matrix size (160~512) × (208~512)
pixels. ROIs were manually delineated by two neuroradi-
ologists (with eight- and 10-year work experience in the
field of neuroradiology, respectively) on T2 images using
the MRIcron software (http://www.mccauslandcenter.sc.
edu/mricro). ROIs on the T2 image were defined as
edema area according to previous literature [24, 25]. A
third senior neuroradiologist with 10 years work experi-
ence then reevaluated the ROIs and made final decisions
in cases where there was a lack of consensus.

Table 1 Patient characteristics

Training
(n = 160)

Validation
(n = 79)

p value

Age (years; mean) 43.0 42.5 0.736a

Sex (male/female) 104/56 53/26 0.749b

Grade II/Grade III/Grade IV 75/43/42 39/23/17 0.725b

Low VEGF/High VEGF 63/97 27/52 0.435b

Tumor location left/right 87/73 42/37 0.860b

aStudent’s t-test, bChi-square test
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Feature extraction
To reduce bias due to data heterogeneity, the intensities
of the voxels in each image were normalized to the z dis-
tribution. The slice thickness of MRI was resampled to
1 mm before feature extraction. Extraction of quantita-
tive radiomic features was conducted as previously de-
scribed [26], and the detailed equation pertaining to
each feature is presented as Additional file 3 in that pre-
vious report. The feature extraction happened in 3D,
and as a forward pass. We only extract radiomic features
from preoperative T2 sequences, and a total of 431
radiomic features were obtained. The feature set in-
cluded 14 first order statistics (pertaining to the distribu-
tion of signal intensity of images), 8 shape and size-
based features (quantifying the shape and size of tu-
mors), 33 textural features (pertaining to intratumoral
heterogeneity), and 376 wavelet features that were de-
rived from group 1 and group 3 features via wavelet de-
composition (using directional low-pass and high-pass
filtering, the original feature was decomposed into 8 de-
compositions). All feature extraction processes were
conducted using software developed in-house and imple-
mented in MATLAB (2014a). The detailed function of
the radiomic features are listed in the Additional file 3,
and the extracted features are in compliance with the
Image Biomarker Standardization Initiative [27, 28].

Immunohistochemistry
VEGF expression levels were evaluated by an eight-year
work experience pathologist using typical tumor samples
collected from the patients. Immunostaining was performed
using an anti-VEGF antibody (Santa Cruz Biotechnology,
Santa Cruz, CA) at a dilution of 1:100 in accordance with
the manufacturer’s instructions. Briefly, formalin-fixed
paraffin-embedded tissue sections were cut into 5-μm sec-
tions, which were then dried, dewaxed in xylene, rinsed in
graded ethanol, and rehydrated in double-distilled water.
Two pathologists who were blind to the clinical data scored
the degree of staining. VEGF expression level was scored
according to clinical practice: (−) represented no or rare ex-
pression (< 5% positive cells); (+) represented mild expres-
sion (6–25% positive cells); (++) represented moderate
expression (26–50% positive cells); and (+++) represented
strong expression (> 50% positive cells). Low VEGF expres-
sion was defined as VEGF (− and +), and high VEGF expres-
sion was defined as VEGF (++ and +++) [29].

Feature selection and classification
To establish the radiomics model, the minimum redun-
dancy maximum relevance (mRMR) algorithm was ap-
plied to select a subset of features from the 431
extracted radiomic features. The mRMR algorithm is an
efficient data screening tool that has been widely used in
many previous studies [30, 31]. In addition, we utilized a

support vector machine (SVM) classifier to establish a
machine-learning model for VEGF prediction. The SVM
classifier is a widely used pattern recognition tool [32, 33].
Based on 10-fold cross validation, the parameters of SVM
classifier were determined with the grid-search: kernel =
radial, gamma = {10− 4, 10− 3, 10− 2, 10− 1, 1, 10, 102, 103,
104}, cost = {10− 4, 10− 3, 10− 2, 10− 1, 1, 10, 102, 103, 104}.
Via these methods, we established a radiomics-based sig-
nature prediction model using data from the training
group, and applied the same model in the validation
group. A radiomics analysis protocol is shown in Fig. 1.

Statistical analysis
Statistical analyses and figure generation were mainly per-
formed using R software (version 3.3.2; https://www.r-pro-
ject.org/). The mRMR and SVM algorithms were
conducted using “mRMRe” and “e1071” packages, respect-
ively. Receiver operating characteristic (ROC) curves, and
correlation heatmaps were depicted using “pROC” and
“corrplot” packages, respectively. Differences between
clinical characteristics were evaluated using the Chi-
square test or Student’s t-test.

Results
Feature selection and classification
In the current study, an efficient feature selection tool
known as the mRMR algorithm was used, and a subset
of 9 features were screened from a total of 431 radiomic
features. The names and descriptions of these 9 selected
features are shown in Table 2.
According to the cross-validation process, the SVM clas-

sifier performed best when the parameter gamma = 10− 3

and cost = 10− 3. Based on the selected radiomic features
and the SVM classifier, a VEGF predictive machine-
learning model was built using data derived from the train-
ing group. The areas under curve (AUC) were 0.741 in the
training group (Fig. 2a) and 0.702 in the validation group
(Fig. 2b). In ROC curve analysis, in the training group the
optimal cutoff point of − 0.356 exhibited respective sensitiv-
ity, specificity, and accuracy values of 83.5, 58.7, and 71.3%,
and in validation group the optimal cutoff point of − 0.570
yielded corresponding values of 67.9, 70.6, and 72.3%.
Hence, the 9 selected radiomics features could be regarded
as a VEGF-related signature, and the model established via
mRMR and SVM algorithms in the training group exhib-
ited effective performance in the validation group.

Correlations between selected features
Correlations between the VEGF-related features in the
training group and the validation group are shown in Fig. 3.
Although some of the 9 features exhibited high positive
and negative correlations, the overall correlations between
the features were low (mean ± standard deviation = 0.112 ±
0.029 in the training group and 0.174 ± 0.052 in the
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validation group), suggesting that the features were inde-
pendent of each other.

Discussion
In the current study, VEGF-related radiological signatures
were analyzed via feature data extracted from T2-
weighted images of patients with diagnosed gliomas.
Image features were extracted from each sequence and
used to establish a radiomics-based model to predict
VEGF expression levels via an mRMR algorithm and SVM

classifier. The model achieved AUCs of 74.1% in the train-
ing group and 70.2% in the validation group. Overall, the
results suggest that VEGF expression can be predicted
using non-invasive radiological data, and that a machine-
learning approach that integrates multivariate features is
more effective than using individual features.
It has been reported that VEGF status was associated

with some imaging features [29, 34–38]. A previous study
reported that gliomas of different VEGF status tended to be
situated at different locations [39]. They revealed that

Fig. 1 The radiomics protocol. After the acquisition of magnetic resonance images, tumor segmentation was conducted using the image data.
High-throughput radiomic features were then extracted from the segmented tumors, and further radiomic analysis was performed using these
extracted features. SVM, support vector machine; ROC, receiver operating characteristic

Table 2 Nine radiomic features selected by the minimum redundancy maximum relevance algorithm

Number Features Description

1 Cluster Tendency_HLL One of the wavelet features derived from Cluster Tendency. Cluster Tendency is a measure of
groupings of voxels with similar gray-level values.

2 Entropy_LLL (group 1 derived) One of the wavelet features derived from Entropy. Entropy specifies the uncertainty/randomness
in the image values.

3 Long Run Low Gray Level Emphasis_LHL One of the wavelet features derived from Long Run Low Gray Level Emphasis. Long Run Low
Gray Level Emphasis measures the joint distribution of long runs and low gray level values.

4 Minimum Minimum describes the minimum signal intensity.

5 Short Run High Gray Level Emphasis_LLH One of the wavelet features derived from Short Run High Gray Level Emphasis. Short Run High
Gray Level Emphasis measures the joint distribution of short runs and high gray level values.

6 Short Run Low Gray Level Emphasis_LLL One of the wavelet features derived from Short Run Low Gray Level Emphasis. Short Run Low
Gray Level Emphasis measures the joint distribution of short runs and low gray level values.

7 Short Run Low Gray Level Emphasis_LHH One of the wavelet features derived from Short Run Low Gray Level Emphasis. Short Run Low
Gray Level Emphasis measures the joint distribution of short runs and low gray level values.

8 Short Run Low Gray Level Emphasis_HLL One of the wavelet features derived from Short Run Low Gray Level Emphasis. Short Run Low
Gray Level Emphasis measures the joint distribution of short runs and low gray level values.

9 Short Run Low Gray Level Emphasis_HLH One of the wavelet features derived from Short Run Low Gray Level Emphasis. Short Run Low
Gray Level Emphasis measures the joint distribution of short runs and low gray level values.
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glioblastomas with high VEGF expression were more likely
located in the left frontal lobe and the right caudate and
these with low VEGF expression were more frequently lo-
cated in the posterior region of the right lateral ventricle.
We validated their findings on 59 patients in our study co-
hort, since only the 59 patients were diagnosed as glioblast-
oma. As shown in Additional file 2: Figure S2, the overall
predictive accuracy was 60%. Notably, there were 11 pa-
tients with tumors that did not involve left frontal lobe or
the right caudate or the posterior region of the right lateral
ventricle, which could not be classified. This kind of condi-
tion would limit the application of this method.

Moreover, Awasthi R et al. found that relative cerebral
blood volume and relative cerebral blood flow were sig-
nificantly correlated with VEGF expression level [38]; Li
K et al. reported that combining the radiomic features
and VEGF expression level could predict pelvic lymph-
atic metastasis [34]; Yin Q et al. revealed the associations
between tumor angiogenesis and radiomic imaging fea-
tures from PET/MRI [35], and Beig N et al. analyzed the
hypoxia pathway radiomic features and predicted the
overall survival in GBM [36]. These studies show that
there were some radiological features that were signifi-
cantly associated with VEGF expression status, but they

Fig. 2 Receiver operating characteristic curves for vascular endothelial growth factor status prediction in the training group and the validation
group. a In the training group, the area under the curve was 74.1%. At the optimal cutoff value (−0.356), the respective sensitivity, specificity, and
accuracy values were 83.5, 58.7, and 71.3% (red dot). b In the validation set, the area under the curve was 70.2% and the optimal cutoff value
(− 0.570) exhibited respective sensitivity, specificity, and accuracy values of 67.9, 70.6, and 72.3% (red dot). AUC, area under the curve

Fig. 3 Correlations between the 9 radiomic features that constituted the vascular endothelial growth factor-associated radiomic signature in the
training and validation groups. Yellow dots indicate positive correlations and blue dots indicate negative correlations. Different sizes and color
depths of dots indicate different correlation coefficients. Dots covered with crosses indicate non-significant correlations (p > 0.05)
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did not use independent validation data-sets to evaluate
their findings, and their predictive power is limited. In re-
cent years, radiomic analysis combined with algorithms
has been widely used in radiology studies, and constitutes
an efficient tool for studying relationships between images
and tumors [11]. Many researchers have proved that
radiomics models can predict molecule expression status
efficiently [40–42]. Radiomics was also used to predict the
anti-angiogenic treatment response [37]. We believe that
there are clinically useful relationships between radiomic
features and VEGF expression status.
The model established in the present study performed

effectively in both the training group and the validation
group, affirming the hypothesis that radiomics can pre-
dict VEGF expression level in tumor tissues. A previous
study indicated that entropy could serve as an indicator
for intra-tumoral heterogeneity and the degree of tumor
malignancy [43], which could be used as an example to
explain the association between radiomic features and
VEGF expression. In addition, previous studies have
shown that glioma patients with high expression of
VEGF are more likely to have tissue edema [44–47]. T2
sequences can reflect tumors and tissue edema more ac-
curately [48, 49]. This may be the reason why the fea-
tures selected based on T2 sequences could effectively
establish a VEGF prediction model.
To establish the radiomics model, the mRMR algo-

rithm was applied to select a subset of 9 features from
the 431 extracted radiomic features. The mRMR algo-
rithm is an efficient data dimensionality reduction algo-
rithm for finding a set of both relevant and independent
features that is widely used in bioinformation analysis
[30, 31, 50]. The curse of dimensionality could be solved
using the mRMR algorithm. The SVM classifier is an ef-
fective tool that exhibits better performance than other
algorithms with regard to pattern recognition [32, 51,
52]. In the present study, the mRMR algorithm was used
in combination with the SVM classifier to develop a
method capable of effectively predicting VEGF expres-
sion status in glioblastoma patients.
The current study had some limitations. All the images

were generated at a single center, so a multi-center study
needs to be conducted in the future to investigate the uni-
versality of the model. Additionally, the correlative nature
of the reported radiomic signature to VGEF expression
needs to be further investigated by comparing to tissue
biopsy results. It was also a retrospective study, so a
prospective study is needed to verify the accuracy of the
prediction model. Cases are manually annotated. In our
current work we are trying to use an automated seg-
mented approach that can level up the speed of radiomic
pipeline. Next, we would collect more MRI protocols such
as T1W and FLAIR (additionally also MRS, DTI) in our
further work to build an advanced model. Finally, MRI

scans have not been post-processed to a standard atlas,
which might make the reproducibility of results difficult.

Conclusion
In conclusion, in the present study there were significant
correlations between VEGF expression level and radio-
mic features in gliomas. Using the mRMR algorithm and
SVM classifier, a VEGF expression level radiomic signa-
ture was developed, and VEGF expression level was ef-
fectively predicted in both a training group and a
validation group. Radiogenomic analysis showed that
VEGF expression level could also be reflected by the
radiomic signature extracted from radiological images,
indicating that the radiomic approach could potentially
be a noninvasive surrogate indicator of gene expression
level, and further assist patient-tailored treatment.
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