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Abstract 

Background  Accurately classifying primary bone tumors is crucial for guiding therapeutic decisions. The National 
Comprehensive Cancer Network guidelines recommend multimodal images to provide different perspectives 
for the comprehensive evaluation of primary bone tumors. However, in clinical practice, most patients’ medical multi-
modal images are often incomplete. This study aimed to build a deep learning model using patients’ incomplete mul-
timodal images from X-ray, CT, and MRI alongside clinical characteristics to classify primary bone tumors as benign, 
intermediate, or malignant.

Methods  In this retrospective study, a total of 1305 patients with histopathologically confirmed primary bone 
tumors (internal dataset, n = 1043; external dataset, n = 262) were included from two centers between January 2010 
and December 2022. We proposed a Primary Bone Tumor Classification Transformer Network (PBTC-TransNet) fusion 
model to classify primary bone tumors. Areas under the receiver operating characteristic curve (AUC), accuracy, sensi-
tivity, and specificity were calculated to evaluate the model’s classification performance.

Results  The PBTC-TransNet fusion model achieved satisfactory micro-average AUCs of 0.847 (95% CI: 0.832, 0.862) 
and 0.782 (95% CI: 0.749, 0.817) on the internal and external test sets. For the classification of benign, intermedi-
ate, and malignant primary bone tumors, the model respectively achieved AUCs of 0.827/0.727, 0.740/0.662, 
and 0.815/0.745 on the internal/external test sets. Furthermore, across all patient subgroups stratified by the distribu-
tion of imaging modalities, the PBTC-TransNet fusion model gained micro-average AUCs ranging from 0.700 to 0.909 
and 0.640 to 0.847 on the internal and external test sets, respectively. The model showed the highest micro-average 
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AUC of 0.909, accuracy of 84.3%, micro-average sensitivity of 84.3%, and micro-average specificity of 92.1% in those 
with only X-rays on the internal test set. On the external test set, the PBTC-TransNet fusion model gained the highest 
micro-average AUC of 0.847 for patients with X-ray + CT.

Conclusions  We successfully developed and externally validated the transformer-based PBTC-Transnet fusion model 
for the effective classification of primary bone tumors. This model, rooted in incomplete multimodal images and clini-
cal characteristics, effectively mirrors real-life clinical scenarios, thus enhancing its strong clinical practicability.

Keywords  Deep learning, Bone neoplasms, Classification, Multimodal imaging, Computer-assisted diagnosis

Introduction
Primary bone tumors (PBTs) are a relatively uncom-
mon disease, yet they rank as the third leading cause of 
cancer-related deaths among individuals under twenty 
[1, 2]. Depending on their biological behaviors, PBTs are 
classified as benign, intermediate, or malignant, which 
require different treatments [3, 4]. For benign PBTs, 
intralesional tumor excision or curettage is the most suit-
able treatment. Intermediate PBTs, due to their propen-
sity for recurrence and destructive nature, often demand 
more aggressive interventions like wide local excision or 
adjuvant therapy. Malignant PBTs demand a multidisci-
plinary strategy involving chemotherapy or radiotherapy 
alongside wide excision or amputation. However, accu-
rately distinguishing benign, intermediate, and malignant 
PBTs poses challenges due to their overlapping morpho-
logic and radiographical features [5]. For example, while 
most lesions exhibiting geographic patterns of bone 
destruction are benign, occasional malignancies dem-
onstrate this radiographic sign [5]. Misclassification of 
PBTs can lead to overtreatment of patients with benign 
PBT and delayed or inadequate treatment for those with 
intermediate or malignant tumors [6]. Therefore, accu-
rate classification of PBTs is essential to guide thera-
peutic decision-making and ultimately improves patient 
outcomes.

Medical image modalities such as X-ray, computed 
tomography (CT), and magnetic resonance imaging 
(MRI) play indispensable roles in the initial diagnosis 
of PBTs [3]. X-rays have the advantages of relative cost-
effectiveness, rapid imaging, and high spatial resolu-
tion, making them the primary imaging modality for 
evaluating bone destruction, thus serving as the frontline 
investigation for evaluating PBTs [7]. CT demonstrates 
remarkable abilities in detecting matrix mineralization 
(osteoid or chondroid) and thin periosteal bone forma-
tions of PBTs, especially beneficial for lesions located 
in complex anatomical structures [1, 8]. MRI, on the 
other hand, has superior abilities in detecting early bone 
changes, soft tissue masses, and the extent of marrow 
involvement [8]. According to the National Compre-
hensive Cancer Network (NCCN) practice guidelines, 
achieving comprehensive radiographic diagnosis of PBTs 

requires multimodal images combined with clinical char-
acteristics to provide different perspectives [3, 7]. How-
ever, due to factors such as equipment unavailability, 
ionizing radiation exposure, and high cost, most patients’ 
medical images are often incomplete (i.e., not all patients 
undergo multiple imaging examinations at the same 
time) in the clinical setting. This incompleteness poses 
significant challenges to the accurate classification of 
PBTs [8–10]. Therefore, there is a pressing need for tools 
capable of leveraging patients’ incomplete multimodal 
images to enhance the classification of PBTs.

Recently, several studies have built deep learning (DL) 
models based on single-modal images, such as radio-
graphs or MRI, achieving good performance in the clas-
sification of PBTs [11–13]. However, the clinical utility of 
these models remains limited due to their incapability to 
classify PBT patients lacking specific modal imaging data, 
leading to issues of selection bias and underutilization 
of overall imaging information [14]. DL models built on 
incomplete multimodal images have proven feasible and 
effective in diagnosing neurodegenerative diseases like 
Alzheimer’s disease [15, 16]. Zhang et  al. [17] proposed 
a Transformer-based method for incomplete multimodal 
learning of brain tumor segmentation that is robust to 
any combinatorial subset of available modalities. We rec-
ognize the potential of this Transformer-based method in 
adapting to classification tasks. Hence, it is worth explor-
ing whether the Transformer-based method can be used 
to classify PBTs using incomplete multimodal images.

This study aimed to develop a Primary Bone Tumor 
Classification Transformer Network (PBTC-TransNet) 
fusion model using incomplete multimodal images from 
X-ray, CT, and MRI, alongside clinical characteristics, 
to accurately classify PBTs into benign, intermediate, or 
malignant categories.

Methods
Patient cohort and data collection
This retrospective study enrolled patients diagnosed 
with PBTs who had undergone X-ray, CT, or MRI scans 
between January 2010 and December 2022 from two 
public hospitals (center 1 and center 2) in China. The 
inclusion criteria encompassed patients (1) who were 
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histopathologically diagnosed with PBTs and (2) who had 
undergone X-ray, CT, or MRI scans before treatment. 
Exclusion criteria included patients (1) lacking available 
clinical characteristics, (2) experiencing postoperative 
recurrence, and (3) presenting with images of poor qual-
ity, as determined by two radiologists (Q.Y. and Y.H.Z.) 
with 13 and 31 years of experience. Then, these radiolo-
gists independently reviewed patients’ histopathological 
diagnoses via electronic medical records and annotated 
PBTs as benign, intermediate, or malignant according to 
the 2020 World Health Organization (WHO) classifica-
tion [4]. The flowchart of patient selection is summarized 
in Fig.  1. Finally, a total of 1305 patients from center 1 
(the internal dataset, n = 1043) and center 2 (the external 
dataset, n = 262) were included. The dataset from center 
1 was divided into training, validation, and internal test 
sets at a ratio of 7:1:2 using the stratified random sam-
pling method with five-fold cross-validation (Appendix 
S1). The dataset from center 2 was used as an independ-
ent external test set. The study protocol was approved 
by the Institutional Review Boards of center 1 (IRB: 
2020-Ethical Review–01) and followed by center 2. On 
the grounds of retrospective nature, the requirement for 
written informed consent was waived. This study was 
conducted according to the Checklist for Artificial Intel-
ligence in Medical Imaging (CLAIM) guidelines (Supple-
mentary Material 2) [18].

Images obtained from various modalities were used as 
inputs for our models, including X-ray (n = 1083); non-
enhanced CT (n = 821); T1-weighted image (T1WI) 
(n = 622); T2-weighted image (T2WI) (n = 577); and 

T2-weighted image with fat-suppression (T2WI-FS) 
(n = 45). We primarily utilized T1WI and T2WI when 
available; in cases where T2WI was unavailable, T2WI-
FS was employed as an alternative to simulate the real-
world medical image distribution. Notably, single view or 
multiple views (if available) of X-ray images for patients 
were analyzed (Appendix S2). Additionally, the clini-
cal characteristics of patients, comprising sex, age, loca-
tion, histopathological fracture, leukocytes, hemoglobin, 
alkaline phosphatase, as well as symptoms and signs 
(including redness and hyperemia, swelling, warmth, 
pain, dyskinesia, and palpable mass), were collected. To 
gain a deeper understanding of how clinical characteris-
tics influence the model’s predictions, we utilized Shapley 
Additive Explanations (SHAP) values for analysis. SHAP 
values explain the importance of each characteristic on 
the model’s output. This analysis helps to determine the 
contribution of each clinical characteristic to the model’s 
predictions [19].

Data annotation
All images were downloaded and stored as Digital Imag-
ing and Communications in Medicine (DICOM) files 
at their original size and resolution. Patient-protected 
health information was deleted from stored files to meet 
the US (HIPAA), European (GDPR), or Other Relevant 
Legal Requirements [20]. Two musculoskeletal radiolo-
gists (X.Q.C. and Y.Y.S., both with three years of experi-
ence) blinded to patients’ histopathologic diagnoses and 
clinical characteristics, annotated a rectangular region 
of interest (RROI) covering the whole lesion entity using 

Fig. 1  Flow diagram of patient selection. PBTs, primary bone tumors; n, number
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the ITK-SNAP software (version 3.8.0) [21]. Fifty imaging 
examinations (X-ray, n = 19; CT, n = 13; and MRI, n = 18) 
were randomly selected from the internal dataset and re-
annotated by the radiologist (X.Q.C.) after a one-month 
washout period to measure the intra-observer reliabil-
ity. The inter-observer reliability was calculated by com-
paring the RROIs of X.Q.C. (first time) and Y.Y.S. The 
intersection over union (IoU) was calculated to assess 
inter-observer and intra-observer reliabilities, where IoU 
greater than 0.5 was considered reliable or reproducible. 
The results were reviewed by the senior musculoskeletal 
radiologist (Y.H.Z.) to confirm the final RROIs.

Development of the deep learning models
Image preprocessing included intensity normalization 
and data augmentation. The detailed image preprocess-
ing procedures are described in Appendix S3. We pro-
posed a novel Transformer-based PBTC-TransNet for 
classifying PBTs as benign, intermediate, or malignant 
(Fig.  2). The PBTC-TransNet employed three encod-
ers inspired by ResNet [22] to extract modality-specific 

features. The CT and MRI encoders each consisted of 
one 3D convolution block and three 3D residual blocks, 
while the X-ray encoder included one 2D convolution 
block and three 2D residual blocks (Fig. S1). To simulate 
real multimodal incomplete scenarios, We employed Ber-
noulli indicators δ ∈ {0, 1} for each modality, where the 
value of the Bernoulli indicators depends on the presence 
of the modality. The corresponding Bernoulli indica-
tor was set to zero when the modality was not available. 
Subsequently, the Transformer was utilized to effectively 
learn long-range dependencies among different features. 
Finally, the fully connected layers and Softmax function 
were used to generate classification results. As a com-
parison, we developed a Baseline classification model 
that separately trained models on each available imag-
ing modality, which trained two 3D EfficientNet models 
for CT and MRI and a 2D EfficientNet for X-ray [23]. 
The EfficientNet is a powerful CNN architecture, which 
may provide significant medical image classification 
potentials while requiring fewer computation resources 
than other models [24]. Moreover, we used an iterative 

Fig. 2  Workflow of this study. a Collection of incomplete multimodal images. b Preprocessing of the images. c The framework of the deep 
learning models. d Assessing the performance of models. aSingle view or multiple views of X-ray images are analyzed. bCT includes non-enhanced 
computed tomography. cMRI includes T1-weighted image, and T2-weighted image or T2-weighted image with fat-suppression. AP, Anteroposterior 
projection; LAT, lateral projection; ROC, Receiver operating characteristic; PBTC-TransNet, Primary Bone Tumor Classification Transformer Network; 
W/, with images; w/o, without images. The simultaneous absence of X-ray, CT, and MRI is forbidden
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imputation strategy based on the chained equation for-
est (Mice-Forest) to impute the missing clinical charac-
teristics (Appendix S4). Then, we integrated the values of 
clinical characteristics into the final fully connected layer 
to develop the PBTC-TransNet fusion model. Further 
details of model development are provided in Appendix 
S3. All models were implemented using PyTorch (version 
1.11.0) in open-source software Python (version 3.8.3) 
with an NVIDIA RTX 2080Ti GPU of 11 GB memory. 
The source code is available online (https://​github.​com/​
SMU-​Medic​alVis​ion/​PBTC-​Trans​Net).

Statistical analysis
The Kruskal–Wallis and chi-square tests were used to 
determine significant differences among clinical charac-
teristics. Classification performance was quantified using 
the areas under the receiver operating characteristic 
curve (AUC), accuracy, sensitivity, and specificity, with 
95% confidence intervals (CIs) estimated using Bootstrap 
methods. The micro-average was calculated for AUC, 
sensitivity, and specificity (Appendix S5). AUC values 
were compared using the DeLong test, while accuracy 
was compared using the McNemar test. In addition to 
evaluating the overall performance, we also stratified the 
data by age, gender, and time period to assess the mod-
el’s applicability across different demographic groups. 
The age stratification was done by dividing the patients 
into quartiles based on their ages for subgroup analy-
sis. A two-sided p value less than 0.05 was considered 

statistically significant. All analyses were conducted 
using SPSS (version 23.0, IBM, Armonk, NY) and Python 
(version 3.8.3).

Results
Patient characteristics and datasets
A total of 1305 patients (mean age, 26 years ± 18 [stand-
ard deviation]; 512 females) were involved in the study, 
including 752 benign, 228 intermediate, and 325 malig-
nant cases. There were significant differences among 
the benign, intermediate, and malignant PBT groups in 
age, location, leukocytes, hemoglobin, alkaline phos-
phatase, as well as patient symptoms and signs, includ-
ing swelling, warmth, pain, dyskinesia, and palpable mass 
(all p < 0.001) (Table  1). No significant difference was 
observed in the distribution of benign, intermediate, and 
malignant PBTs between internal and external datasets 
(p = 0.513) (Table  S2). The variable distributions of the 
original and imputed clinical characteristics were similar, 
indicating that the imputed data can be used for further 
analysis (Fig. S2). Regarding imaging modalities, on the 
internal dataset, 850 (81.5%) patients underwent X-rays, 
658 (63.1%) underwent CT scans, and 547 (52.4%) under-
went MRI examinations. On the external dataset, 233 
(88.9%) patients underwent X-rays, 163 (62.2%) under-
went CT scans, and 75 (28.6%) underwent MRI examina-
tions (Table 2). Tables S3 and S4 present the distribution 
of PBT subtypes and imaging modalities among the 
patients. Excellent inter-observer and intra-observer 

Table 1  Clinical characteristics of patients in the study

Data are presented as means ± standard deviations or as counts with percentages in parentheses
* p values below 0.05 are considered statistically significant. aThe values represent the count of abnormal results for the corresponding indicator. n, number

Characteristic Benign
(n = 752)

Intermediate
(n = 228)

Malignant
(n = 325)

All
(n = 1305)

p value

Age (years) 21 ± 16 31 ± 20 31 ± 19 26 ± 18  < 0.001*

Sex: female 284 (37.8) 100 (43.9) 128 (39.4) 512 (39.2) 0.255

Locations overall  < 0.001*

  Torso or head 72 (9.6) 47 (20.6) 77 (23.7) 196 (15.0)

  Extremities 680 (90.4) 181 (79.4) 248 (76.3) 1109 (85.0)

Histopathological fracturea 125 (16.6) 41 (18.0) 52 (16.0) 218 (16.7) 0.824

Leukocytesa 56 (7.4) 30 (13.2) 46 (14.2) 132 (10.1)  < 0.001*

Hemoglobina 109 (14.5) 49 (21.5) 105 (32.3) 263 (20.2)  < 0.001*

Alkaline phosphatasea 58 (7.7) 17 (7.5) 80 (24.6) 155 (11.9)  < 0.001*

Symptoms and signsa

  Redness and hyperemia 7 (0.9) 4 (1.8) 7 (2.2) 18 (1.4) 0.249

  Swelling 163 (21.7) 81 (35.5) 143 (44.0) 387 (29.7)  < 0.001*

  Warmth 7 (0.9) 5 (2.2) 24 (7.4) 36 (2.8)  < 0.001*

  Pain 341 (45.3) 161 (70.6) 241 (74.2) 743 (56.9)  < 0.001*

  Dyskinesia 269 (35.8) 106 (46.5) 162 (49.8) 537 (41.1)  < 0.001*

  Palpable mass 292 (38.8) 46 (20.2) 126 (38.8) 464 (35.6)  < 0.001*

https://github.com/SMU-MedicalVision/PBTC-TransNet
https://github.com/SMU-MedicalVision/PBTC-TransNet


Page 6 of 13Song et al. Cancer Imaging          (2024) 24:135 

agreement were achieved for annotating the RROI, with 
IoUs of 0.839 ± 0.113 and 0.871 ± 0.082, respectively.

The performance of models for classifying primary bone 
tumors
On the internal test set, the PBTC-TransNet performed 
better than the Baseline model significantly (micro-
average AUC: 0.839 vs. 0.774, p < 0.001; accuracy: 71.3% 
vs. 61.4%, p < 0.001). While the PBTC-TransNet fusion 
model slightly improved the performance of the PBTC-
TransNet, the difference was not statistically significant, 
with a micro-average AUC of 0.847 (p = 0.362) and an 
accuracy of 72.5% (p = 0.349). Regarding the classification 
of benign, intermediate, and malignant PBTs, the PBTC-
TransNet fusion model achieved AUCs of 0.827 (95% CI: 
0.801, 0.852), 0.740 (95% CI: 0.696, 0.784), and 0.815 (95% 
CI: 0.781, 0.847), respectively (Table 3 and Fig. 3). On the 
external test set, the PBTC-TransNet achieved a notable 
micro-average AUC of 0.772 (95% CI: 0.736, 0.807), while 
the PBTC-TransNet fusion model gained a higher micro-
average AUC of 0.782 (95% CI: 0.749, 0.817). For classi-
fying PBTs as benign, intermediate, and malignant, the 
PBTC-TransNet fusion model achieved AUCs of 0.727 
(95% CI: 0.663, 0.791), 0.662 (95% CI: 0.575, 0.748), and 
0.745 (95% CI: 0.662, 0.818), respectively, which were 
higher than those of the PBTC-TransNet (Table 3). Thus, 
the PBTC-TransNet fusion model was selected for subse-
quent analysis in this study. In addition, we have shown 
the importance of clinical characteristics using SHAP 
for predicting the classification of benign, intermediate, 
and malignant PBTs, as illustrated in Fig. S3, respectively. 
The top 3 predictors based on SHAP values for benign 

PBTs were age, pain, and overall location (Fig. S3a). For 
intermediate PBTs, the top 3 predictors were age, pain, 
and palpable mass (Fig. S3b). For malignant PBTs, the 
top 3 predictors were age, alkaline phosphatase, and pain 
(Fig. S3c). Of the significant predictors identified, red-
ness and hyperemia were the least important predictors 
in all tumor classifications. We have included additional 
performance metrics including recall and F1 score in 
Table S5 and Table S6, providing a comprehensive over-
view of the models’ performance.

Stratification analysis based on imaging modalities
The PBTC-TransNet fusion model displayed varying 
classification performance across different patient sub-
groups stratified by the distribution of imaging modali-
ties. On the internal test set, the PBTC-TransNet fusion 
model gained micro-average AUCs ranging from 0.700 
to 0.909 and accuracies ranging from 56.0% to 84.3% 
across all patient subgroups (Table 4 and Fig. 4a). Nota-
bly, it showed the highest micro-average AUC of 0.909, 
accuracy of 84.3%, micro-average sensitivity of 84.3%, 
and micro-average specificity of 92.1% in those with only 
X-rays. For patient subgroups with X + CT and those 
with X-ray + CT + MRI, the model effectively classi-
fied them with a micro-average AUC of 0.858 and 0.816, 
respectively. On the external test set, the PBTC-TransNet 
fusion model achieved the highest micro-average AUC of 
0.847 for patients with X-ray + CT. For all subgroups, the 
model showed micro-average AUCs of 0.640 to 0.847 and 
accuracies of 53.8% to 72.2%, with wide 95% CIs (Fig. 4b). 
Representative examples correctly and incorrectly classi-
fied by the PBTC-TransNet fusion model on the external 

Table 2  The distribution of imaging modalities among patients on the internal/external dataset

Unless otherwise indicated, data are numbers (n) of patients

T1WI T1-weighted image, T2WI T2-weighted image, T2WI-FS T2-weighted image with fat-suppression
a Single view or multiple views of X-ray images are analyzed. bCT includes non-enhanced computed tomography. cT1WI and T2WI are primarily utilized (if available); 
when T2WI is lacking, T2WI-FS is employed as an alternative

Imaging modalities Internal/External dataset (n)

X-raya CTb T1WIc T2WIc T2WI-FSc Benign
(604/148)

Intermediate
(176/52)

Malignant
(263/62)

Total
(1043/262)

√  ×   ×   ×   ×  162/43 31/21 17/9 210/73

 ×  √  ×   ×   ×  70/14 8/7 28/2 106/24

 ×   ×  √ √  ×  10/0 7/0 12/0 29/0

√ √  ×   ×   ×  129/64 30/8 21/19 180/90

√  ×  √ √  ×  69/2 31/2 46/2 146/6

 ×  √ √ √  ×  25/0 6/2 27/1 58/3

√ √ √ √  ×  139/5 63/7 112/9 314/21

√  ×  √  ×  √ 0/9 0/3 0/8 0/20

 ×  √ √  ×  √ 0/1 0/1 0/0 0/2

√ √ √  ×  √ 0/10 0/1 0/12 0/23
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test set are shown in Figs. 5 and 6. It was worth noting 
that the external dataset did not include patients with 
only MRI examination (Table  2). The performance of 
the PBTC-TransNet fusion model was further analyzed 
by stratifying the patient data based on age, gender, and 
time period. The results, presented in Tables S7, S8, and 
S9, indicate variations in model performance across dif-
ferent demographic groups.

Discussion
In this study, we developed the PBTC-TransNet fusion 
model, which leverages incomplete multimodal images 
from X-ray, CT, and MRI, along with clinical character-
istics, to accurately classify PBTs as benign, intermediate, 
or malignant. The model demonstrated good perfor-
mance, achieving a micro-average AUC of 0.847 on the 
internal test set and a micro-average AUC of 0.782 on the 
external test set.

Accurate classification of PBTs is essential to ensure 
their effective treatment and management [3]. Previous 
studies have built single-modal models based on Effi-
cientNet or Mask-RCNN-X101 to classify PBTs, achiev-
ing an AUC of 0.79 and an accuracy of 80.2% on the 
external test set, respectively [11, 12]. Our team proposed 
an ensemble multi-task framework that simultaneously 

detects, segments, and classifies PBTs and bone infections 
and subclassifies the benign, intermediate, and malignant 
PBTs on MRI [13]. While these approaches represent 
significant advancements, they are primarily limited to 
single-modal data, and their clinical applicability dimin-
ishes when faced with the common issue of incomplete 
multimodal images in real-world settings [11–13, 25]. In 
contrast, our current study addresses this critical gap by 
developing the PBTC-TransNet fusion model, which is 
specifically designed to handle incomplete multimodal 
images from X-ray, CT, and MRI, alongside clinical 
characteristics. This design enables our model to main-
tain robust performance even when certain imaging 
modalities are unavailable, thereby enhancing its clinical 
relevance and applicability in diverse healthcare environ-
ments. We selected EfficientNet, which is recognized as 
a state-of-the-art (SOTA) model for classification tasks, 
as the baseline model for quantitative comparison. This 
choice was made due to EfficientNet’s proven effective-
ness and efficiency in medical image classification [12, 
26, 27]. By comparing our PBTC-TransNet fusion model 
with this baseline, we demonstrated that our approach 
not only matches or exceeds the performance of these 
widely used models but also effectively handles cases 
where certain imaging modalities are missing. Machine 

Table 3  Performance of deep learning models for primary bone tumor classification on the internal and external test sets

Accuracy, sensitivity, and specificity are expressed as percentages. Data in parentheses are 95% confidence intervals

AUC​ the area under the receiver operating characteristic curve, PBTC-TransNet Primary Bone Tumor Classification Transformer Network
* p values below 0.05 are considered statistically significant. aThe micro-average method is applied to calculate the AUC, sensitivity, and specificity

Models Internal test set External test set

AUC​ Accuracy Sensitivity Specificity AUC​ Accuracy Sensitivity Specificity

Baselinea 0.774
(0.756, 0.791)

61.4
(58.4, 64.2)

61.4
(58.2, 64.3)

80.7
(78.9, 82.3)

0.747
(0.708, 0.783)

61.1
(55.3, 66.8)

61.1
(55.3, 66.8)

80.5
(77.0, 83.9)

PBTC-TransNeta 0.839
(0.823, 0.854)

71.3
(68.6, 74.0)

71.3
(68.3, 74.0)

85.7
(84.2, 87.1)

0.772
(0.736, 0.807)

61.5
(55.3, 67.6)

61.5
(55.3, 67.2)

80.7
(77.2, 84.1)

  Benign 0.810
(0.782, 0.838)

77.2
(74.5, 79.8)

75.1
(72.5, 77.8)

62.2
(57.7, 67.0)

0.699
(0.632, 0.762)

66.8
(60.7, 72.9)

63.7
(58.2, 69.0)

39.5
(30.4, 48.7)

  Intermediate 0.725
(0.679, 0.765)

84.1
(82.0, 86.2)

64.2
(60.6, 67.8)

94.1
(92.4, 95.7)

0.633
(0.549, 0.715)

77.1
(71.8, 82.1)

52.4
(47.8, 57.4)

93.3
(89.9, 96.6)

  Malignant 0.812
(0.779, 0.844)

81.4
(78.9, 83.6)

73.5
(70.0, 76.6)

89.3
(87.1, 91.5)

0.741
(0.657, 0.820)

79.0
(74.0, 84.0)

65.7
(59.0, 72.1)

91.0
(86.7, 94.8)

PBTC-TransNet fusiona 0.847
(0.832, 0.862)

72.5
(69.8, 75.2)

72.5
(69.6, 75.2)

86.2
(84.7, 87.7)

0.782
(0.749, 0.817)

63.0
(56.9, 68.7)

63.0
(57.3, 68.7)

81.5
(78.0, 84.8)

  Benign 0.827
(0.801, 0.852)

79.0
(76.6, 81.6)

77.0
(74.4, 79.6)

64.8
(60.4, 69.3)

0.727
(0.663, 0.791)

68.7
(63.0, 74.4)

65.6
(60.1, 70.9)

42.1
(33.0, 51.7)

  Intermediate 0.740
(0.696, 0.784)

83.3
(81.1, 85.6)

66.5
(62.8, 70.2)

91.8
(90.0, 93.6)

0.662
(0.575, 0.748)

78.2
(72.9, 83.2)

53.9
(49.1, 59.4)

94.3
(91.0, 97.4)

  Malignant 0.815
(0.781, 0.847)

82.6
(80.4, 84.9)

73.3
(70.2, 76.3)

92.1
(90.0, 93.9)

0.745
(0.662, 0.818)

79.0
(74.0, 84.0)

66.2
(59.6, 72.7)

90.5
(86.1, 94.3)

p value (Baseline vs. PBTC-TransNet)  < 0.001*  < 0.001* / / 0.462 1.000 / /

p value (PBTC-TransNet vs. PBTC-TransNet 
fusion)

0.362 0.349 / / 0.609 0.046* / /
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learning techniques to discriminate bone lesions have 
achieved relatively good performance across various 
imaging modalities, with reported AUC values ranging 
from 0.73 to 0.96 in several cohort studies [28]. However, 
most studies that have developed machine learning clas-
sification models for bone tumors are preliminary and 
limited by small sample sizes and retrospective analyses 
[28]. To our knowledge, there are currently no studies 
specifically focused on bone tumor classification models 
that utilize multimodal fusion methods. Nevertheless, 
some studies highlight the promise of multimodal tech-
niques, which can integrate data from different imaging 
modalities along with clinical information, offering sig-
nificant potential for improving diagnostic accuracy and 
comprehensiveness [29, 30]. In this study, we developed 

the PBTC-TransNet fusion model to fully utilize patients’ 
incomplete multimodal images and clinical characteris-
tics, which is expected to be applied to classify a broader 
PBT population and better fit in real clinical scenarios.

Strategies for handling the samples with missing 
modalities include direct discarding, data imputation 
techniques, and separate model training based on the 
available data for each modality [15, 31, 32]. Neverthe-
less, these strategies have limitations, such as ignoring 
valuable information, introducing unnecessary noise, 
or failing to exploit the correlations across multiple 
modalities, which potentially compromises classifica-
tion performance [15, 16]. To effectively integrate infor-
mation from different image modalities, we deployed 
the Transformer networks and Bernoulli indicators in 

Fig. 3  The classification performance of deep learning models on the internal (a, b) and external (c, d) test sets. a, c Receiver operating 
characteristic (ROC) curves for the Baseline, PBTC-TransNet, and PBTC-TransNet fusion models. b, d ROC curves for the PBTC-TransNet 
and PBTC-TransNet fusion models in every class. AUC, the area under the ROC; PBTC-TransNet, Primary Bone Tumor Classification Transformer 
Network



Page 9 of 13Song et al. Cancer Imaging          (2024) 24:135 	

our study. The Bernoulli indicators were used for every 
modality to simulate real-world scenarios where multi-
modal images might be incomplete [33]. This allowed 
our model to adapt to situations where certain imag-
ing modalities are unavailable. The Transformer took 
advantage of the attention mechanism to foster the 
establishment of long-range dependencies both within 
and across distinct imaging modalities, facilitating the 
efficient amalgamation of information sourced from 
multiple modalities [17]. Moreover, to address miss-
ing clinical characteristics, we implemented an itera-
tive imputation strategy and then integrated it into 
the PBTC-TransNet fusion model to simulate the 
actual diagnostic process of radiologists. These design 

strategies enhanced the model’s ability to account for 
incomplete clinical information, thereby improving its 
overall performance and clinical relevance. By effec-
tively addressing missing clinical characteristics and 
mimicking real-world diagnostic scenarios, our model 
demonstrates promising potential for widespread adop-
tion and generalizability in diverse clinical settings. The 
SHAP analysis highlights that age, pain, and overall 
location are crucial for distinguishing benign, inter-
mediate, and malignant PBTs. These insights from the 
SHAP analysis suggest that focusing on these clinical 
characteristics in practice could enhance diagnostic 
accuracy and improve patient outcomes. Integrating 
such detailed impact analyses into predictive models 

Table 4  The classification performance of the PBTC-TransNet fusion model stratified by the distribution of imaging modalities among 
patients

Accuracy, sensitivity, and specificity are expressed as percentages. Data in parentheses are 95% confidence intervals

PBTC-TransNet Primary Bone Tumor Classification Transformer Network, AUC​ the area under the receiver operating characteristic curve, NA not available
a The micro-average method is applied to calculate the AUC, sensitivity, and specificity

Imaging modalities Internal test set External test set

AUC​a Accuracy Sensitivitya Specificitya AUC​a Accuracy Sensitivitya Specificitya

X-ray 0.909
(0.882, 0.936)

84.3
(79.0, 89.0)

84.3
(79.0, 89.0)

92.1
(89.4, 94.7)

0.799
(0.733, 0.858)

63.0
(52.1, 74.0)

63.0
(52.1, 74.0)

81.5
(75.3, 87.7)

CT 0.880
(0.837, 0.916)

72.4
(63.8, 80.0)

72.4
(63.8, 81.0)

86.2
(81.2, 90.9)

0.687
(0.549, 0.819)

54.2
(33.3, 75.0)

54.2
(33.3, 75.0)

77.1
(65.2, 88.7)

MRI 0.700
(0.574, 0.819)

56.0
(36.0, 76.0)

56.0
(36.0, 76.0)

78.0
(66.7, 89.5)

NA NA NA NA

X-ray + CT 0.858
(0.822, 0.892)

73.9
(67.8, 80.6)

73.9
(67.2, 80.0)

86.9
(83.3, 90.3)

0.847
(0.790, 0.898)

72.2
(62.2, 81.1)

72.2
(63.3, 81.1)

86.1
(81.0, 91.0)

X-ray + MRI 0.856
(0.816, 0.892)

71.7
(64.8, 79.3)

71.7
(64.1, 79.3)

85.9
(82.0, 89.7)

0.695
(0.564, 0.816)

53.8
(34.6, 73.1)

53.8
(34.6, 73.1)

76.9
(64.6, 88.2)

CT + MRI 0.831
(0.758, 0.897)

65.5
(52.7, 78.2)

65.5
(52.7, 78.2)

82.7
(75.4, 89.6)

0.640
(0.295, 0.960)

60.0
(20.0, 100.0)

60.0
(20.0, 100.0)

80.0
(50.0, 100.0)

X-ray + CT + MRI 0.816
(0.784, 0.847)

66.6
(61.3, 71.8)

66.6
(61.3, 71.5)

83.3
(80.2, 86.1)

0.762
(0.677, 0.846)

54.5
(40.9, 70.5)

54.5
(40.9, 70.5)

77.3
(68.5, 85.9)

Fig. 4  The classification performance of the PBTC-TransNet fusion model in stratification analysis. a, b Histograms for the performance 
of the PBTC-TransNet fusion model in different subgroups stratified by the distribution of imaging modalities among patients on the internal 
and external test sets. Error bars represent the 95% confidence interval of indicators. AUC, the area under the receiver operating characteristic curve; 
PBTC-TransNet, Primary Bone Tumor Classification Transformer Network
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can provide more robust and clinically relevant tools 
for radiologists.

Accurate diagnosis and timely treatment are crucial for 
patients with malignant PBTs to prevent their progres-
sions and potentially life-threatening complications [1]. 
Our PBTC-TransNet fusion model demonstrated strong 
performance in identifying malignant PBTs, achieving 

high accuracies of 82.6% on the internal test set and 
79.0% on the external test set. Visualization analysis 
revealed that our model effectively recognized charac-
teristic imaging manifestations of malignant PBTs, such 
as tumor bone, soft‑tissue mass, and invasive periosteal 
reaction (Fig. 5c and f ). Moreover, we observed that most 
patients with malignant PBTs have complete multimodal 

Fig. 5  Representative examples (red arrow) correctly classified by the PBTC-TransNet fusion model on the external test set. aT2-weighted image 
(T2WI) with fat-suppression is provided to the model when T2WI was not available. PBTC-TransNet, Primary Bone Tumor Classification Transformer 
Network

Fig. 6  Representative examples (red arrow) incorrectly classified by the PBTC-TransNet fusion model on the external test set. aT2-weighted image 
(T2WI) with fat-suppression is provided to the model when T2WI was not available. PBTC-TransNet, Primary Bone Tumor Classification Transformer 
Network
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images on the internal (112 of 263 patients) and exter-
nal (21 of 62 patients) test sets, which provided valuable 
information and clues for classification. Unfortunately, 
our model occasionally failed to diagnose tumors with 
atypical imaging appearances, such as those lacking evi-
dent bone destruction (Fig.  6d). Future research efforts 
should focus on enhancing the model’s ability to recog-
nize such atypical imaging cases, thereby further improv-
ing classification accuracy and clinical utility.

Accurately and timely diagnosis of benign PBTs based 
on medical images is significant for avoiding unnecessary 
expensive and invasive examinations [34]. The PBTC-
TransNet fusion model displayed satisfactory classifica-
tion performance with an AUC of 0.827 for benign PBTs 
on the internal test set. Many benign PBTs with typical 
imaging manifestations are easily identified (Fig.  5b). 
For example, among the 195 osteochondromas included 
in our study, which typically present as bony protuber-
ances with well-defined boundaries extending into soft 
tissue, the fusion model correctly identified 180 cases 
[1]. This highlights the model’s ability to accurately rec-
ognize benign PBTs with typical imaging manifestations, 
thereby facilitating their timely diagnosis and appropriate 
management.

Classifying intermediate PBTs before surgery poses 
a significant challenge due to their potential to present 
both benign and malignant imaging features [1]. Previous 
studies have attempted binary classification models based 
on radiographs and MRI for differentiating benign and 
malignant bone lesions [11, 12], but these models are not 
sufficient for intermediate PBTs, as they cannot be sim-
ply categorized as benign PBTs and often demand sub-
sequent interventions beyond those typically prescribed 
for benign lesions [1, 35]. Another study proposed a tri-
ple classification model that incorporated patient clinical 
characteristics and radiographs, achieving high accuracy 
(85.1%) in classifying intermediate PBTs [36]. In compar-
ison, our PBTC-TransNet fusion model, which is based 
on incomplete multimodal imaging, showed comparable 
performance, with an accuracy of 83.3% on the internal 
test set. Remarkably, even when applied to the external 
test set, which mainly included patients who underwent 
only X-ray imaging (40.4%), limiting the available infor-
mation for classification (Table S4), the PBTC-TransNet 
fusion model achieved an accuracy of 78.2%. This result 
underscores the robust generalization capabilities of the 
PBTC-TransNet fusion model across different datasets 
and imaging modalities.

A model that robustly deals with incomplete data sub-
sets from various modalities demonstrates strong appli-
cability in real-world clinical settings [17]. The model 
exhibited the best classification results (micro-average 
AUC: 0.909) within the patient subgroup solely reliant 

on X-rays on the internal test set, despite the inherent 
limitations of X-rays, such as superimpositions and soft 
tissue resolution [1]. This success was largely attributed 
to most of them (90 of 210 patients) having osteochon-
droma, which with typically identified imaging manifes-
tations. However, the heterogeneous and rare PBTs are 
difficult to classify and often require further MRI exami-
nation in clinical practice [37]. For patient subgroups that 
underwent MRI examinations (MRI, X + MRI, CT + MRI, 
and X + CT + MRI) on the internal test set, the PBTC-
TransNet fusion model gained slightly inferior classifica-
tion performance. It was interpreted that more patients 
in these subgroups suffered difficult-to-classify rare PBTs, 
such as lymphoma and haemangioma (Table S4) [38, 39]. 
On the external test set, the stratification analysis results 
of the model were less significant, with wide 95% CIs for 
several patient subgroups (CT, X + MRI, and CT + MRI), 
primarily due to the limited sample size (Table  2). In 
the future, prospective multicenter studies with larger 
datasets are needed to validate the model’s classifica-
tion performance in real-world clinical practice settings. 
Other imaging techniques can also provide additional 
information for the classification of bone tumors [7]. For 
example, Diffusion-weighted imaging has been proven to 
provide valuable information for characterizing benign 
and malignant musculoskeletal tumors [40]. Considering 
the inclusion of this imaging sequence in future studies 
may further improve the accuracy of tumor classification. 
The stratified analysis revealed that the PBTC-TransNet 
fusion model performed optimally in the 11–19 years age 
group and among female patients, while performance 
was comparatively lower in older age groups and among 
male patients. These findings underscore the importance 
of considering demographic factors in model develop-
ment and highlight areas for future optimization.

Our study had several limitations. First, there may be 
potential selection bias because we only retrospectively 
studied histopathologically confirmed cases of PBTs, 
excluding clinically diagnosed cases. Second, despite 
the proven value of dynamic contrast-enhanced images 
in PBT diagnosis, we did not incorporate them into our 
model development. This decision was influenced by fac-
tors such as the variability in patient compliance with 
contrast-enhanced imaging, as well as concerns regard-
ing risks associated with gadolinium deposition and 
patient anxiety [41–43]. Third, we did not perform visu-
alization for our models, which might limit their clini-
cal application due to the inherent “black-box” nature 
of DL techniques. Future work will focus on implement-
ing visualization methods, such as Grad-CAM, to inter-
pret and gain deeper insights into the predictions made 
by our model. In addition, we have yet to quantify the 
impact of different modality combinations on the model’s 
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performance. Subsequent research will aim to assess the 
clinical benefits of our model across different modal-
ity combinations. Fourth, the external test set was rela-
tively small, with only 262 patients, which may limit the 
robustness of the validation. While the model’s consistent 
performance across datasets provides some reassurance, 
we plan to include larger and more diverse external data-
sets in future studies to further validate the model’s gen-
eralizability. Finally, due to the retrospective nature and 
data limitations of our study, we were unable to include 
patient outcomes and follow-up data. Future prospec-
tive studies will address this by collecting detailed patient 
outcomes to better assess the long-term impact and clini-
cal utility of the PBTC-TransNet model.

Conclusion
In conclusion, we successfully developed and externally 
validated the PBTC-Transnet fusion model, using incom-
plete multimodal images from X-ray, CT, and MRI, along 
with clinical characteristics to effectively classify PBTs 
into benign, intermediate, or malignant. The model aptly 
mirrors real-life clinical scenarios, which is expected to 
provide guidance for clinical decision-making and poten-
tially improve patient outcomes. Moreover, our proposed 
model holds promise for application in other diseases 
characterized by incomplete multimodal images, promis-
ing fresh insights into the realm of computer-aided diag-
nosis of medical images.
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