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Abstract
Background This study investigated the clinical value of breast magnetic resonance imaging (MRI) radiomics 
for predicting axillary lymph node metastasis (ALNM) and to compare the discriminative abilities of different 
combinations of MRI sequences.

Methods This study included 141 patients diagnosed with invasive breast cancer from two centers (center 1: n = 101, 
center 2: n = 40). Patients from center 1 were randomly divided into training set and test set 1. Patients from center 
2 were assigned to the test set 2. All participants underwent preoperative MRI, and four distinct MRI sequences 
were obtained. The volume of interest (VOI) of the breast tumor was delineated on the dynamic contrast-enhanced 
(DCE) postcontrast phase 2 sequence, and the VOIs of other sequences were adjusted when required. Subsequently, 
radiomics features were extracted from the VOIs using an open-source package. Both single- and multisequence 
radiomics models were constructed using the logistic regression method in the training set. The area under the 
receiver operating characteristic curve (AUC), accuracy, sensitivity, specificity, and precision of the radiomics model for 
the test set 1 and test set 2 were calculated. Finally, the diagnostic performance of each model was compared with 
the diagnostic level of junior and senior radiologists.

Results The single-sequence ALNM classifier derived from DCE postcontrast phase 1 had the best performance for 
both test set 1 (AUC = 0.891) and test set 2 (AUC = 0.619). The best-performing multisequence ALNM classifiers for 
both test set 1 (AUC = 0.910) and test set 2 (AUC = 0.717) were generated from DCE postcontrast phase 1, T2-weighted 
imaging, and diffusion-weighted imaging single-sequence ALNM classifiers. Both had a higher diagnostic level than 
the junior and senior radiologists.
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Introduction
Breast cancer is a malignant tumor that poses a threat to 
women’s health and has become the most prevalent can-
cer worldwide [1]. The axillary lymph node (ALN) drains 
approximately 70% of breast lymph, which is the most 
important lymphatic-transfer pathway in breast cancer. 
ALN status (with or without metastasis) is an important 
basis for accurately evaluating clinical stage, treatment 
strategy, and prognosis in patients with breast cancer [2]. 
Clinicians commonly perform axillary lymph node dis-
section to identify ALN status. However, this invasive 
method is associated with a risk of related complications 
such as arm numbness and upper limb edema [3]. There-
fore, a risk-free method is required for evaluating ALN 
status, which can reduce unnecessary invasive surgeries 
and the risk of related complications.

Radiomics, a noninvasive technique, involves resecting 
a multitude of quantitative features from medical imag-
ing procedures such as computed tomography (CT) scan 
and magnetic resonance imaging (MRI). These features 
are subsequently used in lesion diagnosis and the predic-
tion of disease-free survival [4–6]. Notably, radiomics 
has shown advancements in preoperatively detecting 
lymph node metastasis in patients with breast cancer. 
Dong et al. first used radiomics based on fat-suppressed 
T2-weighted imaging (T2WI) and diffusion-weighted 
imaging (DWI) MRI sequences to predict ALN status 
in patients with breast cancer [7]. Their study revealed 
that the prediction model, based on radiomics features 
derived from these two sequences, had a high perfor-
mance with an area under the receiver operating char-
acteristic (ROC) curve (AUC) of 0.805. To enhance the 
prediction of axillary lymph node metastasis (ALNM), 
Liu et al. integrated clinicopathological parameters with 
dynamic contrast-enhanced (DCE) MRI radiomics fea-
tures [8]. Results showed that the predictive performance 
of the strategy was comparable to that in the study of 
Dong et al. In a separate investigation, Chai et al. evalu-
ated the efficacy of predicting ALNM using four different 
MRI sequences, emphasizing that the second postcon-
trast phase of DCE had the highest performance, with an 
AUC of 0.860 [9]. The collective findings underscore the 
variability in informativeness among MRI sequences for 
evaluating ALN status. Importantly, incorporating addi-
tional MRI sequences into a radiomics model may intro-
duce noise, redundancy, or collinearity among features, 
potentially compromising model performance, stability, 
and generalizability [10]. Thus, identifying the optimal 

combination of MRI sequences is important. Further-
more, the existing prediction models have been com-
monly developed using data from single centers. Thus, 
there is a lack of external validation.

This study aimed to explore the optimal combination 
of multisequence MRI radiomics for developing a pre-
diction model to differentiate the ALN status of patients 
with breast cancer. Further, the prediction model based 
on MRI data from an independent center was validated.

Methods
Patients and breast MRI acquisition
This study enrolled 101 patients with invasive breast 
cancer from Guangdong Province Hospital for Women 
and Children Healthcare (center 1) and 40 patients with 
invasive breast cancer from Yantai YuHuangDing Hos-
pital (center 2) from March 2021 to January 2022. The 
inclusion criteria were as follows: (1)  patients with his-
topathological diagnosis of breast cancer, (2)  those with 
information on demographic and clinical characteris-
tics, and (3) those who underwent dedicated breast MRI 
within 2 weeks before surgery. The exclusion criteria 
were as follows: (1)  patients who received preoperative 
neoadjuvant chemotherapy or radiotherapy, (2)  those 
with a prior treatment history before MRI, (3) those with 
other malignant tumors, and (4) those with poor image 
quality or incomplete sequence.

Using breast tumor tissues, immunohistochemical 
analysis was performed to determine estrogen receptor 
(ER), progesterone receptor (PR), and human epidermal 
growth factor receptor 2 (HER2) status and Ki-67 expres-
sion. The molecular subtypes of breast tumors, as per the 
St. Gallen Consensus Conference 2013, were classified 
into luminal A (ER + and/or PR+, HER-2−, Ki-67 < 14%), 
luminal B (ER + and/or PR+, HER-2−, Ki-67 ≥ 14%; 
ER + and/or PR +, HER-2+, Ki-67 in any state), HER2-
positive (ER−, PR−, HER-2+), and triple-negative breast 
cancer (TNBC, ER−, PR−, HER-2−) [11]. Based on the 
presence of ALNM, as indicated by the postoperative 
pathological results, the patients were categorized into 
the ALNM group and the nonaxillary lymph node metas-
tasis (NALNM) group.

The patients from center 1 underwent imaging using 
a 3.0T MRI scanner (Ingenia, Philips Healthcare, Best, 
the Netherlands). Meanwhile, patients from center 2 
underwent imaging using a 3.0T MRI scanner (Discov-
ery, GE Healthcare, Milwaukee, Wisconsin, the USA). 
During the MRI examination, the patients were placed 
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in the prone position. The breasts hang naturally, and 
they were anchored properly in an eight-channel breast-
dedicated coil. In the axial position, the bilateral breasts 
were in the center of the field of view, including the whole 
bilateral breasts and axillary region. In the sagittal posi-
tion, the positioning line was parallel to the long axis 
of the breast. The imaging protocol comprised non-fat-
suppressed T1-weighted imaging (T1WI), fat-suppressed 
T2WI, DWI, and DCE MRI using fat-suppressed T1WI. 
DCE had one precontrast phase (1  min before contrast 
injection) and four postcontrast phases (range: 1–4, cor-
responding to the first to fourth min after contrast injec-
tion). Table 1 shows the details of the MRI protocols.

Radiomics feature extraction
A radiologist with 5 years of experience manually delin-
eated the tumor volume of interest (VOI) on DCE 
postcontrast phase 2 for each patient using the Medi-
cal Imaging Interaction Toolkit (MITK) software (v. 
2016.11.0; http://www.mitk.org/). Figure  1 shows the 
VOI of the primary tumor using the MITK. Then, the 
VOIs of other sequences were manually checked and 
adjusted if needed.

A series of harmonization techniques were applied to 
the MRI volumes before radiomics feature extraction 

[12]. First, images from other sequences were resampled 
to the resolution, spacing, and position of DCE postcon-
trast phase 2 using linear interpolation. For each MRI 
volume, the mean value and the standard deviation of 
intensity were calculated to standardize the MRI images 
from all sequences. Next, each volume was normalized 
using the z-score method by subtracting the mean inten-
sity and dividing by the standard deviation of intensity 
[13, 14].

PyRadiomics (v3.0.1; http://www.radiomics.io/
pyradiomics.html), an open-source Python toolkit for 
extracting radiomics features from medical images, was 
used to calculate the radiomics features [15]. In total, 851 
radiomics features were calculated from tumor VOI in all 
sequences. These features included 14 shape features, 18 
first-order features, 24 Gy-level cooccurrence matrix fea-
tures, 16 Gy-level run length matrix features, 16 Gy-level 
size zone matrix (GLSZM) features, 14  Gy-level depen-
dence matrix features, 5 neighboring gray tone difference 
matrix features, and 744 Wavelet features. The details 
of all features are provided online (https://pyradiomics.
readthedocs.io/en/latest/features.html) [16].

In the DWI sequence, radiomics features were directly 
extracted from the diffusion-weighted images. Apparent 

Table 1 MRI protocols of two scanners
Scanner Sequences TR/TE Matrix size FOV Slice

thickness
Slice spacing

Ingenia 3.0T, Philips Healthcare T1WI 542/8 ms 272 × 128 450 × 450 4 mm 0.4 mm
T2WI 4196/75 ms 192 × 221 190 × 339 4 mm 0.4 mm
DWI
(b = 1000 s/mm2)

6745/103 ms 212 × 142 400 × 340 4 mm 0.4 mm

DCE 4.4/2.2 ms 328 × 392 280 × 339 1.6 mm 0.8 mm
Discovery 3.0T, GE Healthcare T1WI 460/6.3 ms 320 × 140 340 × 340 5 mm 1 mm

T2WI 5210/85 ms 384 × 384 340 × 340 5 mm 1 mm
DWI
(b = 1000 s/mm2)

2496/71 ms 128 × 128 320 × 320 5 mm 1 mm

DCE 5.7/1.7 ms 288 × 320 360 × 360 2 mm 2 mm
TR: repetition time, TE: echo time, FOV: field of view

Fig. 1 MRI images of a 56-year-old woman with breast cancer. (a) DCE postcontrast phase 2 image. (b) VOI of the primary tumor manually delineated 
by the radiologist

 

http://www.mitk.org/
http://www.radiomics.io/pyradiomics.html
http://www.radiomics.io/pyradiomics.html
https://pyradiomics.readthedocs.io/en/latest/features.html
https://pyradiomics.readthedocs.io/en/latest/features.html


Page 4 of 11Shi et al. Cancer Imaging          (2024) 24:122 

diffusion coefficient maps for feature extraction were not 
used.

Feature selection and ALNM classifier modeling
To reduce irrelevant and redundant features, a three-
stage feature selection was performed for each MRI 
sequence individually. First, the radiomics features with 
a variance < 0.05 were deleted. Next, Pearson correlation 
matrixes were established using pair-wise feature correla-
tions. The mean absolute correlation of each feature was 
calculated, and the one with the highest value was elimi-
nated. Third, to lower the risk of model overfitting, the 
minimum redundancy maximum relevance (mRMR) fea-
ture selection strategy was used to maintain the number 
of features within 1/10 of the total number of dependent 
sets [17, 18].

To assess the validity and generality of the ALNM clas-
sifier, 101 patients from center 1 were randomly divided 
into the training set (n = 76) and test set 1 (n = 25) at a 
ratio of 3:1. Meanwhile, 40 patients from center 2 were 
grouped in test set 2 (n = 40).

For single-sequence ALNM classifier modeling, the 
selected radiomics features were fed into the least abso-
lute shrinkage and selection operator (LASSO) [19]. 
LASSO is a generalized linear model that performs both 
feature selection and regularization to enhance classi-
fication. Moreover, it has a great performance in breast 
radiomics studies [20]. For each sequence, 3-fold cross-
validation was used to achieve a robust single-sequence 
ALNM classifier. Multisequence ALNM classifiers were 
constructed by integrating single-sequence ALNM clas-
sifiers using the multivariate logistic regression model 

with combinations of T1WI, T2WI, DWI, and the best-
validation-performing DCE phase. In total, four single-
sequence ALNM classifiers and 11 multisequence ALNM 
classifiers were built. The single-sequence ALNM classi-
fiers were the linear weighted sum of radiomics features, 
and the multisequence ALNM classifiers were the linear 
weighted sum of the outputs of single-sequence ALNM 
classifiers.

The ROC curve, AUC, sensitivity, specificity, accuracy, 
and precision of the models were analyzed to assess the 
performance of the ALNM classifier. Figure  2 shows 
the flowchart for the ALNM classifier development and 
validation.

To compare the performance of the radiomics model 
with the diagnoses of the radiologists, two radiologists (a 
junior radiologist with 5 years of experience and a senior 
radiologist with 20 years of experience) were assigned 
to individually read all original images of each case in 
test set 1 and test set 2 and to make a diagnostic deci-
sion (ALNM vs. NALNM). The ALNM criteria were as 
follows: enlarged lymph nodes (diameter of ≥ 10  mm) 
with single or multiple axillary hilar disappearance and 
uneven circular enhancement on contrast-enhanced MRI 
images, or small lymph nodes (diameter of < 10  mm) 
with multiple hilar disappearance and uneven circular 
enhancement. The NALNM criteria do not fulfill any 
ALNM criteria.

Statistical analysis
The categorical variables of patients with ALNM and 
NALNM were compared using the chi-square test. The 
Shapiro–Wilk test was used to analyze the distributional 

Fig. 2 Workflow for the construction and validation of the ALNM classifier
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properties of continuous variables as mean ± standard 
deviation for data with a normal distribution or as 
median (interquartile range) for data with a non-normal 
distribution. Continuous variables with or without a nor-
mal distribution were compared using the Student’s t-test 
or the Wilcoxon rank-sum test, respectively. The differ-
ences between ROC curves were compared using the 
DeLong test [21]. The statistical analysis, feature selec-
tion, and development and validation of the model were 
performed using the R software (version 4.0.3, https://
www.r-project.org/). The two-tailed statistical tests were 
used, and a P value of < 0.05 was considered statistically 
significant.

Results
Characteristics of the patients
The age of the patients with NALNM in the training set 
did not have a normal distribution (P = 0.001). There was 
no significant differences in terms of age, ER, PR, and 
HER-2 status, Ki-67 expression, and molecular subtypes 
between the NALNM and ALNM cohorts in the training 
set, test set 1, and test set 2. Table 2 depicts the clinical 
and pathological characteristics of the patients.

Feature selection and model validation performance
After excluding features with a variance of < 0.05 and a 
high correlation, the number of T1WI, T2WI, DWI, 
DCE precontrast (D_pre), DCE postcontrast phase 1 
(D_post_1), DCE postcontrast phase 2, DCE postcon-
trast phase 3, and DCE postcontrast phase 4 radiomics 
features was reduced to 236, 209, 236, 189, 185, 180, 187, 
and 187, respectively. After mRMR and LASSO feature 
selection, there were 5, 5, 5, 4, 4, 1, 4, and 4 features in 
the T1WI, T2WI, DWI, DCE precontrast, DCE postcon-
trast phase 1, DCE postcontrast phase 2, DCE postcon-
trast phase 3, and DCE postcontrast phase 4 sequences, 
respectively. Table 3 presents the radiomics features used 
in single-sequence ALNM classifiers, along with corre-
sponding weights.

Table  4 presents the AUC, accuracy, sensitivity, and 
specificity of single-sequence and multisequence ALNM 
classifiers. The single-sequence ALNM classifier derived 
from DCE postcontrast phase 1 had the best perfor-
mance for both test set 1 (AUC = 0.891) and test set 2 
(AUC = 0.619) among all DCE phases. The best-perform-
ing multisequence ALNM classifier for both test set 1 
(AUC = 0.910) and test set 2 (AUC = 0.717) was gener-
ated from DCE postcontrast phase 1, T2WI, and DWI 
single-sequence ALNM classifiers. In test set 1, the AUC 
of the DCE postcontrast phase 1 + T2WI + DWI model 

Table 2 Patient profiles in the training set and test set
Training set
(n = 76)

P value Test set 1
(n = 25)

P value Test set 2
(n = 40)

P 
value

Axillary lymph 
node status

Patients with 
NALNM
(n = 45)

Patients with 
ALNM
(n = 31)

Patients 
with NALNM 
(n = 16)

Patients with 
ALNM (n = 9)

Patients 
with NALNM 
(n = 22)

Patients with 
ALNM (n = 18)

Age, years
Median 48 0.096 0.093 0.115
Range 33–76
Mean ± Std 52.2 ± 9.5 52.4 ± 11.8 59.4 ± 8.02 58.7 ± 6.3 54.3 ± 9.97
ER status
Negative 14 9 1.000 6 6 0.325 15 17 0.054
Positive 31 22 10 3 7 1
PR status
Negative 14 11 0.880 6 6 0.325 14 14 0.491
Positive 31 20 10 3 8 4
HER-2 status
Negative 34 21 0.626 12 6 0.673 4 3 1.000
Positive 11 10 4 3 18 15
Ki-67 status
Negative 17 5 0.074 3 0 0.280 19 14 0.679
Positive 28 26 13 9 3 4
Molecular 
subtypes
Luminal A 15 5 0.189 2 0 0.377 2 4 0.302
Luminal B 17 18 9 3 14 13
HER-2 5 5 2 3 3 0
TNBC 8 3 3 3 3 1

https://www.r-project.org/
https://www.r-project.org/
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was significantly higher than that of the senior radiolo-
gist (0.910 vs. 0.641, P = 0.012). In test set 2, the AUC of 
the DCE postcontrast phase 1 + T2WI + DWI model did 
not significantly differ from that of the senior radiolo-
gist (0.717 vs. 0.650, P = 0.569). Figure 3 shows the ROC 
curves of the best-performing single-sequence, multi-
sequence ALNM classifiers, and two radiologists. Fig-
ure 4 depicts the MRI images of four representative cases.

Discussion
This retrospective study compared the performance of 
prediction models based on different combinations of 
multisequence MRI radiomics features for differentiating 
the ALN status of patients with breast cancer. The mod-
els were developed using data from two distinct centers, 
enhancing their generalizability and robustness, particu-
larly with the inclusion of data from the second center 
as an external validation set. The model incorporating 
the radiomics features from DCE postcontrast phase 1, 
T2WI, and DWI had the best performance in both the 
internal and external validation sets. Furthermore, the 

Table 3 Radiomics features and weights in single-sequence ALNM classifiers
Sequences Features Weights
T1WI (Intercept) 2.775E-01

original_glszm_LowGrayLevelZoneEmphasis −5.562E+00
wavelet.LLH_glszm_SmallAreaLowGrayLevelEmphasis −1.424E+02
wavelet.HLL_gldm_SmallDependenceHighGrayLevelEmphasis −9.228E-03
wavelet.HHL_firstorder_Minimum −4.577E-01
wavelet.HHH_glrlm_LongRunLowGrayLevelEmphasis 3.747E+01

T2WI (Intercept) -6.868E+00
wavelet.LLH_firstorder_90Percentile 5.023E+00
wavelet.LHL_glrlm_ShortRunHighGrayLevelEmphasis 5.403E-03
wavelet.HLL_glcm_InverseVariance 8.918E+00
wavelet.HHH_gldm_DependenceVariance 2.785E-02
wavelet.LLL_glszm_SmallAreaLowGrayLevelEmphasis −1.198E+02

DWI (Intercept) 8.987E-01
original_glcm_ClusterProminence −5.022E-06
wavelet.LLH_glcm_Correlation 1.480E+01
wavelet.LLH_glcm_MCC −1.516E+01
wavelet.LLH_glszm_ZoneEntropy 4.288E-01
wavelet.HLH_gldm_SmallDependenceHighGrayLevelEmphasis −1.788E-02

DCE precontrast (Intercept) -6.998E+00
original_gldm_DependenceEntropy 9.370E-01
wavelet.HLL_firstorder_TotalEnergy 4.213E-05
wavelet.HLH_glcm_MCC -2.674E+00
wavelet.HHH_glrlm_LongRunHighGrayLevelEmphasis 1.601E-03

DCE postcontrast phase 1 (Intercept) 2.145E+00
original_firstorder_Minimum −1.004E+00
wavelet.LLH_gldm_SmallDependenceHighGrayLevelEmphasis −1.057E-02
wavelet.HHH_firstorder_Skewness 6.070E+00
wavelet.LLL_glszm_LowGrayLevelZoneEmphasis −1.033E+02

DCE postcontrast phase 2 (Intercept) −4.575E-01
wavelet.HLH_glcm_ClusterProminence −8.673E-06

DCE postcontrast phase 3 (Intercept) 2.127E+00
wavelet.LLH_glcm_Correlation 4.150E+00
wavelet.LHH_glcm_JointEntropy −3.072E-01
wavelet.HLH_glrlm_LongRunLowGrayLevelEmphasis −5.871E+01
wavelet.HLH_gldm_SmallDependenceHighGrayLevelEmphasis −8.902E-03

DCE postcontrast phase 4 (Intercept) −2.317E+01
wavelet.LLH_glcm_Correlation 1.713E+00
wavelet.LHL_gldm_DependenceEntropy 3.524E+00
wavelet.HLL_glrlm_ShortRunHighGrayLevelEmphasis 1.039E-03
wavelet.HHH_gldm_SmallDependenceHighGrayLevelEmphasis −8.965E-03
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Table 4 Performance of the ALNM models and radiologists
Sequences Test set 1 Test set 2

AUC ACC SEN SPE Prec AUC ACC SEN SPE Prec
T1 0.821 0.800 0.833 0.769 0.833 0.593 0.625 0.778 0.500 0.538
T2 0.788 0.760 1.000 0.538 0.667 0.712 0.725 0.667 0.773 0.706
DWI 0.782 0.800 0.583 1.000 0.875 0.591 0.650 0.500 0.773 0.778
DCE Precontrast 0.865 0.880 1.000 0.769 0.800 0.551 0.575 0.722 0.455 0.400
DCE1 0.891 0.840 0.750 0.923 0.900 0.619 0.650 0.944 0.409 0.567
DCE2 0.846 0.800 0.833 0.769 0.714 0.591 0.575 1.000 0.227 0.529
DCE3 0.821 0.800 0.917 0.692 0.667 0.558 0.650 0.611 0.682 0.579
DCE4 0.724 0.720 1.000 0.462 0.692 0.545 0.575 0.889 0.318 0.514
DCE1 + T1 0.853 0.840 0.917 0.769 0.786 0.624 0.650 0.833 0.500 0.577
DCE1 + T2 0.885 0.880 0.917 0.846 0.846 0.702 0.725 0.889 0.591 0.640
DCE1 + DWI 0.897 0.840 0.750 0.923 0.900 0.624 0.675 1.000 0.409 0.581
T1 + T2 0.885 0.880 0.833 0.923 0.909 0.667 0.675 0.667 0.682 0.632
T1 + DWI 0.897 0.840 0.833 0.846 0.833 0.598 0.575 0.889 0.318 0.516
T2 + DWI 0.904 0.840 1.000 0.692 0.750 0.712 0.725 0.722 0.727 0.684
DCE1 + T1 + T2 0.891 0.880 0.833 0.923 0.909 0.669 0.700 0.611 0.773 0.688
DCE1 + T1 + DWI 0.904 0.840 0.750 0.923 0.900 0.631 0.650 0.833 0.500 0.577
DCE1 + T2 + DWI 0.910 0.840 0.833 0.846 0.833 0.717 0.725 0.722 0.727 0.684
T1 + T2 + DWI 0.885 0.840 0.833 0.846 0.833 0.669 0.675 0.667 0.682 0.632
DCE1 + T1 + T2 + DWI 0.891 0.840 0.833 0.846 0.833 0.672 0.675 0.667 0.682 0.632
Junior radiologist 0.548 0.560 0.250 0.846 0.600 0.583 0.375 0.333 0.500 0.667
Senior radiologist 0.641 0.640 0.667 0.615 0.615 0.650 0.425 0.500 0.200 0.652
AUC: area under the receiver operating characteristic curve, ACC: accuracy, SEN: sensitivity, SPE: specificity, Prec: precision, T1: T1-weighted imaging, T2: T2-weighted 
imaging, DCE1: dynamic contrast-enhanced postcontrast phase 1, DCE2: dynamic contrast-enhanced postcontrast phase 2, DCE3: dynamic contrast-enhanced 
postcontrast phase 3, DCE4: dynamic contrast-enhanced postcontrast phase 4

Fig. 3 ROC curves of the ALNM classifiers and two radiologists. (a) Test set 1, (b) Test set 2
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diagnostic performance between the MRI radiomics 
model and two radiologists was performed. Results 
showed that the MRI radiomics model had a better diag-
nostic efficiency than radiologists.

Our findings are in accordance with a subset of prior 
studies showing that clinicopathologic features, includ-
ing age, ER, PR, and Her-2 status, and Ki-67 expression, 
and molecular subtypes were not significantly correlated 
with ALNM outcomes [20, 22, 23]. Consequently, these 
clinicopathologic characteristics were excluded from our 
models. Nonetheless, the prevailing view of researchers 
is that ER and PR status, ki-67 expression, and molecu-
lar types can be predictive factors of ALNM [24–28]. The 
differences may be attributed to the inclusion of various 
study populations, use of a small sample size, and uneven 
distribution of the sample size in our study.

The single-sequence ALNM classifier derived from 
DCE postcontrast phase 1 had the best performance in 
the test set 1 (AUC = 0.891) and test set 2 (AUC = 0.619). 
This result is similar to that of Liu et al. [29]. This may 
be because DCE-MRI can diagnose breast diseases by 
evaluating tumor morphology and hemodynamics. Thus 
far, breast cancer is a common type of tumor with a rich 
blood supply, and enhancement is more pronounced in 
the early stage. Therefore, DCE postcontrast phase 1 is 
the most effective in displaying the boundaries, heteroge-
neity, and invasiveness of breast cancer lesions [30].

Numerous studies have investigated the optimal com-
bination of sequences, often selecting T2WI, DWI, and 
enhancement sequences based on priori experiences 
[7, 8]. Dong et al. reported that the AUC of a radiomics 
model combining T2WI and DWI was 0.805 [7]. DWI 

Fig. 4 MRI images of four representative cases. (a, e, i, and m) DCE postcontrast phase 1 images of the primary tumor. (b, f, j, and n) T2WI images of the 
primary tumor. (c, g, k, and o) DWI images of the primary tumor. (d, h, l, and p) DCE postcontrast phase 1 images of ALN. (a–d) A 57-year-old female 
patient with breast cancer presented with pathologically confirmed left ALNM. The patient was misdiagnosed with NALNM by the junior radiologist but 
was correctly diagnosed by the senior radiologist and the combined DCE postcontrast phase I + T2WI + DWI model. (e–h) A 66-year-old female patient 
with breast cancer presented with pathologically confirmed right NALNM. The patient was misdiagnosed with ALNM by the senior radiologist but was 
correctly diagnosed by the junior radiologist and the combined DCE postcontrast phase I + T2WI + DWI model. (i–l) A 65-year-old female patient with 
breast cancer presented with pathologically confirmed right NALNM. The patient was misdiagnosed with ALNM by the senior and junior radiologists but 
was correctly diagnosed by the combined DCE postcontrast phase I + T2WI + DWI model. (m–p) A 59-year-old female patient with breast cancer who 
presented with pathologically confirmed left ALNM. The patient was correctly diagnosed by the senior and junior radiologists and the combined DCE 
postcontrast phase I + T2WI + DWI model

 



Page 9 of 11Shi et al. Cancer Imaging          (2024) 24:122 

images can provide additional insights into the diffu-
sion–perfusion characteristics of the primary tumor 
[31]. T2WI is known for its superior tissue contrast, 
offering textural features that enhance discrimination. 
In our study, the inclusion of DCE postcontrast phase 1 
radiomics and T2WI and DWI radiomics resulted in a 
higher AUC (0.910 in test set 1). Therefore, the enhance-
ment sequence improves lesion visualization, which is in 
accordance with clinical observations. Our study showed 
that the optimal multisequence ALNM classifier out-
performed the junior and senior radiologists in terms 
of AUC scores (0.910 vs. 0.641 vs. 0.548 in test set 1 and 
0.717 vs. 0.583 vs. 0.650 in test set 2). This underscores 
the utility of radiomics models in clinical diagnostics, a 
conclusion supported by established research [32, 33].

The single-sequence ALNM classifier derived from 
DCE postcontrast phase 1 comprised features from the 
First_order features and GLSZM measures. This finding 
is consistent with that of previous radiomics studies [34, 
35]. In the T2WI- and DWI-based model, the wavelet 
features were the predominant features, which is consis-
tent with the study showing that wavelet features must be 
the building blocks of radiomics models [36].

Similar to previous studies, our study predicted the 
status of ALNM based solely on radiomics features 
extracted from the ROIs of primary tumors. Radiomics 
models incorporating ROIs from the peritumor region 
can possibly provide a richer texture information than 
those based solely on primary tumor ROIs, thereby 
improving the accuracy and completeness of prediction 
models [37]. For example, Liu et al. established radiomics 
models using intratumoral, 3-mm peritumoral, and 
5-mm peritumoral radiomics features from DCE-MRI 
to predict ALNM status using various machine learning 
algorithms [38]. Their results indicated that the com-
bined intratumoral and 3-mm peritumoral model, con-
structed using the BPNN algorithm, exhibited the best 
predictive performance. Hence, the tumor peripheral 
microenvironment can play a significant role in predict-
ing tumor aggressiveness.

Recent advancements in abbreviated (AB)-MRI have 
gained attention due to their potential to reduce MRI 
costs by shortening image acquisition and interpreta-
tion times [39]. A meta-analysis assessing the diagnos-
tic accuracy of AB-MRI against full diagnostic protocol 
MRI (FDP-MRI) in both the screening and enrichment 
cohorts found no significant differences in terms of 
sensitivity or specificity between the two methods [40]. 
Several AB-MRI protocols recommend the inclusion of 
T1-weighted pre- and postcontrast sequences. This study 
identified an optimal sequence combination of T2WI, 
DCE postcontrast phase 1, and DWI, which not only sup-
ports the practicality of AB-MRI but also offers innova-
tive directions for its protocols. Notably, in the AB-MRI 

protocol proposed by Kuhl et al. [41], in addition to the 
conventional sequences including DCE precontrast and 
postcontrast phase 1, there were also special reconstruc-
tion sequences such as subtraction and maximum-inten-
sity projection (MIP). Results showed that the diagnostic 
performance of the AB-MRI protocol was comparable to 
that of the full diagnostic protocol. In our retrospective 
study, due to the limited storage capacity of the PACS 
system, the subtraction, MIP sequences of each patient 
could not be obtained in time, and only the normal 
reconstruction sequences were used. We can add MIP 
and subtraction sequences purposely in the future and 
continually search for the combination of MRI sequences 
with a higher diagnostic efficacy. Moreover, breast MRI 
is advantageous for evaluating axillary lymphatic condi-
tions. However, mammography and contrast-enhanced 
spectral mammography do not comprehensively cover 
axillary lymph nodes. This study introduces a novel 
approach for predicting ALNM by delineating original 
lesions on mammography or contrast-enhanced spectral 
mammography images, a method validated by the find-
ings of Mao et al. [42].

Limitations
This study had some limitations. First, although our 
findings are promising, the limited number of patients 
affect the generalizability of our results. Thus, we plan 
to expand our study by including more patients and col-
laborating with additional centers. Second, the hetero-
geneity of images from different machines in multiple 
centers could not be prevented. Third, radiomics feature 
extraction required the presegmentation of VOIs, which 
is still dependent on manual delineation by radiologists. 
This step is time-consuming, at a risk of error, and has 
a low reproducibility. If imaging histology modeling is 
applied in clinical practice, a reliable and efficient auto-
mated segmentation method should be identified [43, 
44]. Moreover, our study only included MRI radiomics 
features and clinicopathologic features. The model did 
not use ALNs and peritumor radiomics features, which 
limited the comprehensiveness of the prediction model. 
Finally, DCE-MRI images for VOIs were used exclusively. 
DCE images offer valuable temporal information about 
the “wash-in” and “wash-out” of contrast agents. How-
ever, they may not fully leverage the enhanced contrast 
available in the difference images between postcontrast 
and precontrast phases. Difference images can provide 
a stronger contrast, potentially leading to a more precise 
tumor delineation.

Conclusion
The impact of several MRI sequences on ALNM pre-
diction was examined. This comparative study is ben-
eficial to the community because it can provide a better 
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comprehension of the relative benefits of various MRI 
sequences on radiomics based ALNM distinction. Nev-
ertheless, future studies should enroll patients from dif-
ferent centers, include a larger sample size, and develop 
more reliable predictive models with a greater generaliza-
tion ability.
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