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Abstract
Purpose We aimed to develop and externally validate a CT-based deep learning radiomics model for predicting 
overall survival (OS) in clear cell renal cell carcinoma (ccRCC) patients, and investigate the association of radiomics 
with tumor heterogeneity and microenvironment.

Methods The clinicopathological data and contrast-enhanced CT images of 512 ccRCC patients from three 
institutions were collected. A total of 3566 deep learning radiomics features were extracted from 3D regions 
of interest. We generated the deep learning radiomics score (DLRS), and validated this score using an external 
cohort from TCIA. Patients were divided into high and low-score groups by the DLRS. Sequencing data from the 
corresponding TCGA cohort were used to reveal the differences of tumor heterogeneity and microenvironment 
between different radiomics score groups. What’s more, univariate and multivariate Cox regression were used to 
identify independent risk factors of poor OS after operation. A combined model was developed by incorporating 
the DLRS and clinicopathological features. The SHapley Additive exPlanation method was used for interpretation of 
predictive results.

Results At multivariate Cox regression analysis, the DLRS was identified as an independent risk factor of poor OS. 
The genomic landscape of different radiomics score groups was investigated. The heterogeneity of tumor cell and 
tumor microenvironment significantly varied between both groups. In the test cohort, the combined model had a 
great predictive performance, with AUCs (95%CI) for 1, 3 and 5-year OS of 0.879(0.868–0.931), 0.854(0.819–0.899) and 
0.831(0.813–0.868), respectively. There was a significant difference in survival time between different groups stratified 
by the combined model. This model showed great discrimination and calibration, outperforming the existing 
prognostic models (all p values < 0.05).
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Introduction
Renal cell carcinoma (RCC) is one of the most deadly 
urological malignancies [1, 2]. The most common sub-
type of RCC is clear cell renal cell carcinoma (ccRCC), 
which accounts for the majority of RCC-related deaths 
[3]. Radical nephrectomy and nephron-sparing surgery 
are the primary treatments for localized ccRCC, but 
the prognosis of ccRCC patients varies among different 
stages [4]. It is challenging to accurately predict the clini-
cal outcome because of tumor heterogeneity.

To the best of our knowledge, several prognostic mod-
els have been proposed for outcome prediction of local-
ized ccRCC after surgery [5–7]. For example, the Stage, 
Size, Grade, and Necrosis (SSIGN) score and the Univer-
sity of California, Los Angeles, Integrated Staging System 
(UISS) have been validated and widely used in clinical 
setting [8, 9]. However, most of these studies were limited 
to the clinicopathologic level and their predictive perfor-
mances were unsatisfactory. What’s more, the character-
istics of intratumor heterogeneity were not considered in 
these studies. A more comprehensive prediction could be 
an intriguing topic for further investigation.

Contrast-enhanced computed tomography (CT) exami-
nation is mandatory for detailed assessment of the nature 
of renal mass [10]. In recent years, a newly established 
field, converts extracted features into quantitative param-
eters [11–13]. This method shows huge potential in dis-
ease diagnosis and prognosis prediction [14]. However, 
the association of CT-derived DL radiomics features with 
clinical outcomes in ccRCC patients remains unclear. We 
hypothesized that DL radiomics features could provide 
valuable information for outcome prediction.

Last but not least, previous studies revealed that 
radiomics features could reflect the tumor heterogene-
ity [15, 16]. However, the link between imaging subtypes 
and tumor microenvironment remained unexplored. We 
aimed to investigate and visualize this relationship.

Overall, we aimed to explore the prognostic implica-
tions of CT-derived DL radiomics features, and then 
generate a prediction model for OS in ccRCC patients. 
The secondary endpoint was to explore the associations 
between DL radiomics features and tumor heterogeneity/ 
microenvironment.

Methods and materials
Study design
This retrospective multicenter cohort study has been 
reported in line with the STROCSS criteria [17]. We 

strictly followed the ethical guidelines of the 1975 Dec-
laration of Helsinki. The Research Ethics Committee of 
Suzhou Ninth Hospital Affiliated to Soochow University 
had approved it.

Localized ccRCC patients from 3 hospitals between 
January 2003 and July 2023 were recruited (Fig.  1). 
Clinical data were collected from the electronic medi-
cal record. The inclusion criteria were (1) older than 
18-year-old (2) pathologically confirmed ccRCC after 
radical or partial nephrectomy (3) complete clinicopatho-
logical data, follow-up data and contrast-enhanced CT 
images. Patients with other malignant tumors or history 
of receiving anti-tumor therapy were excluded. We ran-
domly divided the whole cohort into two groups (i.e., 
derivation and test cohorts) for model development and 
validation, with a ratio of 7:3 by the method of random 
number table.

Primary outcomes
All individuals were followed up every 3 months for the 
first year and every 6 months thereafter by telephone. 
The primary outcome for this study was overall survival 
(OS), which is defined as the period between the date of 
diagnosis and death or the last follow-up. The second-
ary outcome was disease-free survival (DFS), defined as 
the time from primary surgery to first tumor recurrence, 
progression, death or the last follow-up.

Definitions of potential predictive factors
Eastern Cooperative Oncology Group Performance Sta-
tus (ECOG-PS) is a questionnaire for functional status 
assessment. This score showed close correlation with 
cancer mortality [18].

Charlson Comorbidity Index (CCI), a widely used scor-
ing system, quantifies comorbidities based on the num-
ber and severity of diseases [19].

The prognostic role of the microvascular invasion has 
been reported in ccRCC [20, 21].

World Health Organization/International Society of 
Urologic Pathologists (WHO/ISUP) classification was 
used for pathological grading of RCC [22].

Image acquisition and ROI segmentation
Contrast-enhanced CT images were collected from pic-
ture archiving and communication system. CT scan 
protocols are listed in Supplementary Table S1. Contrast-
enhanced CT images and detailed clinical information 
of the external validation cohort (TCGA-KIRC cohort) 

Conclusion The combined model allowed for the prognostic prediction of ccRCC patients by incorporating the 
DLRS and significant clinicopathologic features. The radiomics features could reflect the tumor heterogeneity and 
microenvironment.
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Fig. 1 Flow chart of the study design. Abbreviation ccRCC clear cell renal cell carcinoma; TCGA the Cancer Genome Atlas; TCIA the Cancer Imaging Archive; 
KIRC kidney renal clear cell carcinoma; DEG differential expression gene
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were collected from The Cancer Imaging Archive (TCIA) 
(https://www.cancerimagingarchive.net/) [23]. The exclu-
sion criteria were described as follows: (1) no enhanced 
CT images (2) poor image quality (3) survival time < 30 
days. As a result, 96 cases were enrolled. Genomic data 
matching the TCIA were downloaded from TCGA 
(https://portal.gdc.cancer.gov/).

3D slicer software (Version 4.11.0) was used for the 
segmentation of region of interests (ROIs) [24]. The 
tumor area was outlined slice-by-slice by two experi-
enced radiologists (10-and 15-years’ experience in radi-
ology, respectively) using the “Level Tracing” function of 
the 3D Slicer. Areas comprising air and non-tumor tis-
sues were manually removed. The boundary is smoothed 
using the “Smooth” function. The dispute on the region 
of interest (ROI) delineation would be settled after dis-
cussion. The largest cross-sectional slice of the 3D-ROI 
was selected as the input image for the ResNet50 model. 
This ROI area was extended outward into a square area. 
For the image standardization, we resampled all images 
to a 1 × 1 × 1 mm voxel spacing and performed gray-level 
discretization. In the gray-level discretization process-
ing, CT images were set to soft tissue window (Window 
Width:350, Window Level:50), followed by mapping to 
the grey scale range [0, 255] (bin width, 25; bin count, 
11).

Two experts reviewed and manually labelled CT 
images when blind to clinical information. The intra- and 
inter-class correlation coefficients (ICCs) were adopted 
for evaluating the intraobserver and interobserver repro-
ducibility of the DL radiomics features [25]. In our study, 
50 patients’ CT images from the derivation cohort were 
selected at random for ICCs calculation twice, in order to 
ensure the reproducibility of radiomics analysis.

Feature extraction and selection
The transfer learning framework was introduced to over-
come the challenge of small sample size. We extracted 
the DL radiomics features from the ROIs using the 
pre-trained classification model ResNet50 (Python 3.6, 
TensorFlow 2.0.0, Keras 2.3.1). The parameter com-
binations were listed as follows: activation=’ReLu’, 
optimizer=’Adam’, classification function=’sigmoid’, learn-
ing rate=’0.01’ and epoch = 100. We recorded training and 
validation loss values, and the corresponding network 
weights for epochs. During convergence, early stopping 
was used to prevent overfitting. The final model was 
determined for radiomics feature extraction, with the 
highest accuracy and lowest loss value.

The features with ICCs ≤ 0.8 were dropped. Then, we 
adopted the Spearman correlation coefficient (Rho) to 
evaluate the correlation between any two CT image fea-
tures. If two features are highly correlated (i.e., |Rho| > 
0.8), either of the two features would be excluded. Next, 

the univariate Cox analysis was conducted to identify 
OS-related features. Only features with p value < 0.05 
were retained for further analysis. Finally, the least abso-
lute shrinkage and selection operator (LASSO) Cox 
regression was performed to remove unimportant fea-
tures. The deep learning radiomics score (DLRS) was 
then calculated based on weights of their respective 
coefficients.

Predictive performance and prognostic value of the DLRS
A time-dependent receiver operator characteristic curve 
(ROC) was used to assess the predictive performance of 
the DLRS. The optimal cutoff value was calculated based 
on the maximum of Youden index. Patients were strati-
fied into high- and low-score groups according to the 
best cutoff. Kaplan-Meier survival curves for OS and DFS 
were plotted respectively. In addition, the generalization 
of the DLRS was validated using the CT images from the 
TCIA (TCGA-KIRC cohort).

Gene set enrichment analysis between high- and low-score 
groups
We collected CT scans and genomic data from the 
TCIA (TCGA-KIRC cohort) for revealing the molecu-
lar mechanism associated with the DLRS differences. 
Patients were grouped into high- and low-score groups 
by the DLRS. Differentially expressed genes (DEGs) were 
identified between both groups based on the R software 
“limma” package, with the thresholds of adj p value < 0.05 
and |log2FC| > 2 [26].

DEGs were subjected to cell component, molecular 
function and biological processs studies by Gene Ontol-
ogy (GO) analysis and Kyoto encyclopedia of Genes and 
Genomes (KEGG) pathway analysis [27, 28]. Both p and 
adj p values are set to less than 0.05.

STRING (the Retrieval of Interacting Genes, https://
string-db.org/) is web tool to evaluate the potential 
relationship among these screened DEGs, with a confi-
dence score of ≥ 0.9 [29]. Additionally, survival data from 
TCGA-KIRC cohort were used to evaluate the prognostic 
value of DEGs.

Finally, tumor mutation burden (TMB) refers to the 
sum of gene mutations in tumor cells [30]. In general, 
tumors with higher TMB may be more likely to respond 
to immunotherapy. Correlations between DEGs expres-
sion and TMB were investigated in our study.

The association of the DLRS with tumor microenvironment
Firstly, the Estimate method was used for estimating 
tumor purity, stromal score and immune score in high- 
and low-score groups [31, 32]. Secondly, the CIBERSORT 
tool was applied to infer the infiltrating immune cells 
in ccRCC [33, 34]. The immunophenotype differences 
between different radiomics score groups were analyzed. 

https://www.cancerimagingarchive.net/
https://portal.gdc.cancer.gov/
https://string-db.org/
https://string-db.org/
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Thirdly, we compared the immune cell infiltration lev-
els among tumors with different somatic copy number 
alterations by using the Mann–Whitney U test [35, 36]. 
TIMER tool, a web server for comprehensive analysis of 
tumor-infiltrating immune cells, was used to visualize the 
distributions of each immune subset at each copy num-
ber status in ccRCC [35].

Development and validation of the combined model
Clinicopathological data were collected from the elec-
tronic medical record including age, gender, body mass 
index, ECOG-PS, CCI score, TNM stage, tumor size, 
tumor necrosis, histologic grade, microvascular invasion, 
laboratory tests and clinical symptoms (hematuria and 
flank pain).

Univariate and multivariate Cox regression analysis 
were used to identify independent risk factors of poor 
OS. In the derivation cohort, eXtreme Gradient Boost-
ing classification (XGBC) algorithm was introduced to 
generate a combined model by incorporating the DLRS 
and significant clinicopathological features [37]. The 
best parameters combination and eligible features were 
obtained by the method of 10-fold grid-search. We plot-
ted the learning curve for fine-tuning (e.g., n_estimators). 
The final model with the highest accuracy was deter-
mined for the downstream analyses. (Python, version 3.6; 
scikit-learn package, version 0.24).

Time-dependent ROC analysis was conducted to eval-
uate the predictive performance. The clinical utility and 
stability of this combined model were evaluated by deci-
sion curve (DCA) and calibration curve analysis [38]. For 
visualizing the contributions of each feature to outcome 
prediction, Shapley Additive exPlanations (SHAP) plot 
was used to explain the impact of selected features on 
predictions [39].

Furthermore, SSIGN and UISS scores were commonly 
used for the assessment of long-term prognosis in ccRCC 
patients in clinical practice. The methods for SSIGN and 
UISS calculation can be obtained in Supplementary S2.

Statistical analysis
All data analysis were performed with softwares (SPSS, 
version. 26.0 or R software, version. 4.0). Continuous data 
was shown as the median ± interquartile range (IQR). The 
comparison of continuous variables was conducted by 
the Mann–Whitney U test or Student’s t test. Categorical 
variables were compared by the chi-square test.

The ICCs were adopted for evaluating the intraobserver 
and interobserver agreement.

The Spearman correlation coefficient (Rho) was used to 
evaluate the correlation between variables. We compared 
the immune cell infiltration levels by using the Mann–
Whitney U test. Time-dependent ROC analysis was per-
formed to evaluate the predictive performance of models. 

Delong test was performed to compare the statistical 
significance between ROC curves. Univariate and mul-
tivariate Cox regression analysis were adopted to screen 
for independent risk factors of poor OS. The Kaplan–
Meier method and log-rank test were used to estimate 
the survival.

We estimated sample size using pmsampsize pack-
age of R software (R2cs = 0.27, parameters = 10, preva-
lence = 0.15), and then at least 296 cases were required 
for model development [40]. All significant tests were 2- 
sided and p values < 0.05.

Results
Patient characteristics
The overall study design is demonstrated in Fig. 2. A total 
of 512 eligible patients from 3 hospitals were recruited. 
358 of 512 patients were randomly assigned to the deriva-
tion cohort. The remaining 154 cases and 96 cases from 
TCGA-KIRC cohort were reserved for model validation. 
Finally, a novel combined model, namely NHSTM-R, has 
been developed by integrating the DLRS [R] and inde-
pendent clinicopathological features (N [tumor necrosis], 
H [histologic grade], S [tumor size], T [TNM stage] and 
M [microvascular invasion]).

The details of patient characteristics are shown in 
Table  1. In the whole cohort, the 5-year OS and DFS 
rates were 67.9% and 61.2%, respectively. Median OS 
was 62.2(IQR, 25.3) months for the derivation cohort, 
59.7(IQR, 26.8) months for the test cohort. Median DFS 
was 54.3(IQR, 24.1) months for the derivation cohort, 
and 52.5(IQR, 23.7) months for the test cohort. In addi-
tion, only the OS time of patients in the TCGA cohort 
could be available, and the median OS was 70.4(IQR, 
28.5) months.

The DLRS calculation and evaluation
Of the 3566 DL radiomics features, 2781 reproducible 
features were identified based on ICC analysis. Next, 
of the 2781 features, 1753 DL radiomics features were 
retained by using the Spearman rank correlation test. 
Then, 297 DL radiomics features with p value < 0.05 were 
retained based on the univariate Cox analysis. Finally, by 
using the LASSO Cox regression method, we selected 
7 most valuable DL radiomics features for the DLRS 
calculation.

DLRS = 0.517*DL_751-0.235* DL_1064 + 0.624* 
DL_1389 − 0.195* DL_1686 + 0.741* DL_1891 − 0.438* 
DL_2016 + 0.366* DL_2458 − 0.930.

In the test cohort, the DLRS had a great performance, 
with AUCs for 1, 3, and 5 year-OS of 0.814(95% CI, 
0.775–0.859), 0.796(95% CI, 0.761–0.846) and 0.782(95% 
CI, 0.749–0.827), respectively (Table 2).

In the TCGA-KIRC cohort, the DLRS also had a great 
performance, with AUCs for 1, 3, and 5 year-OS of 
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0.775(95% CI, 0.742–0.801), 0.759(95% CI, 0.735–0.793) 
and 0.751 (95% CI, 0.730–0.778), respectively.

Patients were classified into high- and low-risk groups 
on the basis of the best cutoff value (-36.0162). Of the 
derivation and test datasets, 121 and 47 individuals were 
classified into the high-risk group, and 237 and 107 indi-
viduals were classified into the low-risk group, respec-
tively. Kaplan–Meier survival analysis revealed that 
ccRCC patients in low-score group had a better OS and 
DFS compared to those in high-score group (all p val-
ues < 0.05) (Fig. 3A-D). The prognostic value of the DLRS 
was also determined in the external validation cohort 
(Supplementary Figure S1).

Genomic differences between high- and low-score groups
To further explore the genomic differences between 
high- and low-score groups, we determined DEGs using 
RNA-seq data from TCGA cohort, and then generated 
a volcano plot showing 260 upregulated DEGs and 187 
downregulated DEGs (Fig.  4A). Principal components 
analysis (PCA) revealed significant differences in gene 
expression level between both groups (Fig. 4B). GO anal-
ysis showed that DEGs were enriched in the biological 
process of immune system regulation: mainly regulation 

of T cells and lymphocyte (Fig.  4C-E). KEGG analysis 
indicated that DEGs were intensively enriched in Wnt 
signaling pathway and JAK-STAT signaling pathway, 
which were consistent with the findings of previous stud-
ies [41–44] (Fig. 4F). Interaction network analysis among 
DEGs was visualized in Supplementary Figure S2.

To investigate the association of DEGs with prognosis 
in ccRCC patients, prognostic value of the 10 most sig-
nificant DEGs were analyzed. We observed that most of 
DEGs were significantly related to the OS (Supplemen-
tary Figure S3). In addition, the correlations between 
DEGs expression and TMB were visualized with radar 
chart (Supplementary Figure S4). CLDN8 and KCNJ1 
gene expression levels showed significantly negative cor-
relation with TMB (both p values < 0.05).

The association of the DLRS with tumor microenvironment
Firstly, the immune score, stromal score, ESTIMATE 
score (the sum of immune and stromal scores) and tumor 
purity were calculated, and significant differences were 
observed between high- and low-score groups (Fig.  5A, 
B). This indicated that radiomics score could reflect 
the immune infiltration levels. Secondly, since multiple 
immune-related biological processes were enriched, 

Fig. 2 Technical flow chart of the study. Abbreviation CCI Charlson Comorbidity Index; MVI microvascular invasion; WHO/ISUP World Health Organization/
International Society of Urologic Pathologists; ICC intra- and inter-class correlation coefficients; LASSO least absolute shrinkage and selection operator; 
XGBC eXtreme Gradient Boosting classification; SHAP SHapley Additive explanation
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CIBERSORTx was used to calculate the relative propor-
tion of 22 immune cell types of each case (Fig. 5C). We 
observed that multiple immune cells such as macrophage 
and regulatory T (Treg) cells varied significantly between 
different radiomics score groups (Fig.  5D). Finally, box 
plots were presented to show the distributions of each 
immune subset at each somatic copy number status of 
DEGs (Supplementary Figure S5).

Identification of independent risk factors
Univariate Cox regression analysis results are displayed 
in Fig.  6A. In multivariate Cox regression analysis, the 
tumor size (HR, 1.66), tumor necrosis (HR, 1.73), TNM 
stage (HR, 1.95), histologic grade (HR, 1.58), microvascu-
lar invasion (HR, 1.96) and DLRS (HR, 2.46) were identi-
fied as independent risk factors of poor OS (Fig. 6B).

Combined model construction and validation
A combined model (namely NHSTM-R) was built 
based on the DLRS and independent clinicopathologi-
cal features. The optimal parameter combinations of the 
NHSTM-R model are described in Supplementary S3. 
In the test cohort, the NHSTM-R model had the AUCs 
for 1, 3, and 5 year-OS of 0.879(95% CI, 0.868–0.931), 
0.854(95% CI, 0.819–0.899) and 0.831(95% CI, 0.813–
0.868), respectively (Table  2). Delong test revealed that 
the NHSTM-R model significantly outperformed the 
DLRS and existing prognostic models (all p values < 0.05) 
(Fig.  7A-C). Kaplan-Meier survival curves for OS and 
DFS are shown in Fig. 7D-G. There was a significant dif-
ference in survival time between different radiomics 
score groups stratified by the NHSTM-R model.

Furthermore, the feature importance rankings were 
calculated (Fig. 7H). The NHSTM-R model was well cali-
brated in both cohorts, and had a larger net benefit than 
the others in the whole cohort (Fig.  7I, J). As shown in 
SHAP summary plots, we visualized the contributions of 
each feature to OS prediction by using the average SHAP 
values (Fig. 7K). We found that the DLRS acted as a pivot 
role in the outcome prediction.

Table 1 Patient characteristics
Characteristics Derivation cohort

n = 358
Test cohort p value
n = 154

Age, year 59 (15) 58 (12) 0.751
Male gender 236(64.8) 92(59.7) 0.433
BMI, kg/m2 22.3(3.1) 23.1(2.6) 0.517
ECOG-PS (0/1/2) a 191/164/3 88/66/1 0.396
CCI score b 7(6) 7(5) 0.754
Hematuria 65(18.2) 15(9.7) 0.016
Flank pain 57(15.9) 25(16.2) 0.682
Tumor size, cm 5.1(4.3) 5.6(3.5) 0.267
Tumor necrosis 24(6.7) 13(8.4) 0.363
TNM stage 0.472
Stage I 284(79.3) 117(76)
Stage II 29(8.1) 16(10.4)
Stage III 42(11.7) 19(12.3)
Stage IV 3(0.9) 2(1.3)
Histologic grade 0.395
G1 42(11.7) 16(10.4)
G2 211(58.9) 87(56.5)
G3 95(26.6) 47(30.5)
G4 10(2.8) 4(2.6)
Microvascular invasion
Laboratory tests
Platelet count, 109/L 234(75) 271(89) 0.051
Hemoglobin, g/L 127(31) 116(28) 0.152
Serum calcium, mmol/L 2.63(0.27) 2.46(0.21) 0.202
Creatinine, umol/L 86(22) 74(19) 0.185
Mean OS time, month 62.2(25.3) 59.7(26.8) 0.364
Mean DFS time, month 54.3(24.1) 52.5(23.7) 0.252
Quantitative values are median (IQR) and categorical variables are n (%)
a ECOG-PS is a questionnaire to assess the functional status
b CCI score is a widely used comorbidity scoring system and quantifies 
comorbidities based on the number and severity of diseases

Abbreviation BMI body mass index; ECOG-PS Eastern Cooperative Oncology 
Group Performance Status; CCI Charlson Comorbidity Index

Table 2 Predictive performance of the models for overall 
survival prediction in patients with clear cell renal cell carcinoma
Performance AUCs(95%CI)

For 1-year OS For 3-year OS For 5-year 
OS

Derivation cohort
DLRS 0.839(0.782–0.871) 0.806(0.752–

0.863)
0.787(0.749–
0.846)

NHSTM-R 0.903(0.876–0.964) 0.862(0.822–
0.905)

0.845(0.817–
0.883)

SSIGN score 0.764(0.701–0.817) 0.752(0.695, 
0.796)

0.729(0.674–
0.751)

UISS score 0.722(0.648–0.764) 0.697(0.621–
0.749)

0.648(0.592–
0.706)

Test cohort
DLRS 0.814(0.775–0.859) 0.796(0.761–

0.846)
0.782(0.749–
0.827)

NHSTM-R 0.879(0.868–0.931) 0.854(0.819–
0.899)

0.831(0.813–
0.868)

SSIGN score 0.745(0.702–0.809) 0.766(0.723–
0.803)

0.717(0.654–
0.749)

UISS score 0.725(0.656–0.758) 0.708(0.633–
0.758)

0.663(0.614–
0.729)

Abbreviations OS overall survival; DLRS deep learning radiomics score; NHSTM-R 
a combined model integrating the DLRS and independent clinicopathological 
features(tumor necrosis, histologic grade, tumor size, TNM stage and 
microvascular invasion); SSIGN Stage, Size, Grade, and Necrosis; UISS University 
of California, Los Angeles, Integrated Staging System; UISS University of 
California, Los Angeles, Integrated Staging System ; AUC area under of ROC 
curve; CI confidence interval



Page 8 of 15Wu et al. Cancer Imaging          (2024) 24:124 

Discussion
In the present study, we generated and externally vali-
dated the DLRS for predicting the OS in ccRCC patients. 
By using multi-omics data from TCGA-KIRC cohort, 
we revealed the tumor heterogeneity and microenviron-
ment between different radiomics score groups. Further-
more, we developed a novel combined model (namely 
NHSTM-R) for OS prediction by incorporating the DLRS 
and independent clinicopathological features. This model 
showed great discrimination, calibration and clinical util-
ity. SHAP analysis was adopted to help clinicians better 
understand the predictive results.

Intratumor heterogeneity (ITH), a key driver of tumor 
progression, can be exhibited on the radiological level 
[45]. DL techniques can autonomously acquire fea-
ture representations of ITH from medical image data 
on the basis of artificial neural networks [46]. Conse-
quently, these techniques open up a broad scope of future 
research in the field of disease diagnosis and progno-
sis prediction for RCC patients. The estimation of OS 
is important for individualized management of ccRCC 
patients [5]. Only a few studies have applied DL meth-
odologies to prognosis prediction in ccRCC patients [25, 
47, 48]. Nie et al. reported that the DL radiomics model 
was developed for predicting cancer-specific survival in 

localized ccRCC patients [47]. This model showed favor-
able predictive performance. However, the potential 
value of clinicopathological data has not been explored 
in their study. In our study, multivariate Cox analysis 
showed close association between the radiomics score 
and OS. Schulz et al. also reported that DL radiomics fea-
tures could stratify ccRCC patients [49].

To the best of our knowledge, previous studies have 
explored gene expression patterns in different image sub-
types. Wang et al. revealed the association between the 
gene expression level and radiomics features in breast 
cancer [15]. A few studies have provided insights into 
that how radiomics reflect the heterogeneity of ccRCC 
and tumor microenvironment. He et al. and Wang et 
al. establish CT-based radiomics models for predicting 
prognosis-related genes expression for ccRCC patients 
by using CT images [16, 50]. Consistent with above two 
studies, our study found that lipid metabolism was signif-
icantly associated with image subtypes. Meanwhile, Wnt 
and JAK-STAT signaling pathways were also enriched, 
and GO analysis for cell component indicated that DEGs 
were particularly enriched in β-catenin destruction 
complex which is the heart of the canonical Wnt signal-
ing pathway [51]. Reportedly, WNT signaling pathway 
played a vital role in the proliferation and self-renewal of 

Fig. 3 Kaplan-Meier survival curves for overall survival (A, B) and disease-free survival (C, D) in the derivation and test cohorts. Patients were stratified 
into high- and low -score groups by the deep learning radiomics score. Red line represents patients with high score and blue line represents patients 
with low score. We calculated p values using the log-rank test and results revealed that patients in high-score group were prone to poor prognosis (p 
values < 0.05 for all)
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Fig. 4 The association between radiomics score and gene expression patterns. (A) DEGs are shown in the volcano plot. (B) factor map of the PCA per-
formed on 96 tissue samples and all DEGs. Two cluster groups were identified corresponding to low-score group (blue) and high-score group (red). GO 
annotation and KEGG pathway enrichment analyses were performed in DEGs. (C) biological process, (D) molecular function, (E) cellular component, and 
(F) KEGG analysis. The color scale indicates different thresholds of the p value, and the size of the dot indicates the number of genes corresponding to 
each pathway. Abbreviation DEG differential expression gene; PCA principal component analysis
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Fig. 5 The association between radiomics score and tumor microenvironment. There were significant differences in stromal score, immune score, ES-
TIMATE score (A) and tumor purity (B) between high- and low-score groups. The fractions of 22 subsets of immune cells were analyzed and different 
colors indicate different immune cells (C). 63 samples on the left belong to high-score group, and 33 samples on the right belong to low-score group. 
The boxplot shows the difference in immune infiltration between high- and low-score groups (D). The horizontal axis indicates 22 immune cells and the 
vertical axis indicates cell content. The individuals with high score are labeled in red, and those with low score are labeled in blue
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cancer stem cells in ccRCC [41]. It has been reported that 
multiple genes such as CD56 polysialylation and CENPA 
had great impacts on tumor progression and metastasis 
via the Wnt/β-catenin signaling pathways in ccRCC [42, 
52, 53]. Similarly, JAK-STAT pathway was found associ-
ated with the ccRCC progression and OS [43, 54, 55].

Notably, GO analysis for biological process revealed 
that T cell and lymphocyte apoptotic processes were 
also enriched in the present study, which suggested that 
there were significant differences in the tumor microen-
vironment between image subtypes. This implied that the 
DL radiomics features could reflect the heterogeneity of 
tumor microenvironment. The tumor microenvironment 
plays a key role in the progression of ccRCC. Liu et al. 
determined the prognostic value of infiltrating immune 
cells within the tumor microenvironment in ccRCC, and 

illustrated the underlying mechanism by which infiltrat-
ing immune cells promoted cancer progression [56]. 
What’s more, the close correlation between the radiomics 
features of ccRCC and tumor-infiltrating immune cells 
was observed as it is claimed in a previous study [16].

In this study, we also found that tumor purity and the 
proportion of immune cells significantly varied between 
high- and low-score groups (p value < 0.05). Macrophage 
and Treg cells were higher in the high-score group (p 
value < 0.05), and could be promising targets for cancer 
immunotherapy. Farha et al. reported that a cluster of 
ccRCC patients defined by enrichment in M0 macro-
phages had poor prognosis [57]. Xu et al. reported that 
ccRCC patients with high Macrophage-M1 fractions had 
worse prognosis than those with low Macrophage-M1 
fractions [58]. Yang et al. reported that SGOL1 promoted 

Fig. 6 Forest plots for the univariate (A) and multivariate (B) Cox regression analysis, describing the association between each feature and poor overall 
survival. The vertical line represents the value of no effect. Data are presented as the HR value with 95%CI. p values are tested by Cox proportional hazard 
model. Abbreviation HR hazard ratio; CI confidence interval
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Fig. 7 The predictive performance of the models. (A-C) the AUCs of four models for predicting 1, 3 and 5 year-OS were calculated in the derivation and 
test cohorts. (D-G) patients were stratified into high- and low -score groups by the combined model (namely NHSTM-R). Kaplan–Meier survival curves of 
the high- (red line) and low-score (blue line) groups showed significant differences. (H) features importance ranking. (I) calibration curves of the NHSTM-R 
model in the derivation and test cohorts. (J) decision curve analysis revealed that the NHSTM-R model showed great clinical utility. (K) SHAP summary plot 
explained the detailed contribution of features to prediction at the global level. The colors represent the magnitude of the features values and vary from 
high to low. Each point on the plot represents a particular feature of an individual. Y-coordinate is determined by the features that the point represents. 
X-coordinate is determined by the feature’s impact on the model’s output. Abbreviations AUC area under the curve; DLRS deep learning radiomics score; 
SSIGN the Stage, Size, Grade, and Necrosis score; UISS the University of California, Los Angeles Integrated Staging System; HR hazard ratio; SHAP SHapley 
Additive explanation
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ccRCC cell proliferation and invasion by increasing the 
Treg cells infiltration [59]. In additional, we observed 
that patients in high-score group had more CD8 T-cell 
infiltrates compared to those in low-score group (p 
value > 0.05). Giraldo et al. reported that CD8 + T cells 
showed positive correlation with unfavorable progno-
sis in ccRCC [60]. Overall, the poor prognosis of ccRCC 
patients in high-score group could be caused by the 
extent of immune cell infiltration. This tumor microen-
vironment could be reflected by the radiomics features.

Furthermore, clinicopathological features such as TNM 
stage and histologic grade showed close correlation with 
the long-term OS [16, 61, 62], which have been reported 
in previous studies. Therefore, in order to enhance the 
predictive capability of the DLRS, we built the NHSTM-
R model for outcome prediction by incorporating the 
DLRS and significant clinicopathological features. The 
NHSTM-R model showed significantly better discrimi-
nation than the DLRS, SSIGN and UISS scores. If the 
patients are stratified as high-score by the NHSTM-R 
model, intensive surveillance and systemic therapy are 
advocated. On the contrary, only regular surveillance is 
recommended for the low-score patients.

The present study has some limitations. Firstly, the 
samples size of our study was not large, this study should 
be validated in a multi-center prospective cohort. Sec-
ondly, although we explored the underlying association 
between radiomics features and prognosis, further vali-
dation was necessary.

Conclusion
In conclusion, we developed a combined model for 
the stratification and prognostic prediction of ccRCC 
patients by incorporating the DL radiomics features 
and clinicopathological features. Radiomics could be 
used for individualized prognosis estimations by reflect-
ing the differences in the tumor heterogeneity and 
microenvironment.
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