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heterogeneity has been widely thought to drive tumor 
adaptation and resistance over the course of treatment 
in cancer patients, compromising the outcomes of treat-
ments [2]. Usually, this phenomenon leads to severe 
consequences such as rapid tumor progression, failure 
of treatment, and eventually lowers the survival rate of 
patients [3]. In order to effectively address Intra-tumoral 
heterogeneity, especially in the context of tumor recur-
rence, progression, and evolution, it is essential to have 
a comprehensive understanding of its causes and phe-
notypic variations for personalized treatment. Personal-
ized treatment plans are now a crucial aspect of precision 
medicine, and to develop such plans, it is necessary to 
have non-invasive tools for measuring intra-tumoral het-
erogeneity. At a microscopic level, heterogeneity can be 
explained by different groups of cells known as tumor 
niches, which share similar characteristics within distinct 
micro-environments. This heterogeneity is characterized 

Background
Intra-tumoral heterogeneity is one of the characteris-
tics of malignant tumors, which can cause differences in 
tumor growth rate, invasion and metastasis, drug sensi-
tivity, and prognosis. The discovery and development of 
tumor driver genes and targeted drugs have opened the 
door to the hope of overcoming tumors, but the existence 
of heterogeneity has made tumor treatment fall into a 
dilemma that is difficult to overcome [1]. Intra-tumoral 
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Abstract
Extensive efforts have been dedicated to exploring the impact of tumor heterogeneity on cancer treatment at 
both histological and genetic levels. To accurately measure intra-tumoral heterogeneity, a non-invasive imaging 
technique, known as habitat imaging, was developed. The technique quantifies intra-tumoral heterogeneity by 
dividing complex tumors into distinct sub- regions, called habitats. This article reviews the following aspects of 
habitat imaging in cancer treatment, with a focus on radiotherapy: (1) Habitat imaging biomarkers for assessing 
tumor physiology; (2) Methods for habitat generation; (3) Efforts to combine radiomics, another imaging 
quantification method, with habitat imaging; (4) Technical challenges and potential solutions related to habitat 
imaging; (5) Pathological validation of habitat imaging and how it can be utilized to evaluate cancer treatment by 
predicting treatment response including survival rate, recurrence, and pathological response as well as ongoing 
open clinical trials.
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by gene expression patterns, which also have a significant 
impact on treatment response [4]. However, measur-
ing spatial heterogeneity at a macroscopic level has been 
challenging, and there has been a lack of reliable methods 
to achieve this for a long time.

In the past few decades, clinical radiotherapy has been 
undergoing a considerable advancement, especially the 
technical developments in dose delivery which is able to 
deliver certain doses with extreme precision, enabling 
broadly personalized radiation therapy. Conventionally, 
radiation treatment regimens are formulated based on 
the average results of large clinical trials, with limited 
individualization, and no adjustments in dose or dose 
fractionation are made based on the individual clinical 
response of individual patients. Modern radiotherapy, on 
the other hand, has the potential to start a new radiother-
apy paradigm to individualize each patient’s treatment. 
The development of advanced radiotherapy techniques 
such as intensity-modulated radiotherapy, image-guided 
radiotherapy, and online adaptive radiotherapy have 
revolutionized clinical radiotherapy and enabled per-
sonalized treatment to maximize patient response [5]. 
Advances in radiotherapy technology have further high-
lighted the importance of an intra-tumoral heterogeneity 
measurement technique.

With the advancements in medical imaging techniques, 
there are now effective tools available for the detection 
of spatial heterogeneity. Magnetic resonance imaging 
(MRI) is extensively used for guiding treatment and can 
also assist in non-invasively measuring the characteristics 
of the tumor micro-environment (TME). Various groups 
of researchers have explored the feasibility of MRI-based 
measurements of the micro-environment. Some groups 
have employed radiomics-based approaches to analyze 
quantitative features extracted using high-throughput 
computer techniques that describe both healthy and 
tumor structures [6, 7]. Despite the extensive research 
conducted in radiomics, only a few studies have success-
fully translated these findings into clinically useful tools 
[8–10]. Habitat imaging based on multi-parametric MRI 
is currently gaining attention for its ability to measure 
tumor heterogeneity in an explainable way. By partition-
ing the micro-environment into distinct sub-regions that 
exhibit similar characteristics, habitat imaging allows for 
the visualization of the tumor micro-environment and 
the monitoring of longitudinal changes. This method has 
the potential to provide insights into the distribution and 
evolution of intra-tumoral heterogeneity.

In this review, we examine the current utilization of 
habitat imaging in the field of oncological therapy, high-
lighting the technical details of habitat imaging as a 
non-invasive technique for assessing the heterogeneity 
within tumors. A number of clinical and technical stud-
ies about habitat imaging are collected. We primarily 

focus on studies that used MRI-based imaging biomark-
ers although some studies with positron emission tomog-
raphy (PET)- and computed tomography (CT)- based 
imaging biomarkers are also mentioned to explain habi-
tats generation methods and how to combine habitat 
imaging with radiomics in the next sections. Section  2 
describes the methodology of this review. In Sect. 3, we 
summarize frequently employed biomarkers in habitat 
imaging, aiding in precise partition in a physiological 
manner. In Sect. 4, we review the habitat imaging tech-
niques based on different clustering methods. There are 
also efforts trying to combine radiomics with habitat 
imaging in various ways as shown in Sect. 5. In Sect. 6, 
we discuss the existing technical obstacles. Furthermore, 
studies focusing on understanding the link between 
imaging and pathological or genetic information to vali-
date imaging habitats and an overview of current appli-
cations of habitat imaging in cancer treatment especially 
radiotherapy were included in Sect. 7.

Methodology
The articles from 2015 to 2023 were collected by search-
ing on the PubMed database using the keywords “habitat 
imaging”, “MRI”, and “cancer treatment” to get 72 results. 
The results were reviewed manually to remove the irrele-
vant articles following these exclusion criteria: (1) review 
articles; (2) case reports and case series; (3) irrelevant 
study design. A total of 30 articles were selected, includ-
ing 3 preclinical studies and 27 clinical studies. We have 
comprehensively reviewed the objectives, methodologies, 
and disease sites addressed in these articles, and pro-
vided an analysis of their respective strengths and weak-
nesses. While brain cancer serves as a prominent subject 
of study, the methodology of habitat imaging is versatile 
and can be extended to a spectrum of medical condi-
tions. Some ongoing trials from clinicaltrials.gov are also 
included.

Imaging biomarkers
Imaging biomarkers play a crucial role in habitat imag-
ing, providing valuable information for TME. A bio-
marker can be defined as “an indicator of normal 
biological processes, pathogenic processes, or biologi-
cal responses to an exposure or intervention, including 
therapeutic interventions” [11]. These biomarkers are 
instrumental in various diagnostic and treatment evalu-
ation procedures. Specifically, imaging biomarkers can 
be derived from medical imaging modalities such as 
MRI, PET, and CT. Among all medical imaging modali-
ties, MRI is the most versatile and can be used to explore 
structural, physiological, and functional information 
by manipulating the MRI pulse sequences. Historically, 
structural MRI biomarkers, including the signal inten-
sities from T1- and T2-weighted imaging, have been 



Page 3 of 17Li et al. Cancer Imaging          (2024) 24:107 

widely used. Nevertheless, the scientific community has 
increasingly turned its attention to quantitative MRI 
(qMRI) biomarkers, recognizing their superior capabil-
ity to delineate the metabolic dynamics within tumors 
non-invasively. Among the qMRI sequences routinely 
employed, diffusion-weighted MRI (DWI) stands out for 
its ability to measure the diffusivity of water molecules, 
while dynamic contrast-enhanced MRI (DCE-MRI) 
excels at documenting critical parameters such as vascu-
lar permeability. Table 1 contains an overview of widely 
utilized qMRI-derived biomarkers, specifically high-
lighting those that are indicative of diffusion and perfu-
sion properties of various tissues. Each of them provides 
unique information about tumor biological character-
istics in a distinctive manner. Habitat imaging is able to 
use imaging biomarkers to delineate distinct sub-regions 
by clustering pixels with the same biological and physical 

characteristics within a tumor [12]. Traditionally, clus-
tering method have been applied to isolate individual 
biomarkers for straightforward tasks. However, the com-
plexity of current advanced tasks is better addressed by 
integrating multiple biomarkers, taking into account 
their diverse attributes across various dimensions. For 
example, the positive predictive value (PPV) for glioblas-
toma recurrence has been notably enhanced by 10.3% 
when overlapping biomarkers [13].

By employing multi-biomarkers, habitat imaging over-
comes the limitations inherited to individual imaging 
biomarkers in terms of sensitivity. This strategy enables 
the comprehensive assessment and monitoring of a range 
of physiological processes, providing an accurate and 
non-invasive depiction of the tumor’s molecular profile. 
Therefore, choosing the correct biomarkers is an impor-
tant step for habitat imaging. As an example, researchers 
from University of Washington [14] used PET to identify 
the hypoxia region in glioblastoma that is usually resis-
tant to radiotherapy and chemotherapy and they found 
that higher volume size and intensity of hypoxia is highly 
associated with shorter time to progression (TTP) and 
poorer survival rate. Another group from Asan Medical 
Center [15] used a combination of T1- and T2-weighted 
MRI intensity, apparent diffusion coefficient (ADC), and 
cerebral blood volume (CBV) to enhance the sensitivity 
of a single biomarker. This approach was employed for 
assessing and monitoring multiple physiological aspects 
and localizing viable tumor tissue in patients with brain 
metastases post stereotactic radiosurgery (SRS).

Radiomics features as biomarkers
Beyond the conventional biomarkers, the implementa-
tion of radiomics methodology facilitates the extraction 
of quantifiable data, enriching the diagnostic process 
with a deeper layer of measurable insights. Radiomics 
has been extensively utilized to generate an extensive 
range of characteristics from the tumor, creating a unique 
dataset that significantly enhances diagnostic accuracy, 
prognostic assessment, and treatment outcomes estima-
tion [16]. In Sect. 5.1, radiomics analyses on tumor sub-
regions as an integration into habitat imaging will be 
discussed. Although this method is primarily aimed at 
uncovering the link between radiomics features gener-
ated using only voxels within tumor sub-regions and the 
overall outcomes of cancer therapy, there is still unex-
plored potential within these sub-regions regarding the 
underlying TME heterogeneity [17]. Further research 
could incorporate voxel-wise radiomics feature maps as 
the input biomarkers for generating habitats, utilizing a 
combination of imaging techniques to enhance the delin-
eation of tumor sub-regions. In Sect. 5.2, radiomics fea-
tures used as imaging biomarkers for generating habitats 
will be discussed in more details.

Table 1  Examples of MRI-based biomarkers used for habitat 
imaging
Biomarkers MRI 

Sequence
Descriptions

Apparent 
diffusion 
coefficient 
(ADC)

DWI The measurement of apparent water 
diffusion of DWI. Following the formula 
S(b) = S0e − bADC, this value measures 
the relative decreases of transverse 
magnetization because of the dephas-
ing caused by the additional diffusive 
gradients. Quantitatively, the measure-
ment is given by the slope of the line 
plotting MRI signals and b-value. (units 
mm2 /s).

Volume 
transfer 
constant 
(Ktrans)

DCE The most important parameter of DCE-
MRI. Ktrans is a parameter that reflects 
the efflux rate of contrast agents into 
the extravascular-extracellular space 
and is commonly used to measure 
vascular permeability. (unit min − 1)

Extravascular 
extracel-
lular space 
fractional 
volume (ve)

DCE This parameter is defined as the extra-
vascular extracellular space (EES) per 
unit volume of tissue. ve is dimension-
less, ranging from 0 to 1. It reflects how 
much amount of “room” is there in the 
tissue to accumulate contrast agents.

Fractional 
plasma vol-
ume (vp )

DCE Like ve, vp is the fraction of plasma vol-
ume and therefore is also dimension- 
less. It is usually small in many lesions 
but in some high vascular tumors, it can 
reach a value that cannot be ignored.

Rate con-
stant (kep )

DCE kep determines the rate for contrast 
agent from EES back to the vascular 
system. It is defined by the ratio of 
kep = Ktrans/ve. (unit min − 1)

Cerebral 
blood vol-
ume (CBV)

ASL DCE CBV represents the amount of blood 
per unit brain tissue. It is usually 
calculated from the area under the con-
centration-time curve, which is derived 
from the intensity time curve generated 
by perfusion MRI. (unit ml/100g)
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Generation of imaging habitats
Habitat imaging visualizes tumor heterogeneity by iden-
tifying different habitats. Imaging habitats are distinct 
spatial regions with shared imaging characteristics due to 
their unique intrinsic cell populations and/or TME con-
ditions. Typically, the construction of imaging habitats is 
facilitated by clustering techniques that aggregate simi-
lar data points, frequently derived from a diverse array 
of imaging biomarkers. Many researchers apply auto-
mated clustering methods based on machine learning 
algorithms or digital image processing tools. Some other 
analyses are still based on manually selected habitats. In 
this section, we provide an overview of common cluster-
ing methods for habitat generation and some techniques 
for optimizing habitat generation.

Automatic habitat clustering methods
A variety of clustering methods are employed in the 
studies of habitat imaging, encompassing primarily two 
distinct approaches. One approach involves the utiliza-
tion of a machine learning-based clustering algorithm 
as a “one-step” approach, commonly exemplified by the 
K-means clustering technique. This technique amalgam-
ates and organizes multi-dimensional biomarkers to 
identify various groups through overlapping and cluster-
ing processes [18, 19]. The other approach, conversely, is 
more traditional in nature and involves two steps. In this 
alternative method, voxels are partitioned based on each 
single biomarker, and combinations of these clusters from 
multiple biomarkers are subsequently employed to dis-
cern different habitats [20]. The predominant approach 
involves calculating the intersection of all habitat maps. 
For each voxel, it is assigned to a specific cluster on every 
biomarker map. The ultimate cluster to which it belongs 
is determined by the collective set of clusters across all 
maps. As shown in Fig. 2A, T1 and T2 images both gen-
erates 2 clusters, 1 and 2. Therefore, we get 4 combina-
tions of intersection (11, 12, 21, and 22) as the final result. 
The process to generate habitats of both approaches are 
shown in Fig. 1 and samples are shown in Fig. 2.

The “one-step” approach has gained popularity in 
recent years due to the increased accessibility and usabil-
ity of machine learning tools. A study conducted by 
researchers from Asan Medical Center focused on the 
application of habitat imaging to the progression-free 
survival (PFS) estimation of glioblastoma patients after 
concurrent chemoradiotherapy (CCRT) [21]. Employing 
K-means clustering as an automated approach to imaging 
habitat generation, the researchers were able to identify 
three distinct habitats: hypervascular cellular, hypovas-
cular cellular, and nonviable tissue, using CBV and ADC 
data. They observed that an increase in volume size of 
both hypervascular and hypovascular cellular habitat was 
indicative of tumor progression, suggesting its potential 

as a useful predictor of clinical outcomes. The effective-
ness of the “one-step” approach was further supported 
by a study conducted by a group from Ajou University 
School of Medicine [22]. This study focused on predict-
ing tumor recurrence of brain metastases. Beyond the 
physiological features of CBV and ADC, the research-
ers expanded their analysis to include structural features 
such as contrast-enhanced T1- and T2-weighted MRIs, 
thereby delineating a comprehensive set of six distinct 
habitats. Researchers found that an increase in volume 
size of the hypovascular cellular habitat, characterized by 
low ADC and low CBV, was associated with a higher risk 
of recurrence. Furthermore, this habitat provided crucial 
insights about the recurrence location, which could guide 
future treatment strategies for patients.

The traditional “two-steps” method is still widely used 
in many studies [23, 24]. An initial step in clustering 
involves the utilization of simple techniques, such as par-
titioning voxels based on their intensity values. Stringfield 
O. et al. [25] and Weinfurtner R.J. et al. [23] conducted 
voxels clustering to analyze quantitative changes in intra-
tumoral habitats, specifically focusing on the differen-
tiation between low and high-intensity classes using Otsu 
thresholding [26]. Lee J. et al. [24] from the University 
of Texas employed Gaussian mixture for clustering. The 
habitats were then generated by calculate intersections 
among the habitats from single biomarkers. Both groups 
have identified that the volume fractions of habitats were 
associated with treatment response, thus demonstrating 
significant predictive values.

Some Researchers have developed more advanced 
clustering techniques. Wu J. et al. [27] have successfully 
developed an imaging signature for predicting progres-
sion-free survival (PFS) in patients with oropharyngeal 
squamous cell carcinoma (OPSCC). This achievement 
leverages a robust consensus clustering approach, which 
is designed to delineate distinct sub-regions, or ‘habi-
tats,’ within the tumor based on an analysis of PET and 
CT imaging data. Their method was a 2-steps cluster-
ing process: individual-level clustering based on para-
metric maps followed by a population-level consensus 
clustering. Consensus clustering, alternatively known 
as cluster ensembles or aggregation of clustering, is an 
advanced methodology that amalgamates various clus-
tering algorithms. This synthesis aims to yield a unified 
consensus clustering that serves as a more accurate rep-
resentation than the individual clustering methods typi-
cally employed. Beyond the straightforward application 
of a solitary clustering method, consensus clustering was 
used to delve into similarities across or within patient 
groups, thereby revealing consistent patterns that emerge 
from an ensemble of clustering methodologies.
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Manually selected methods
Studies have also been conducted to generate habitats 
through manual selection of particular sub-regions [28, 
29]. Beig N. et al. [28] examined 936 3D-radiomic char-
acteristics that were derived from various sub-regions of 
the tumor (necrotic-core, enhancing tumor, peri-tumoral 
edema) based on multi-parametric MRIs. The necrotic-
core was the low intensity on Gd-T1 images; enhancing 
tumor was the high signal intensity area compared to the 
pre-contrast T1 image; peri-tumoral edema was identi-
fied by comparing T2 and T2-FLAIR. The thresholds 
for segmentation were manually annotated by exports. 
Verma R. et al. [29] also formulated an radiomics risk 
score (RRS) based on the sub-regions of necrotic core, 
enhancing tumor, and FLAIR-hyperintense subcom-
partments. The sub-regions of the tumor which these 
studies’ analyses were based on were manually selected 
by researchers. However, it is important to note that 

the primary focus of these studies was not on how they 
selected these sub-regions.

Optimization of habitat generation
Researchers are committed to advancing cluster gen-
eration algorithms to create more precise and insightful 
clustering outcomes. Neto da Silva et al. [30] developed 
two approaches, namely the molecular texture descrip-
tor (MTD) and pathophysiological texture mapping 
(MPT), to improve habitat generation. MTD boosts the 
contrasting agent’s area while MPT generates habitats 
based on the updated generation from MTD. This novel 
technique not only demonstrates the ability to identify 
breast tumors with 100% accuracy but also enables the 
classification of tumor malignancy. Another research 
team, led by Xing et al. [31], introduced a novel approach 
to classifying habitats by employing a probability distri-
bution model associated with reference tissue. In com-
parison to image-based methods for habitat generation, 

Fig. 1  A schematics of habitat imaging analysis
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Fig. 2  An example of habitat imaging based on T1- and T2-weighted images of an esophageal cancer patient using two-steps method (A) and one-step 
method (B). The region of interest is the gross tumor volume. Both T1 and T2 images are preprocessed using central normalization. (A) Each of T1 and T2 
images generates 2 clusters (1 and 2) derived from histogram and 4 habitats (11, 12, 21, and 22) created by intersections between T1 habitat map and T2 
habitat map for the final habitat map; (B) The scatter plot (left) and map (right) share the same color map to identify the 3 clusters using K-mean algorithm
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this technique demonstrates qualitative consistency with 
pathological observations. Additionally, Tar et al. [32] 
utilized habitat imaging to detect tumor response to 
drug and radiation therapy in an innovative way. With 
the aid of the linear Poisson modeling, their approach 
significantly reduced the number of animals needed for 
multiple therapeutic interventions, thereby enhancing 
information acquisition from preclinical imaging.

Summary
In brief, recent trials on habitat imaging in treatment 
evaluation tasks have yielded fruitful outcomes in vari-
ous domains including risk mitigation, survival and 
recurrence estimation by employing different cluster-
ing methodologies. However, there is a dearth of stud-
ies that compare the efficiency and accuracy of different 
clustering methodologies. It is crucial for researchers to 
strategize while choosing the most optimal methodolo-
gies for their investigations. Nevertheless, some studies 
have explored new habitat generation methods such as 
consensus clustering. Additionally, researchers are exam-
ining techniques for optimizing data clustering. These 
investigations offer potential research avenues for future 
explorations. Table 2 presents an overview of all studies 
mentioned in Sect. 4.

Habitat imaging and radiomics
Radiomics is another popular quantitative imaging 
technique, which seeks to analyze a plethora of quanti-
tative features extracted from medical images. Unlike 
traditional size and intensity analysis, radiomics has the 
ability to detect high-risk regions that may otherwise 
go unnoticed. Consequently, radiomics finds extensive 
application in treatment planning, image guidance, and 
predicting treatment outcomes in radiation therapy. In an 
effort to maximize the benefits of both habitat imaging 
and radiomics, researchers are currently exploring meth-
ods of combining the habitat imaging and radiomics.

Extracting radiomics features from tumor sub-regions
There are multiple scenarios in which radiomics and 
habitat imaging can collaborate. One of them is extract-
ing radiomics characteristics from habitats rather than 
the entire tumor volume. In a study conducted by Wang 
X. et al. [33], the authors compared radiomics features 
derived from the entire tumor with those derived from 
habitat imaging. By employing the Otsu threshold to 
maximize the variance between groups, they divided 
the tumor region into a high-intensity sub-region and a 
low-intensity sub-region. The analysis demonstrated that 
features derived from habitat imaging proven to be supe-
rior predictive biomarkers compared to those derived 
from the entire tumor. Cho et al. [34] utilized the same 
approach of MR-based habitat imaging to delineate the 

heterogeneity of perfusion in breast cancer. Additionally, 
they constructed a habitat risk score (HRS) based on hab-
itat-derived radiomics features to classify patients into 
high- and low-risk categories. Compared with other risk 
models, the combined habitat risk model showed the best 
performance in the validation cohort, especially showing 
better performance in predicting DFS in breast cancer 
patients. These studies emphasize the potential advan-
tages of habitat imaging in enhancing the performance 
of radiomics features. Furthermore, other investigations 
have employed this technique to determine the pres-
ence of EGFR mutation [35], predict progression-free 
survival [36], identify high-risk habitats [37], and predict 
survival rates [38]. Aminu et al. [39] discovered that habi-
tat imaging has shown high accuracy in diagnosing and 
predicting the severity of COVID-19 in cancer patients, 
and models tailored for cancer patients perform better 
than models for the general population. Habitat-based 
radiomics has the potential to help identify high-risk 
cancer patients who require urgent and intensive medi-
cal care, and to distinguish COVID-19 from other types 
of pneumonia. Chen L et al. [40]. proposed a habitat-
based radiomics method for preoperative differentiation 
between non-small cell lung cancer (NSCLC) and benign 
inflammatory diseases (BIDs). Their findings revealed 
that a combination of habitat and non-habitat features 
yielded the most accurate results. Moreover, Ismail, M et 
al. [41] delineated pseudo-progression and tumor recur-
rence using radiomics features derived from 14 global 
and 16 local habitats.

In summary, the Habitat-based radiomics has proven 
to hold great potentials. This tailored approach signifi-
cantly improves the predictive precision in oncology, as 
compared to traditional global radiomics.

Generating habitats with voxel-wise radiomics features
In addition to extracting features from habitats, there are 
other ways to combine both techniques. One approach 
involves the application of voxel-wise radiomics fea-
tures, which entails calculating outputs based on a small 
region surrounding each voxel. A comprehensive study 
conducted by Bernatowicz et al. [42] evaluated the 
repeatability and reproducibility of voxel-wise radiomics 
features in lung cancer patients and explored the impact 
of these features on the computation of imaging habitats 
and found that nine features showed high repeatabil-
ity and reproducibility in test-retest images. Research-
ers then applied Principal Component analysis (PCA) 
to select the 5 most informative principal components 
(PCs) for generating imaging habitats. Imaging habitats 
generated using these robust components (5 PCs) has 
improved stability over habitats generated using all 9 
features, maintaining the stability of their numerical and 
classification results in the face of image perturbations. 
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Author(s) Year Intensity 
Normalization

Biomarkers Clustering 
Method

Habitat 
Generation 
Method

Data 
Availability

Analysis Tool Availability

Slavkova, 
K.P [18]

2023 Yes ADC, Ktrans, ve, 
kep

K-means, 
Agglomerative

1-step approach 
to generate 3 
habitats

Self-prepared 
from scanning 
mice; request 
with reasons

Matlab code not publicly 
available

Lee, DH 
[22]

2023 Yes CET1, T2, ADC, 
CBV

K-means 1-step approach 
to generate 3 
habitats for each 
condition

Database from 
Asan Medical 
Center; request 
with reasons

Brain extraction code: https://
github.com/MIC-DKFZ/HD-
BET;Lesion segmentation: https://
github.com/MIC-DKFZ/nnUNet; 
k-mean clustering by scikit-learn

Kazerouni, 
A.S [19]

2022 Yes ADC, Ktrans, ve, 
kep

Agglomerative 2-steps ap-
proach to gen-
erate 4 habitats

Self-prepared 
from scanning 
mice; request 
with reasons

R code not publicly available

Tar, P. et al. 
[32]

2022 No ADC Linear, Poisson 
Modelling

N/A Self-prepared 
from scanning 
mice; request 
with reasons

LIFEx software (https://www.
lifexsoft.org/) and ITK-SNAP 
(http://www.itksnap.org/pmwiki/
pmwiki.php); Python code not 
publicly available

Weinfurt-
ner RJ [23]

2022 No DCE, T1 Otsu 2-steps ap-
proach to gen-
erate 8 habitats 
based on de-
gree of contrast 
enhancement

Recruited; trial 
NCT03137693

Segmentation by Healthmyne 
software; analysis by Social Sci-
ence Statistics software

Park, JE [21] 2021 Yes CET1, FLAIR, 
ADC, nCBV

K-means 1-step approach 
to generate 3 
habitats

Recruited; Clin-
icalTrials.gov 
NCT02619890

R code not publicly available

Beig, N. 
[28]

2020 Yes T1, CET1, FLAIR Manual (i) tumor necro-
sis, (ii) enhanc-
ing region of 
the tumor, and 
(iii) peri-tumoral 
edema

Publicly avail-
able datasets; 
The Cancer Im-
aging Archive 
(TCIA) and Ivy 
Glioblastoma 
Atlas Project 
(Ivy GAP)

Image processing: https://github.
com/MIC-DKFZ/HD-BET and 
https://github.com/MIC-DKFZ/
nnUNet; R analysis code not 
publicly available

Verma, R. 
[29]

2020 Yes CET1, FLAIR, T2 Manual as above Publicly avail-
able datasets; 
Cancer Imag-
ing Archive, 
Cleveland 
Clinic, and Ivy 
Glioblastoma 
Atlas Project 
(GAP)

X-tile software (https://medicine.
yale.edu/lab/rimm/research/
software/)

Wu, J. [27] 2020 Yes PET CT Consensus 
Clustering

Implement 
MSI matrix to 
generate 3 
habitats + spa-
tio-temporal 
habitat evolu-
tion matrix to 
evaluate habitat 
evolution

Dataset from 
Stanford Uni-
versity Medical 
Center

Matlab code not publicly 
available

Table 2  List of studies of the habitat generation methods mentioned in Sect. 4. simDWI = a quantitative surrogate for high-b-value 
DW-MRI.

https://github.com/MIC-DKFZ/HD-BET;Lesion
https://github.com/MIC-DKFZ/HD-BET;Lesion
https://github.com/MIC-DKFZ/HD-BET;Lesion
https://github.com/MIC-DKFZ/nnUNet
https://github.com/MIC-DKFZ/nnUNet
https://www.lifexsoft.org/
https://www.lifexsoft.org/
http://www.itksnap.org/pmwiki/pmwiki.php
http://www.itksnap.org/pmwiki/pmwiki.php
https://github.com/MIC-DKFZ/HD-BET
https://github.com/MIC-DKFZ/HD-BET
https://github.com/MIC-DKFZ/nnUNet
https://github.com/MIC-DKFZ/nnUNet
https://medicine.yale.edu/lab/rimm/research/software/
https://medicine.yale.edu/lab/rimm/research/software/
https://medicine.yale.edu/lab/rimm/research/software/
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From 5 PCs, nine voxel-wise radiomics features were 
determined to be repeatable and reproducible. Using the 
robustness of voxel-wise features to improve computa-
tion in the imaging habitat may help identify biomark-
ers that are more relevant to tumor biology and clinical 
outcomes, which is crucial for personalized medicine and 
precision treatment strategies. Researchers from Univer-
sity of Cambridge [43] proposed a fusion technology of 
radiomics-based habitat imaging and ultrasound (US). 
Their technique uses CT-based radiomics signatures 
and habitat imaging to guide US-guided targeted biop-
sies in patients with high-grade serous ovarian cancer 
(HGSOC). This advancement in technology allows for 
the development of a precise tissue sampling technique 
based on radiomics habitats.

In conclusion, several experiments have combined 
radiomics, both region-wise and voxel-wise, with habi-
tat imaging. Their results demonstrate great diagnostic, 
evaluative, and instructive potential of this combination. 
Table 3 summarizes all studies in Sect. 5.

Technical challenges
Summarizing the studies in previous sections, there are 
some considerations about challenges relevant to habitat 
imaging studies.

Image registration and resampling
As a multi-parametric imaging technique, highlighted in 
previous sections, habitat imaging needs multiple bio-
markers from multiple images as the input. Therefore, 
precise image registration to align the various images, 
within a single MR imaging session or cross modalities, 
is crucial for generating valid imaging habitats. Unfortu-
nately, this registration process can distort voxel values, 
making it less than ideal. Nonetheless, it has been univer-
sally employed in many studies, particularly those utiliz-
ing a one-step solution. Seeking a way to avoid or at least 
minimize this distortion would help in generating more 
accurate habitats. Thus, it is necessary to choose images 
that are less affected by deformable registration. Images 
that are particularly prone to distortions, such as those 
acquired near air-tissue boundaries or in regions with 
complex anatomy, are more challenging for registration 

Author(s) Year Intensity 
Normalization

Biomarkers Clustering 
Method

Habitat 
Generation 
Method

Data 
Availability

Analysis Tool Availability

da Silva 
Neto, O 
[30]

2019 No DCE Molecular 
Texture Descrip-
tor (MTD) and 
Pathophysi-
ological Texture 
Mapping (MPT)

Generating 9 
habitats accord-
ing to change 
of relative 
enhanced over 
time

Publicly avail-
able datasets; 
Quantitative 
Imaging 
Network Col-
lections (QIN)

N/A

Stringfield, 
O [25]

2019 Yes T1, CET1, FLAIR Otsu 2-steps ap-
proach to set 2 
Otsu thresh-
olds + sub-
divide clusters 
based on FLAIR 
being > or 
≤ white matter

Publicly 
available da-
tasets; Cancer 
Genome Atlas 
(TCGA)

Matlab code not publicly 
available

Xing, S et 
al. [31]

2018 No T2, ADC, simDWI Probabilistic 
Classification

Generating 5 
habitats based 
on similarity to 
reference tissue

Collected 
from Montreal 
General Hos-
pital; ask for 
availability

Matlab code not publicly 
available

Lee, J et al. 
[24]

2015 No CET1, FLAIR Gaussian Mixture 2-steps ap-
proach to gen-
erate 4 habitats

Publicly 
available 
datasets: Can-
cer Imaging 
Archive (TCIA) 
and Cancer 
Genome Atlas 
(TCGA)

Matlab code not publicly 
available

Zhou, M et 
al. [20]

2014 Yes CET1, FLAIR, T2 Gaussian Mixture 2-steps ap-
proach to gen-
erate 4 habitats

Publicly 
available 
dataset; Cancer 
Genome Atlas 
(TCGA)

Matlab code not publicly 
available

Table 2  (continued) 
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Author(s) Year Cancer 
Type

Imaging Stage Biomarkers Clustering 
Method

Habitat Genera-
tion Method

Radiomics 
Features 
Application

Data Availability Analysis Tool 
Availability

Aminu, M 
et al. [39]

2022 Lung 
(N = 527)

COVID-19 
diagnosis

CT SLIC 1-step approach 
to generate 6 
habitats for indi-
vidual and whole 
population

Extracting 
features from 
habitats

Publicly available 
dataset: Cancer 
Imaging Archive 
(TCIA) and RICORD 
dataset; MD 
Anderson available 
with request with 
reason

N/A

Cho, H.H. 
et al. [34]

2022 Breast 
(N = 455)

Pre-treatment Ein, Eout, Rwo K-means 1-step approach 
with k value from 
2 to 32 over the 
entire cohort

Extracting 
features from 
habitats

Dataset from 
Samsung Medical 
Center (SMC) and 
Gil Hospital (GH) 
not publicly avail-
able; request with 
reasons

Matlab code 
not publicly 
available

Cao, R. et 
al. [35]

2022 Brain 
Metas-
tasis 
(N = 188)

Pre-treatment CET1, T2 Manual Manually seg-
mented whole 
tumor, intra-
tumoral necrotic, 
and peri-tumoral 
edema area

Extracting 
features from 
habitats

Primarily from LA Pyradiomics 
and R code 
not publicly 
available

Verma, R. 
et al. [36]

2022 Glioblas-
toma 
(N = 150)

Pre-treatment CET1, FLAIR, T2 Manual Tumor sub-
compartment: 
enhancing tumor, 
peri-tumoral 
FLAIR hyperin-
tensities, and 
necrosis

Extracting 
features from 
habitats

5 publicly available 
data sets from 
supplement-1

N/A

Wang, 
X.H. et al. 
[33]

2022 Serous 
Ovarian 
Cancer 
(N = 161)

Pre-treatment PET CT Otsu 2-steps approach 
to generate 3 
habitats

Extracting 
features from 
habitats

Dataset not public-
ly available; request 
with reasons

Imaging pro-
cessing with 
LIFEx software 
and ITK-SNAP; 
python code 
not publicly 
available

Yang, Y. et 
al. [37]

2021 Glioblas-
toma 
(N = 122)

N/A CET1, FLAIR, T2 K-means 1-step approach 
with k set from 2 
to 9 to find opti-
mal number

Extracting 
features from 
habitats

Dataset publicly 
available; Cancer 
Genome Atlas GBM

automated 
algorithm 
(https://
github.com/
MIC-DKFZ/
HD-BET) 
and nnUNet 
model 
(https://
github.com/
MIC-DKFZ/
nnUNet); R 
code not pub-
licly available

Chen, L. et 
al. [40]

2021 Lung 
(N = 317)

Pre-treatment PET CT K-means 1-step approach 
with k from 2 to 
10 to determine 
the optimal 
number

Extracting 
features from 
habitats

Original distribu-
tion in supplemen-
tary material

PyRadiomics

Table 3  Study list of applications mentioned in Sect. 5 that combines habitat imaging and radiomics. From DCE: wash-in map (Ein); 
Washout Map (Eout); washout ratio map (RWO). Simple Linear Iterative Clustering algorithm (SLIC).

https://github.com/MIC-DKFZ/HD-BET
https://github.com/MIC-DKFZ/HD-BET
https://github.com/MIC-DKFZ/HD-BET
https://github.com/MIC-DKFZ/HD-BET
https://github.com/MIC-DKFZ/nnUNet
https://github.com/MIC-DKFZ/nnUNet
https://github.com/MIC-DKFZ/nnUNet
https://github.com/MIC-DKFZ/nnUNet
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algorithms. For example, susceptibility artifacts near the 
sinuses or brain can cause local distortions that may be 
misinterpreted by the registration process. Similarly, 
motion artifacts due to unsteady breathing or cardiac 
motion can introduce inconsistencies in the image con-
tent, leading to misalignments.

Low-resolution images also pose a challenge for 
deformable registration because the lack of the fine 
details necessary for accurate feature matching and align-
ment. Additionally, images with low contrast between 
different tissues can also make it difficult for the registra-
tion algorithm to identify corresponding points or edges, 
potentially leading to registration errors. High noise lev-
els in the images can further disrupt the feature detection 
process, which is fundamental to successful registration.

On the other hand, images with high resolution, high 
contrast, and low susceptibility to artifacts are gener-
ally less affected by registration errors. High-resolution 
images provide more detailed features that facilitate more 
accurate registration. Clear distinctions between different 
tissues, as seen in T1-weighted spin-echo images, make it 
easier for the algorithm to identify corresponding points 
and edges. Furthermore, images with reduced motion 
and noise, achieved through techniques such as cardiac 
or respiratory gating, produce cleaner images that usually 
lead to more reliable registration.

To mitigate the impact of these challenges, several 
strategies can be employed. For example, the use of fat 
suppression techniques or advanced coil technology can 
help reduce susceptibility and motion artifacts. Image 
enhancement through filtering or denoising algorithms 
can also improve the quality of the images before regis-
tration, reducing the impact of noise. Advanced registra-
tion algorithms that are robust to artifacts and can better 
distinguish true deformations from image distortions can 
be utilized. Employing multimodal registration, which 
incorporates additional imaging modalities or sequences, 
can provide complementary information to improve the 
registration process. The recent developed feature-based 
registration, using distinct features within the images that 
are less affected by artifacts, can also enhance registra-
tion accuracy. Finally, applying regularization techniques 
to constrain the registration to biologically plausible 
deformations can reduce the influence of artifacts on 
the registration outcome. Another possible solution is 
the two-step method, in which biomarkers are clustered 
prior to generating the final habitat map by identifying 
to which intersection of all individual biomarker habitats 
each voxel belongs. Registration is then applied to the 
clustered data to minimize the influence of abnormal val-
ues caused by distortion or artifacts.

Author(s) Year Cancer 
Type

Imaging Stage Biomarkers Clustering 
Method

Habitat Genera-
tion Method

Radiomics 
Features 
Application

Data Availability Analysis Tool 
Availability

Bernato-
wicz, K. et 
al. [42]

2021 Lung 
(N = 500)

N/A CT K-means Principal Com-
ponent analysis 
(PCA) applied to 
select 5 PCs from 
voxel-wise ra-
diomics features.

Generating 
habitats 
using 
radiomics 
features

Dataset publicly 
available; National 
Biomedical Imag-
ing Archive (TCIA); 
request with 
reasons: VHIO CT 
dataset

PyRadiomics 
and 
OpenREGGUI

Beer, L. et 
al. [43]

2021 Ovarian 
(N = 8)

Pre-treatment CT, Ultra-sound Gaussian 
Mixture

1-step approach 
with 6 PCs to 
generate 3 
habitats

Generating 
habitats 
using 
radiomics 
features

Recruited from 
Cambridge Univer-
sity Hospital

Microsoft Ra-
diomics App; 
Matlab code 
not publicly 
available

Ismail, M 
et al. [41]

2018 Glioblas-
toma 
(N = 105)

Pre-treat-
ment and 
Post-treatment

T1, T2, FLAIR Manual Expert delinea-
tion of the lesion 
habitat

Extracting 
features from 
habitats

Dataset from 
Cleveland Clinic 
and Dana-Farber/
Brigham and 
Women’s Cancer 
Center

Matlab code 
not publicly 
available

Zhou, M 
et al. [38]

2017 Glioblas-
toma 
(N = 52)

Pre-treatment CET1, FLAIR, T2 Otsu 2-steps approach 
to generate 4 
habitats

Extracting 
features from 
habitat

Dataset publicly 
available Cancer 
Genome Atlas 
(TCGA)

Image 
registration by 
MIPAV medi-
cal image 
analysis soft-
ware; code 
not publicly 
available

Table 3  (continued) 
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Choosing biomarkers
One limitation of current studies on MRI-based habitat 
analysis is that they often use structural images, such 
as T1- and T2- weighted images, which were primar-
ily designed to show anatomical structure. However, 
the intensity of these MRIs can be influenced by various 
external factors, such as magnetic field inhomogeneity, 
receiver coil properties, scaling factors, and image acqui-
sition parameters. These factors cannot be easily cor-
rected or removed through intensity normalization [44]. 
For instance, researchers at Tangdu Hospital [37] used 
contrast-enhanced T1-weighted imaging (CET1) and 
T2-weighted fluid-attenuated inversion recovery imag-
ing (FLAIR) to delineate edematous regions. Following 
K-means clustering, radiomics features were extracted 
for each clustered habitat, and radiomics signatures 
(RadScores) were constructed using these features. How-
ever, MRI sequences used in the Tangdu study could be 
inconsistent for each patient, potentially impacting the 
model’s validation performance. Moreover, this inconsis-
tency hinders the implementation of group-level cluster-
ing as elaborated in Sect. 6.3. A more reliable, potentially 
more meaningful approach is to utilize imaging biomark-
ers that carries physiological information, often derived 
from advanced quantitative MR techniques, such as 
DWI, DCE, etc. Parametric maps derived from these MR 
sequences provide a better representation of the habitat. 
In clinical contexts, with a goal of developing tools for 
the assessment of treatment efficacy and the detection of 
resistant regions, the employment of physiological bio-
markers is strongly encouraged. Furthermore, it is impor-
tant to consider external validation and to make imaging 
techniques available at different centers. These are essen-
tial for further strengthening different successful habitat 
imaging studies and their conclusions.

Clustering by group or individual
Clustering based on group level or individual level is an 
important choice to be made before any habitat imag-
ing analysis. In certain studies [21, 22], the generation of 
habitats was predicated on individual-specific character-
istics, reflecting a personalized approach to understand-
ing tumor heterogeneity, The biomarkers of each patient 
were analyzed using the K-means clustering algorithm 
to identify habitats within his/her tumor. The rationale 
behind this choice is that structural MRI scans, such as 
T1- and T2-weighted images, exhibit significant variabil-
ity across different patients and scanners, thus making it 
challenging to compare between different patients. How-
ever, given the inter-patient heterogeneity, the clustering 
and thresholding approaches would differ for different 
individuals. To derive a model with broader generaliz-
ability, aggregating data through cohort-wide cluster-
ing can illuminate underlying commonalities across the 

patient population. Choosing group-level clustering not 
only streamlines retrospective analysis but also enhances 
the capacity for prospective investigations. Therefore, for 
the sake of consistency and reliability, prioritizing group-
level clustering with proper image pre-processing to min-
imize imaging inconsistency is strongly encouraged.

Pathological validation and treatment evaluation
Researchers still need to understand the correlation 
between imaging habitats and pathological or even 
genetic information. Several studies performed their 
investigation from different aspects.

Du et al. [45] discovered that clustering parameters 
such as Calinski-Harabasz Index can be used to predict 
gene mutation. Their results showed that the differ-
ence between clusters and the similarity within clusters 
can reflect the mutation of the BReast CAncer gene 1 
(BRCA1) in breast cancer. In this study, researchers also 
explored multiple parameters based on imaging habitats 
such as Calinski-Harabasz Index and Silhouette coeffi-
cient to evaluate the clustering result, and the ability of 
these parameters in predicting mutations through inde-
pendent modeling or multi-parameter joint modeling. 
The results showed that the proposed model had good 
predictive ability and can be used as a powerful tool for 
clinical decision support. Syed’s [46] and Jardim-Perassi’s 
[47] group also demonstrated a significant consistency 
between imaging habitats and histological habitats. Fur-
thermore, studies have shown a correlation between 
imaging habitats and tumor genetic information. For 
instance, Dextraze’s group [48] from the University of 
Texas investigated the correlation between tumor signal-
ing pathways and imaging habitats. A total of 16 habitats 
were identified and certain habitats were associated with 
overall survival in GBM patients. Each habitat was found 
to be associated with unique pathway changes through 
Dirichlet regression analysis. This study reveals the clini-
cal relevance of MRI-derived spatial habitats in GBM 
patients and their relationship to the molecular mecha-
nisms of tumor biology.

In conclusion, many researchers have provided evi-
dence that habitat imaging also measured genomic and 
molecular characteristics of tumors. Habitat imaging 
is able to delineate intra-tumoral heterogeneity from 
the fundamental aspect of tumor micro-environment. 
Table 4 summarizes the studies discussed in this section.

Clinical applications in treatment evaluation
The utilization of imaging habitats in the field of radiation 
therapy presents a promising avenue for various applica-
tions. One such application involves the use of imaging 
habitats to predict treatment outcomes following radio-
therapy, including factors such as tumor recurrence and 
survival rates. The response exhibited by tumors post 
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radiotherapy can greatly differ among patients as well as 
within different regions of a single tumor. This variability 
poses challenges in ensuring the efficacy of radiotherapy. 
However, by employing non-invasive techniques, such as 
habitat imaging, to quantify and map tumor heterogene-
ity, it is possible to guide personalized radiotherapy and 
potentially enhance treatment efficacy. In recent years, 
there has been growing attention towards investigating 
the predictive potential of habitat imaging. Typically, 
these studies attempt to correlate the imaging habitat or 
its changes with the outcomes of radiotherapy, such as 
survival or recurrence rates. In this section, we review the 
applications of habitat imaging in treatment evaluation.

One primary focus of treatment evaluation studies is to 
predict survival rates following radiotherapy. Park et al. 
[21] conducted a study to assess the correlation between 
changes in these habitats over time and progression-free 
survival (PFS) in patients with glioblastoma treated with 
concurrent chemoradiotherapy (CCRT). CBV and ADC 
were used to generate three habitats using K-means clus-
tering: hypervascular cells, hypovascular cells, and non-
viable tissue. They found that a short-term increase in 
both hypervascularity and hypovascularity cell habitats 
volume size was associated with a significant shorten-
ing of PFS after CCRT. By combining these findings with 
other clinical predictors, they developed a habitat risk 
score that could stratify patients into categories of short, 
intermediate, and long PFS. Overall, they found that an 
increasing hypovascular habitat was the most predictive 
indicator of tumor progression sites. Beig et al. [28] also 
developed a survival risk score using radiomics features 
and habitats. They utilized gene set enrichment analysis 
to identify molecular signal pathways, providing a bio-
logical basis for the radiomics features. Their study suc-
cessfully built predictive risk scores from habitats and 
demonstrated their association with signaling pathways 

related to treatment resistance. Many researchers have 
also confirmed the predictive ability of habitats for PFS 
using various techniques such as radiomics features [29], 
Local Binary Patterns [28], and habitat volumes [25, 27]. 
Moreover, Lee et al. [24]. utilized imaging habitats not 
only to predict 12-month overall survival but also to 
identify tumors driven by the epidermal growth factor 
receptor (EGFR).

In addition to survival rate, habitat imaging has been 
utilized in various aspects of treatment evaluation. 
Slavkova et al. [18]. developed mathematical models to 
simulate the growth of imaging habitats with and with-
out radiotherapy. They identified three habitats with dis-
tinct image characteristics and developed a model family 
consisting of three coupled ordinary differential equa-
tions (ODEs) based on these habitats. Models were fitted 
to series of habitat maps at different time points of the 
control group and the treated rats to assess its predictive 
ability. They concluded that it is feasible to mathemati-
cally describe habitat dynamics in preclinical models of 
glioma using biologically based ODEs. Other researchers 
have also found that habitat imaging can predict tumor 
recurrence. Lee et al. [15] discovered that an increased 
hypovascular habitat volume fraction was associated 
with an elevated risk of brain metastases recurrence and 
the site of recurrence is also strongly correlated with the 
habitat location. Additionally, Weinfurtner et al. [23] 
found that the percent tumor volume remaining (%VR) 
and percent habitat makeup (%HM) were correlated with 
percent tumor bed cellularity (%TC) as a pathological 
response to neoadjuvant therapy.

Moving beyond common cancer treatment applica-
tion, Aminu et al. [38] applied habitat analysis to a cohort 
of leukemia and melanoma patients who suffered more 
severe complications due to COVID-19. They developed 
a technique to quantify complex infection patterns by 

Table 4  List of pathological validation studies in Sect. 7
Author(s) Year Patient 

Details
Biomarkers Clustering 

Method
Habitat Genera-
tion Method

Validation 
Method

Data Availability Analysis Tool 
Availability

Du, T et al. 
[45]

2022 Breast 
(N = 187)

DWI, T1, Out-
Phase T2, In-Phase 
T2, WA-TER T2, 
FAT T2

K-means 1-step approach to 
generate habitats

BRCA1 
mutation 
status

Dataset from 
Second Affiliated 
Hospital of Dalian 
Medical Univer-
sity; request with 
reasons

Python code not pub-
licly available

Syed, A et 
al. [46]

2020 Breast 
(N = 155)

ADC, kep, ve, 
Ktrans

Agglomerative 1-step approach to 
generate habitats

Histological 
assessment

N/A Matlab code not pub-
licly available

Jardim-
Perassi, B V 
et al. [47]

2019 Breast 
(Mice)

T2map, T2*map, 
ADC, DCE-AUC, 
DCE-slope, DCE-
time to maximum

Gaussian 
Mixture

2-steps approach 
to generate 
habitats

Histological 
assessment

Dataset from 
scanned mice

VisioPharm software for 
physiological analysis; 
ParaVision and Matlab 
code not publicly avail-
able for imaging analysis

Dextraze, 
K et al. 
[48]

2017 Glioblas-
toma 
(N = 85)

T1, FLAIR, post-
contrast T1, T2

K-means 1-step approach to 
generate habitats

Tumor 
signaling 
pathways

Dataset publicly 
available: Cancer 
Genome Atlas

BraTumIA for segmenta-
tion; R code not publicly 
available for analysis
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dividing lung regions into habitats with distinct pheno-
types. By analyzing the association between habitat char-
acteristics and radiologists’ semantic reading, they found 
that certain habitat characteristics were significantly 
correlated with radiologists’ reading results. The habitat 
imaging method was found to be significantly superior to 
existing methods in diagnosis and prognosis estimation 
especially for cancer patients during pandemic.

In conclusion, studies have supported that habitat 
imaging can assist in treatment evaluation by predict-
ing survival rate, recurrence, and pathological response. 
Table  5 provides a summary of the studies discussed in 
Sect. 7.1.

Longitudinal analysis
In the context of longitudinal studies, tumors may 
undergo significant macroscopic morphological changes 
due to treatment or progression, which poses challenges 
in image registration between scans obtained at different 
time points, necessitating the identification of consistent 
habitats across various time points. Despite these chal-
lenges, habitat imaging bypasses the need for temporal 
image registration, instead focusing on the consistency 
of the habitat generation process. The foundation of habi-
tat imaging in these research lies in its ability to capture 
intrinsic tumor heterogeneity without the necessity of 
aligning images from different time points, emphasizing 
the importance of consistent habitat imaging biomarkers.

To maintain consistency of habitat generation is to 
keep biomarker units and clustering threshold identi-
cal. Weinfurtner et al. [23]. analyzed changes of percent-
age of habitat volumes between pre- and post-treatment 
images. Tumor segmentation was performed separately 
on images at two time points after clustering was per-
formed based on the thresholds of the intensity dis-
tribution of the entire breast. In this case, temporal 

registration of tumor is not a necessary step for compar-
ing percentage of habitat volumes. Certain studies have 
implemented group-level clustering to aggregate voxels 
from images across various time points. For instance, Wu 
et al. [27] conducted a group-level clustering on pooled 
voxels from both pre- and post-treatment PET and CT 
images. Despite the rigid registration performed on the 
pre- and post-treatment images, it was merely used to 
detect soft-tissue changes. Whether or not to do the reg-
istration does not compromise the outcomes of the habi-
tat imaging analysis. This methodology, however, may not 
be directly applicable to MRI due to the susceptibility of 
MRI to various influences that can introduce variability 
in images obtained at different time points or on dispa-
rate devices. One potential solution is to employ identical 
MRI sequences at all-time points. Alternatively, quantita-
tive parametric maps with definitive physiological mean-
ing is recommended, as these are less likely to be affected 
by variations in scanning equipment or environmental 
conditions. Following a similar approach, Slavkova et al. 
[18] executed a group-level analysis prior to the applica-
tion of ordinary differential equations without perform-
ing temporal image registration. The parametric maps 
being utilized to generate habitats include pharmaco-
kinetic parameters Ktrans, ve, kep, and ADC from DWI 
images.

In summary, temporal image registration is not a nec-
essary step for longitudinal analysis. Typically, it suffices 
to apply uniform standard biomarker units for habitat 
generation. Researchers are encouraged to employ iden-
tical scanning protocols at each time point. MRI-based 
parametric maps are often favored due to the enhanced 
assurance of their consistency. By integrating these meth-
odological strategies, researchers can potentially gain a 
better understanding of tumor dynamics over time and 
refine the evaluation of treatment efficacy.

Table 5  List of treatment evaluation studies in Sect. 7.1. (%) = percentage; PSF = progression-free survival; OS = overall survival; 
EGFR = epidermal growth factor receptor; %VR = percent tumor volume remaining; %HM = percent habitat makeup; %TC = percent 
tumor bed cellularity
Author(s) Year Patient Type Stage of Imaging Measurements from Habitats Clinical Endpoint
Slavkova et al. [18] 2023 Glioma (N = 21) Pre-, mid-, post-treatment Model prediction of habitat volume Habitat volume
Aminu, M et al. [39] 2022 Lung cancer (N = 527) COVID-19 diagnosis Radiomics features from habitats to 

train deep learning models
Covid-19 infection 
and severity

Lee et al. [15] 2022 Brain metastases (N = 83) Post-treatment %Habitat volume Recurrence
Weinfurtner et al. [23] 2022 Breast tumor Pre- and post-treatment %TC, %VR, and %HM Pathological response
Park et al. [22] 2021 Glioblastoma (N = 97) Post-treatment %Habitat volume PFS
Beig et al. [28] 2020 Glioblastoma (N = 203) Pre-treatment Radiomics features from habitats PFS
Verma et al. [29] 2020 Glioblastoma Pre-treatment Radiomics features from habitats PFS
Wu et al. [27] 2020 Oropharyngeal squamous 

cell carcinoma (N = 162)
Pre-, mid-, post-treatment Habitat volume PFS

Stringfield et al. [25] 2019 Glioblastoma (N = 44) Pre-treatment %Habitat volume PFS
Zhou et al. [38] 2017 Glioblastoma (N = 52) Pre-treatment Local binary patterns from habitats PFS
Lee et al. [234] 2015 Glioblastoma (N = 65) Pre-treatment Spatial diversity features OS and EGFR-driven 

tumor
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Ongoing open clinical trails
With the spatialized intra-tumoral heterogeneity pro-
vided by habitat imaging, some clinical trials are work-
ing on advanced radiation therapy planning strategies in 
order to take advantage of these information. Here, we 
list some of these studies with ID numbers from public 
records:

 	• NCT05301283: This trial investigates the use 
of MR-guided radiation therapy (MRgRT) for 
locally advanced pancreatic cancer. MRgRT can 
provide high precision in targeting the tumor while 
considering intra-tumoral heterogeneity. This 
can potentially improve treatment outcomes by 
adapting the radiation dose based on tumor response 
heterogeneity during the therapy course;

 	• NCT05868928: This trial focuses on improving the 
treatment of patients with non-small cell lung cancer 
using advanced imaging techniques to monitor 
tumor heterogeneity. The goal is to tailor radiation 
therapy more effectively by assessing changes in 
tumor characteristics over time, thus optimizing 
therapy based on individual tumor characteristics;

 	• NCT06002711: This trial aims to explore the use 
of imaging biomarkers to better understand tumor 
heterogeneity in prostate cancer. By utilizing multi-
parametric MRI, the study seeks to enhance radiation 
therapy planning and delivery by identifying regions 
within the tumor that may require different radiation 
doses based on their heterogeneity.

Discussion
Habitat imaging has been widely used in many aspects 
of cancer treatment. As a non-invasive tool to measure 
intra-tumoral heterogeneity, it has broad application 
prospects in personalized treatment.

One of the advantages of habitat imaging is its suitabil-
ity and diversity in measurement. As a multi-paramet-
ric imaging technique, habitat imaging measures TME 
from different structural or physiological angles using 

corresponding imaging biomarkers. This characteristic 
of habitat imaging will expand its frontier with advance-
ments in medical imaging techniques. Other quantitative 
imaging techniques, such as radiomics features, can also 
be used as input biomarkers for habitat imaging. There-
fore, it is recommended to explore and incorporate more 
techniques as input biomarkers to maximize the poten-
tial of habitat imaging. Researchers should also focus 
on methods of habitat generation. While the automatic 
clustering method is popular in many studies, further 
efforts are needed to compare the accuracy and efficiency 
of the two approaches mentioned in Sect.  4. Addition-
ally, researchers should investigate and optimize habitat 
generation methods, as well as explore their combination 
with imaging techniques such as radiomics.

Habitat imaging also faces several technical challenges 
that require attention. The alignment of multiple image 
modalities before habitat analysis often necessitates 
image registration and resampling. However, this pro-
cess can introduce distortions in voxel values and affect 
measurement accuracy. It is crucial to find a way to 
either bypass this process entirely or minimize its impact. 
Another important consideration is the selection of bio-
markers, as the intensity of structural MRI sequences is 
typically influenced by external factors that are difficult 
to correct. On the other hand, MRI sequences that can 
provide physiologically meaningful biomarkers are rec-
ommended to be included for habitat imaging. These 
physiological biomarkers are particularly beneficial for 
multi-center and group-level clustering studies, for both 
retrospective and prospective data analyses.

Recent studies have also revealed correlations between 
imaging habitats and pathological or even genetic infor-
mation, thereby validating the ability of habitat imaging 
to measure tumor heterogeneity from a fundamental 
aspect of the tumor micro-environment. Researchers 
have explored the clinical applications of habitat imaging 
for treatment evaluation, and their results demonstrate 
its predictive ability in various aspects such as survival 
rate, recurrence, and pathological response. Although 
glioblastoma has been the most extensively studied can-
cer so far, further studies are needed on the application of 
habitat imaging to other types of cancers.

Preclinical and clinical studies
Preclinical and clinical studies in this review were sum-
marized in Table  6. Overall, the number of preclinical 
studies is lower as compare to clinical studies. Preclini-
cal research primarily encompasses longitudinal stud-
ies or pathological analyses, which are characterized by 
higher costs and stringent requirements for standardiza-
tion when implemented on human subjects. These stud-
ies may involve extended observation periods or detailed 
examination of disease progression, which can be 

Table 6  List of preclinical and clinical studies
Category References
Preclinical 
Studies

Slavkova, K. P. et al. [18], Syed, (A) K. et al. [46], Jardim-
Perassi, (B) V. et al. [47]

Clinical 
Studies

Kazerouni, A.S. et al. [19], Zhou, M. et al. [20], Park, J. E. 
et al. [21], Park, J. E. et al. [22], Weinfurtner, R. et al. [23], 
Lee, J. et al. [24], Stringfield, O. et al. [25], Wu, J. et al. [27], 
Beig, N. et al. [28], Verma, R. et al. [29], da Silva Neto, O. P. 
et al. [30], Xing, S. et al. [31], Tar, P. D. et al. [32], Wang, X. 
et al. [33], Cho, H.-h. et al. [34], Cao, R. et al. [35], Verma, R. 
et al. [36], Yang, Y. et al. [37], Zhou, M. et al. [38], Aminu, 
M. et al. [39], Chen, L. et al. [41], Ismail, M. et al. [41], 
Bernatowicz, K. et al. [42], Beer, L. et al. [43], Nerland, S. et 
al. [44], Du, T. & Zhao, H. [45], Dextraze, K. et al. [48]
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resource-intensive and require meticulous methodology. 
On the other hand, clinical research is predominantly 
retrospective, often focusing on the analysis of imaging 
data to draw conclusions about patient outcomes and 
treatment efficacy. This approach is often more feasible 
in terms of cost and accessibility. The focus on imaging 
analysis in clinical research allows for the evaluation of 
treatment responses and the identification of prognostic 
indicators without the need for additional invasive pro-
cedures or high costs associated with experimental inter-
ventions. In the future, we will likely see an increased 
emphasis on prospective clinical trials to validate the 
effectiveness of habitat imaging methods.

Conclusion
Habitat imaging, as an emerging technique, holds great 
potential as an effective method for assessing tumor biol-
ogy and intra-tumoral heterogeneity in an explainable 
way. However, the current literature on habitat imaging 
applications is limited by the types of biomarkers, clus-
tering methods, and lack of pathological validation. It 
is essential to conduct further research to validate this 
technique and explore a broader range of applications. 
To achieve this goal, additional studies should focus on 
investigating clustering techniques, exploring new bio-
markers, assessing reproducibility, combining it with 
other techniques like radiomics, and histological vali-
dation. Overall, habitat imaging has great potential in 
guiding personalized cancer treatment especially radio-
therapy to overcome the challenges posed by tumor 
heterogeneity.
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