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Abstract 

Background and purpose Radiomics offers little explainability. This study aims to develop a radiomics model 
(Rad‑Score) using diffusion‑weighted imaging (DWI) to predict high‑risk patients for nodal metastasis or recurrence 
in endometrial cancer (EC) and corroborate with choline metabolism.

Materials and methods From August 2015 to July 2018, 356 EC patients were enrolled. Rad‑Score was developed 
using LASSO regression in a training cohort (n = 287) and validated in an independent test cohort (n = 69). MR spec‑
troscopy (MRS) was also used in 230 patients. Nuclear MRS measured choline metabolites in 70 tissue samples. The 
performance was compared against European Society for Medical Oncology (ESMO) risk groups. A P < .05 denoted 
statistical significance.

Results Rad‑Score achieved 71.1% accuracy in the training and 71.0% in the testing cohorts. Incorporating clini‑
cal parameters of age, tumor type, size, and grade, Rad‑Signature reached accuracies of 73.2% in training and 75.4% 
in testing cohorts, closely matching the performance to the post‑operatively based ESMO’s 70.7% and 78.3%. Rad‑
Score was significantly associated with increased total choline levels on MRS (P = .034) and tissue levels (P = .019).

Conclusions Development of a preoperative radiomics risk score, comparable to ESMO clinical standard and associ‑
ated with altered choline metabolism, shows translational relevance for radiomics in high‑risk EC patients.

Trial registration This study was registered in ClinicalTrials.gov on 2015–08‑01 with Identifier NCT02528864.
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Introduction
Endometrial cancer (EC) is the most prevalent malig-
nancy in the female reproductive system in the United 
States [1]. According to European Society for Medical 
Oncology (ESMO) guidelines, EC can be categorized into 
risk groups  based on tumor type, tumor grade, extent 
of myometrial invasion, lymphovascular space invasion 
(LVSI) and molecular subgroups [2]. However, preopera-
tive evaluation of LVSI remains challenging. While sur-
gery is the primary staging and treatment method, it’s 
crucial to avoid unnecessary systemic pelvic or paraaor-
tic lymphadenectomy in low-risk patients while ensur-
ing comprehensive treatment for higher-risk groups to 
enhance survival outcomes [3].

Magnetic resonance imaging (MRI), particularly with 
the inclusion of diffusion-weighted imaging (DWI), is 
recommended for preoperative assessment of EC, espe-
cially for evaluating myometrial invasion [4]. Radiomics 
is an emerging imaging tool that uses machine learning 
to extract quantitative imaging features for noninvasive 
tumor characterization and predicting tumor behavior 
[5]. Several attempts have been made in EC to develop 
a prognostic radiomic model [6–9]. However, the repro-
ducibility and clinical impact of radiomic models in EC 
are still under debate [10].

Proton MR Spectroscopy (1H MRS) allows in  vivo 
detection of metabolic and molecular compositions, 
frequently identifying an elevated total choline (tCho) 
signal in various cancers [11]. With high-resolution 1H 
MRS, it is possible to differentiate individual choline 
components, including phosphocholine (PC), glycer-
ophosphocholine (GPC), and free choline (Cho). The 
presence of deregulated choline biochemistry on pre-
operative MRS can provide a biochemical basis for risk 
stratification [12].

This study aims to develop a radiomics risk model 
using routine DWI MRI to predict the high-risk group 
for nodal metastasis or cancer recurrence in EC and cor-
roborate with underlying choline metabolic pathways. 
We hypothesized that the DWI radiomics risk model 
will improve the accuracy for identifying high-risk EC 
patients with nodal metastasis or cancer recurrence com-
pared to ESMO risk groups.

Materials and methods
Patient cohort
This study complied with the Transparent Reporting of 
a Multivariable Prediction Model for Individual Prog-
nosis or Diagnosis Statement and in accordance with 
the Declaration of Helsinki. The institutional review 
board approved this prospective study (NCT02528864) 
conducted in a tertiary referral center with a dedicated 
gynecology oncology interdisciplinary team. Informed 

consent was obtained. Between August 2015 and July 
2018, a consecutive cohort of 550 female patients under-
went surgical intervention for EC. Inclusion criteria 
included (1) female aged 20–80, (2) clinical suspicion of 
endometrial malignancy for MR pretreatment staging, 
(3) the surgical intervention included, at a minimum, a 
hysterectomy, and may or may not encompass a bilateral 
adnexectomy or lymphadenectomy. Exclusion criteria 
included (1) contraindications to MR scanning, such as 
claustrophobia, cardiac pacemaker, and metal implants in 
the field of view. (2) lesion size < 1  cm3, (3) Noncompliant 
to treatment or not accessible for follow-up, (4) subop-
timal MR imaging quality, and (5) pathology other than 
endometrial carcinoma, such as uterine sarcoma or neu-
roendocrine tumor. Data collection was planned before 
the MR imaging acquisition. Additional tumor tissue 
samples were gathered  postoperatively to facilitate fur-
ther radiometabolic analysis, adhering to an extra inclu-
sion criterion mandating the availability of metabolomic 
data from the cellular tumor.

Imaging protocol: DWI and MR spectroscopy
Preoperative MRI of the enrolled patients were per-
formed on a 3 Tesla MR system (Skyra, Siemens, Erlan-
gen, Germany) and both spine and body-phased array 
coils to image the entire pelvis in a supine position. Uti-
lizing an external coil instead of an endovaginal coil is 
primarily motivated by reducing invasiveness and facili-
tating MRS incorporation into routine pelvic exams. No 
premedication was administered, and minimal breathing 
was maintained during the scan. To ensure reproduc-
ibility and robustness, a phantom with two water tubes 
and two gelatin tubes of varying concentrations (1% 
and 3%) embedded in iced water was used to test DWI 
reproducibility. Triplane localizer 1D MRS with point-
resolved spectroscopy (PRESS) was used to collect data 
from a volume of interest measuring 12 × 12 × 12  mm3, 
prescribed by gynecological radiologists (Y-L.H. or G.L.), 
wholly placed within the endometrial tumor (high sig-
nal intensity area on high-b-value DW and high signal 
intensity on T1-weighted, fat-saturated post-contrast 
enhanced MRI; free of hemorrhage, necrosis or large 
arteries judging from T1- and T2-weighted images. 
MRS was conducted based on the interpreting radiolo-
gist’s judgment to ascertain the feasibility of placing an 
adequate region of interest (ROI). LCModel software (v. 
6.3–0 K; Provencher, Ontario, CA, Canada) was used to 
analyze the data, and resonance amplitudes for choline 
were integrated using the corresponding water signals as 
a reference. The Cramer-Rao lower bound (CRLB) value 
was calculated to estimate the error in metabolite quan-
tification, and MR spectra were excluded if the CRLB 
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exceeded 20% for choline. The imaging parameters used 
are provided in the supplementary material.

Image processing and segmentation
The study used a monoexponential decay model to gen-
erate ADC maps with a b value of 0 and 1000 s/mm2. The 
MR images were independently interpreted by two radi-
ologists with 6 and 10 years of experience in gynecologi-
cal radiology (Y.L. and Y-L.H.), and discrepancies were 
resolved by a third reader with 20 years of experience 
(G.L.) for consensus. An in-house developed software 
based on Matlab was used to draw the ROI by the first 
radiologist (Y.L.) around the tumor on the ADC map 
with reference to the high b-value DW and T2-weighted 
images to delineate the whole tumor volume and avoid 
contaminating the adjacent normal endometrium or 
areas of fluid.

Radiomics analysis
MR images were normalized for signal intensities. First-
order and 3D shape-based order features were extracted 
for radiomics analysis. Statistics of the median, stand-
ard deviation, skewness, and kurtosis were calculated 
from the feature responses of all voxels within the ROI. 

For feature selection, we employed the Least Absolute 
Shrinkage and Selection Operator (LASSO) logistic 
regression model to eliminate redundant features while 
retaining those most relevant to the outcome for building 
a radiomic score model, Rad-Score. The model’s perfor-
mance was evaluated using the Youden Index to deter-
mine the optimal cutoff value for predicting recurrence. 
A combined model, Rad-Signature, was also constructed 
with the Rad-Score model and selected preoperative 
clinical parameters such as age, histopathology (endo-
metrioid or non-endometrioid), and tumor grade. Other 
ESMO risk parameters such as LVSI, myometrial inva-
sion depth, or lymph node status required surgical his-
topathological verification and thus were not chosen to 
build the Rad-Signature. The models were tested in an 
independent dataset. The framework of this study is illus-
trated in Fig. 1. Details can be found in the supplemen-
tary material.

Histopathology and clinical data
The study used histopathology from surgical hysterec-
tomy specimens as the reference standard for evaluat-
ing endometrial tumors. Histopathology was evaluated 
for tumor type, grade, LVSI, pathological staging. 

Fig. 1 The framework of the study design (WIP)
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Additional immunohistochemical studies were per-
formed if the primary site of the tumor was uncertain. 
The surgical strategy for lymph node (LN) evaluation 
largely rested on the operating surgeons’ discretion, 
aligned with the risk stratification of ESMO guideline, 
including no LN dissection, sentinel LN biopsy and pel-
vic and paraaortic lymphadenectomy. Clinical parame-
ters, including age, tumor size, final cancer stage, lymph 
node metastasis, recurrence, and treatments, were also 
recorded. The patients were stratified into risk groups 
according to ESMO guidelines.

Outcome measurement
All patients underwent standard surgical treatment. 
Patients with proven  lymph node metastasis at surgi-
cal histopathology or cancer recurrence were classified 
as high-risk group, based on pathology documenta-
tion, and confirmed by at least two imaging modalities. 
Patients lost to follow-up, non-cancer-related deaths, 
and those alive at the end of the follow-up period were 
considered censored observations. Patients with per-
sistent disease were regarded as having relapsed on the 
first day of completing standard primary therapy.

Statistical analysis
The data was analyzed using standard statistical meth-
ods on MedCalc for Windows, Version 20.218. The 
Shapiro–Wilk test was used to check the normality of 
the data. The Student’s t-test was used to examine dif-
ferences in radiomic features between high-risk and 
low-risk groups. To address the class imbalance in the 
present study, we increased the weight of the high-risk 
class (lymph node metastasis or recurrence) by a fac-
tor of 4. Correlations between various variables were 
evaluated using Pearson’s correlation analysis. Sensi-
tivity, specificity, accuracy, positive predictive value 
(PPV), and negative predictive value (NPV) were cal-
culated. Variables significant in the univariate analysis 
were subsequently entered into a multivariate logistic 
analysis, and their odds ratios (OR) and 95% confi-
dence intervals (CI) were calculated. Bootstrap resam-
pling was performed randomly to construct new data 
sets, followed by Cox regression analysis repeated 1,000 
times. All tests were two-sided, and P < 0.05 was con-
sidered statistically significant.

Data availability
The data generated in this study are available upon 
request from the corresponding author.

Results
Patient cohort
Out of the 550 patients initially considered, 194 were 
excluded based on criteria detailed in Fig. 2, which pre-
sents a flow diagram illustrating the composition of the 
study cohort. Finally, 356 patients were eligible for anal-
ysis. The demographic data of the study population are 
listed in Table  1. There was no significant demographic 
difference between the training and testing cohorts. Fur-
ther, MRS was performed in 240 of them, and 10 patients 
were excluded due to CRLB larger than 20%. For the tis-
sue sample analysis, 70 EC tumor tissue samples with 
corresponding metabolomics data were investigated 
on a nuclear magnetic resonance (NMR) spectrometry 
platform.

Among the 356 patients studied, lymph node evalu-
ation was not performed on 39 individuals. Sentinel 
lymph node biopsy was conducted on 33 patients, while 
the remaining 284 underwent either pelvic or systemic 
lymphadenectomy. The median follow-up time was 41 
months (1–108 months) for surviving patients. Of the 
356 women analyzed, 287 (80.6%) were disease-free at 
the last follow-up.

There were 69 patients in the high-risk group of this 
study due to either having lymph node metastasis at sur-
gery or cancer recurrence during follow-up. There were 
30 patients with nodal metastases at surgery. Of the 39 
patients with recurrence, 16 had distant failure alone 
(five lungs, three peritoneum, one distant node, and 
seven having multiple sites), 3 had regional node recur-
rence alone, and 7 had local or regional failure alone. The 
remaining 13 patients had more than one site of failure: 
eleven local–regional-distant, and two regional-regional 
node-distant. At least two imaging modalities confirmed 
recurrences in all cases.

Building Rad‑Score model building and performance
The study confirmed DWI’s reproducibility through 
using Bland–Altman plots in the first ten subjects. In the 
training cohort, 105 radiomic features were extracted 
from each segmented tumor volume on axial DWI, out of 
which 36 features exhibited statistical significance in the 
Student’s t-test between the recurrence and non-recur-
rence groups. These features encompass both first-order 
and shape-related attributes (Supplementary Table  1). 
After feature pruning by the LASSO regression method, 
the radiomics model (Rad-Score) was built from 17 3D 
DWI features and included first-order and shape fea-
tures, as shown in Fig. 3. In the context of patient char-
acteristics and treatment history, factors such as older 
age at diagnosis, larger tumor size, higher histological 
grade, presence of LVSI, higher FIGO stage, advanced 
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ESMO group classification, and the absence of adjuvant 
radiation therapy or chemotherapy were found to be 
significantly correlated with classification into the high-
risk group (P < 0.001 for all parameters), as tabulated in 
Table 2.

Applying a probability threshold greater than 0.5, the 
Rad-Score model achieved an accuracy of 71.1% (95% CI: 
65.5%-76.3%) within the training cohort to distinguish 
high-risk patients. In the testing cohort, the model main-
tained a comparable accuracy of 71.0% (95% CI: 58.8%-
81.3%), as detailed in Table 3. Additionally, we examined 
other clinical parameters such as age, tumor grade, and 
histopathology to discern differences between the low-
risk and high-risk groups as classified by the Rad-Score, 
with these findings presented in Table 2.

Performance of Rad‑Signature model
The assessment of radiomics’ clinical utility has 
been further enhanced by introducing a combined 
model, Rad-Signature. This model integrates the Rad-
Score model with clinical parameters, including age 
at diagnosis, clinical tumor size (cut-off, 20 mm), 

histopathologic type (endometrioid versus non-endo-
metrioid), and histological grade (grade 1 and 2 vs. 3). 
Rad-Signature achieved a slightly better discrimina-
tive ability than the Rad-Score model with an accuracy 
of 73.2% (95% CI: 67.6%-78.2%) in the training cohort 
and an accuracy of 75.4% in the testing cohort (95% CI: 
63.5%-84.9%) (Table 3).

Comparison with ESMO standard of care score
The diagnostic efficacy of the radiomics models was 
compared to the standard of care, specifically the 
ESMO risk groups, distinguishing between high-risk 
versus low- and intermediate-risk groups. Both the 
Rad-Score and Rad-Signature models exhibited com-
parable diagnostic performance with the ESMO score 
within the training cohorts (accuracy: 71.1%, 73.2%, 
70.7%, respectively). However, in testing cohorts, the 
ESMO score outperformed both models, achieving a 
superior accuracy of 78.3% versus 75.4% for the Rad-
Signature and 71.0% for the Rad-Score (Table 3).

Table 1 Clinical and demographic data of the study population

Unless otherwise indicated, data are number of variables, with their percentage in parentheses

EC endometrioid carcinoma, ESMO European Society for Medical Oncology, FIGO International Federation of Gynecology and Obstetrics, LVSI lymphovascular invasion

Variable All Training set Testing set P values

Patients number 356 287 69

Age (years, range) 53 (25–88) 53 (25–88) 53 (26–76) .871

Tumor pathologic size (mm, range) 36 (1–166) 36 (1–163) 35 (2–166) .807

Histopathology .767

 Endometrioid 287 (80.6%) 230 (80.1%) 57 (82.6%)

 Non‑endometrioid 69 (19.4%) 57 (19.9%) 12 (17.4%)

Tumor grade .527

 1 171 (48.1%) 135 (47.0%) 36 (52.2%)

 2 112 (31.5%) 91 (31.7%) 21 (30.4%)

 3 73 (20.5%) 61 (21.3%) 12 (17.4%)

LVSI .654

 None 278 (78.1%) 226 (78.7%) 52 (75.4%)

 Present 78 (21.9%) 61 (21.3%) 17 (24.6%)

FIGO stage .603

 1A 239 (67.1%) 195 (67.9%) 44 (63.8%)

 1B 63 (17.7%) 51 (17.8%) 12 (17.4%)

 2 30 (8.4%) 24 (8.4%) 6 (8.7%)

 3A 16 (4.5%) 11 (3.8%) 5 (7.2%)

 3B 6 (1.7%) 4 (1.4%) 2 (2.9%)

 4 2 (0.6%) 2 (0.7%) 0 (0.0%)

ESMO risk groups 1.000

 Low 139 (39.0%) 110 (38.3%) 29 (42.0%)

 Intermediate 87 (24.4%) 72 (25.1%) 15 (21.7%)

 High‑intermediate and high 130 (36.5%) 105 (36.6%) 25 (36.2%)
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Correlation of the Rad‑Score model with MRS
The study deployed MRS in a subset of 230 patients to 
examine the association between specific radiomic fea-
tures and underlying biological processes. There were 14 
distinct radiomic features from the Rad-Score model that 
exhibited significant correlations with elevated total cho-
line levels in the endometrium as determined by 1H MR 
spectroscopy; these features included both first-order 
statistics and shape descriptors (all P < 0.05), as listed in 
Table S2. Among the clinical parameters, the age at diag-
nosis showed a significant correlation with increased 
endometrial total choline levels on 1H MR spectros-
copy (P = 0.011). Furthermore, the Rad-Score model 

was associated with heightened levels in GPC as meas-
ured by MRS (Pearson correlation coefficient [r] = 0.140, 
P = 0.034).

Tissue choline NMR analysis
Out of 230 patients with MRS, 70 tissue samples from 
surgical hysterectomy were obtained to analyze GPC, 
PC, glycerol-3-phosphate (G3P), and free choline on the 
NMR spectrometry platform. The Rad-Score model was 
significantly correlated with changes of G3P level in tis-
sue samples (P = 0.019). A few individual features also 
significantly correlated with changes of levels in G3P, 
choline, and PC (Table S2).

Fig. 2 Flow diagram of the study cohort
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Discussion
The study evaluated radiomics models from preoperative 
DWI in 356 EC patients, focusing on lymph node metas-
tasis detected in surgery and cancer recurrence in the 
follow-up. The Rad-Score model, based solely on radiom-
ics, reached a 71% accuracy in both training and testing 
cohorts. By integrating clinical parameters, the Rad-Sig-
nature model improved to accuracies of 73.2% and 75.4% 
in training and testing cohort, respectively. Additionally, 
radiomic features significantly correlated with increased 
total choline levels on MRS. While both models were 
comparable to the ESMO standard of care score within 
the training cohorts, they did not reach the ESMO score’s 
78.3% accuracy level in the testing cohorts.

A recent meta-analysis has reinforced the value of 
pre-operative MRI radiomics models for risk stratifica-
tion in EC [13]. Among various models, a 3D radiomics 
approach stands out for matching or even surpassing 
the performance of experienced radiologists [14], high-
lighting its potential as a reliable tool. The present study 
employed 3D radiomics features derived from DWI, 

recognizing its significant role in the risk stratification of 
EC [15]. While prior studies had shown that ADC values 
could effectively predict high-risk disease, [16, 17] com-
bining 3D DWI features enabled a more detailed predic-
tion of myometrial invasion, LVSI and tumor grade [18]. 
Our study yielded comparable results, yet the Rad-Signa-
ture model outperformed the radiomics-only Rad-Score 
model, achieving an accuracy of 75.4%, closely matching 
the performance of the ESMO standard at 78.3%. This 
aligns with findings from a recent review, which con-
cluded that radiomics models incorporating both clinical 
and radiomic features outperform those based solely on 
radiomic features [19].

The predictive model for lymph node metastasis in EC, 
utilizing MR radiomic features and clinical parameters, 
has demonstrated effective discrimination ability, par-
ticularly in normal-sized lymph nodes [20, 21]. While 
our model’s accuracy of 75.4% is not the highest reported, 
it falls within the range of performance observed in 
similar studies. For instance, a recent two-center study 
investigating pre-operative risk factors for EC reported 

Table 2 Clinical and demographic data between risk groups predicted by Rad‑Score

Unless otherwise indicated, data are number of variables, with their percentage in parentheses

EC endometrioid carcinoma, ESMO European Society for Medical Oncology, FIGO International Federation of Gynecology and Obstetrics, LVSI lymphovascular invasion
* represents statistical significance

Variable Rad‑Score high risk Rad‑Score low risk P values

Patients number 124 232

Age (years, range) 56 (29–88) 51 (25–83)  < .001*

Tumor pathologic size (mm, range) 48 (3–163) 29 (1–166)  < .001*

Histopathology .329

 Endometrioid 96 (77.4%) 191 (82.3%)

 Non‑endometrioid 28 (22.6%) 41 (17.7%)

Tumor grade  < .001*

 1 29 (23.4%) 142 (61.2%)

 2 55 (44.4%) 57 (24.6%)

 3 40 (32.3%) 33 (14.2%)

LVSI  < .001*

 None 81 (65.3%) 197 (84.9%)

 Present 43 (34.7%) 35 (15.1%)

FIGO stage  < .001*

 1A 52 (41.9%) 187 (80.6%)

 1B 39 (31.5%) 24 (10.3%)

 2 20 (16.1%) 10 (4.3%)

 3A 8 (6.5%) 8 (3.4%)

 3B 3 (2.4%) 3 (1.3%)

 4 2 (1.6%) 0 (0.0%)

ESMO risk groups  < .001*

 Low 20 (16.1%) 119 (51.3%)

 Intermediate 32 (25.8%) 55 (23.7%)

 High‑intermediate and high 72 (58.1%) 58 (25.0%)
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accuracies ranging from 75 to 86% across multiple fac-
tors [14]. Additionally, another study evaluating a 
whole-lesion T2w-derived radiomics model for risk strat-
ification achieved accuracies of 0.71 and 0.72 in the train-
ing and testing sets, respectively [9]. Furthermore, the 

Rad-Signature model in our study, based on preoperative 
parameters, achieved an excellent NPV of 95.3% in the 
training cohort, albeit slightly lower than the post-oper-
atively based ESMO classification in the independent test 
cohort. Nonetheless, the Rad-Signature model’s utility in 

Fig. 3 Rad‑Score pipeline 

Table 3 Performance of Rad‑Score and Rad‑Signature in the training and testing data compared to ESMO

The numbers in parentheses represent the 95% confidence interval

ESMO European Society for Medical Oncology, PPV positive predictive value, NPV negative predictive value

Sensitivity Specificity Accuracy PPV NPV

Training set

 Rad‑Score 65.5% (51.4%‑77.8%) 72.4% (66.2%‑78.1%) 71.1% (65.5%‑76.3%) 36.0% (26.6%‑46.2%) 89.8% (84.6%‑93.8%)

 Rad‑Signature 85.5% (73.3%‑93.5%) 70.3% (63.9%‑76.1%) 73.2% (67.6%‑78.2%) 40.5% (31.5%‑50.0%) 95.3% (91.0%‑98.0%)

 ESMO risk group 69.1% (55.2%‑80.9%) 71.1% (64.8%‑76.9%) 70.7% (65.1%‑75.9%) 36.2% (27.0%‑46.1%) 90.7% (85.5%‑94.5%)

Testing set

 Rad‑Score 64.3% (35.1%‑87.2%) 72.7% (59.0%‑83.9%) 71.0% (58.8%‑81.3%) 37.5% (18.8%‑59.4%) 88.9% (75.9%‑96.3%)

 Rad‑Signature 78.6% (49.2%‑95.3%) 74.5% (61.0%‑85.3%) 75.4% (63.5%‑84.9%) 44.0% (24.4%‑65.1%) 93.2% (81.3%‑98.6%)

 ESMO risk group 85.7% (57.2%‑98.2%) 76.4% (63.0%‑86.8%) 78.3% (66.7%‑87.3%) 48.0% (27.8%‑68.7%) 95.5% (84.5%‑99.4%)
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identifying low-risk patients who may not benefit from 
lymphadenectomy is noteworthy. Given that EC manage-
ment hinges on risk stratification [22], a fully automated 
radiomics pipeline utilizing pre-operative MRI data could 
be a future direction in integrating risk stratification into 
the clinical pathway more effectively [23].

The study further explored the biochemical processes 
underlying radiomics to enhance the model’s explain-
ability. By examining the correlation between radiomics-
identified high-risk patients with elevated total choline 
levels on MRS, the radiomics model could potentially 
correlate with cell membrane choline metabolism. 
Regarding the correlation of DWI and biomarkers, a prior 
study found that patients with high Ki-67 expression had 

significantly lower mean ADC values than those with low 
Ki-67 expression [24]. MRS was employed in our study 
as abnormal choline metabolism is a characteristic can-
cer marker [11]. An elevated total choline (tCho) signal is 
detectable by MRS in all tested cancers, as well as in vari-
ous stages of EC [11, 25, 26]. Specifically, a high tCho/
Water ratio and choline peak could differentiate EC from 
benign endometrium, differentiating type II from type I 
EC and identifying high-grade tumors [12, 27, 28].

Additionally, we analyzed a subset of 70 tissue sam-
ples from hysterectomies for various metabolites using 
the NMR spectrometry platform. The Rad-Score model 
exhibited a significant correlation with G3P levels. Cor-
relations between individual radiomic features and G3P, 

Fig. 4 Comparative imaging and analysis of two different patients with grade 3 endometrial cancer using radiomics from ADC map, MR 
spectroscopy (MRS), and electron microscopy.
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choline, and phosphocholine levels were also observed. 
The alteration of choline phospholipid metabolism is pri-
marily due to choline kinase alpha overexpression and 
a hyperactivated deacylation pathway, leading to a 70% 
increase in phosphocholine levels [29]. Furthermore, 
endometrial carcinoma differential 3, a key enzyme in 
choline metabolism, increases levels of active protein 
kinase C by breaking down glycerophosphocholine. Its 
overexpression is commonly observed in endometrial 
and ovarian cancer patients, which correlates with a 
higher risk of metastasis and decreased survival rates [30, 
31] (Fig. 4).

This study had some limitations. First, MRS data were 
not included in the radiomics model. This was primar-
ily due to the absence of standardized protocols for MRS 
data acquisition and analysis across various imaging 
centers, which could result in inconsistent and unreliable 
data. Secondly, the study was conducted at a single center 
using a dedicated MR scanner. The lack of external vali-
dation and data from a single center may limit the gen-
eralizability of our findings. Future studies incorporating 
multicenter data are recommended to further validate 
the robustness of the radiomics model. Furthermore, 
while we excluded tumors with a volume less than 1.5 cm 
to avoid partial volume effects, extreme ADCs may still 
result from DW imaging and ADC map misregistration 
artifacts. Lastly, while the association between Rad-Score 
and MRS was statistically significant, the correlation was 
modest. This initial observation may be attributed to 
tumor heterogeneity not fully resolved by the limitation 
of voxel size of 12 × 12 × 12  mm3 on MRS. Additionally, 
radiomics features and MRS metabolites may non-inva-
sively capture the different aspects of tumor nature, while 
radiomics quantifies morphological and textural patterns 
and MRS offers complementary metabolic information. 
Besides, inherent technical limitations in both radiom-
ics and MRS can introduce variability. Despite this, the 
statistically significant association between Rad-Score 
and MRS and further high-resolution tissue analysis shed 
light on a potential biological link between radiomic fea-
tures and metabolic alterations within the tumor micro-
environment. This finding could enlighten future risk 
stratification models by integrating radiomics and bio-
logical data.

Conclusion
By developing a radiomic risk score using routine DW 
MRI, comparable with clinical standard ESMO classifica-
tion, and establishing its association with increased cho-
line metabolism, this study shows promising translational 
relevance in providing a personalized approach to ther-
apy for high-risk EC patients.
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