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Abstract
Objectives The roles of magnetic resonance imaging (MRI) -based radiomics approach and deep learning approach 
in cervical adenocarcinoma (AC) have not been explored. Herein, we aim to develop prognosis-predictive models 
based on MRI-radiomics and clinical features for AC patients.

Methods Clinical and pathological information from one hundred and ninety-seven patients with cervical AC was 
collected and analyzed. For each patient, 107 radiomics features were extracted from T2-weighted MRI images. 
Feature selection was performed using Spearman correlation and random forest (RF) algorithms, and predictive 
models were built using support vector machine (SVM) technique. Deep learning models were also trained with 
T2-weighted MRI images and clinicopathological features through Convolutional Neural Network (CNN). Kaplan-Meier 
curve was analyzed using significant features. In addition, information from another group of 56 AC patients was used 
for the independent validation.

Results A total of 107 radiomics features and 6 clinicopathological features (age, FIGO stage, differentiation, invasion 
depth, lymphovascular space invasion (LVSI), and lymph node metastasis (LNM) were included in the analysis. When 
predicting the 3-year, 4-year, and 5-year DFS, the model trained solely on radiomics features achieved AUC values 
of 0.659 (95%CI: 0.620–0.716), 0.791 (95%CI: 0.603–0.922), and 0.853 (95%CI: 0.745–0.912), respectively. However, 
the combined model, incorporating both radiomics and clinicopathological features, outperformed the radiomics 
model with AUC values of 0.934 (95%CI: 0.885–0.981), 0.937 (95%CI: 0.867–0.995), and 0.916 (95%CI: 0.857–0.970), 
respectively. For deep learning models, the MRI-based models achieved an AUC of 0.857, 0.777 and 0.828 for 3-year 
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Introduction
Cervical cancer (CC) remains a leading cause of cancer-
related deaths in women worldwide surpassing other 
gynecological tumors [1]. The burden of CC is particu-
larly pronounced in developing countries, resulting in 
significant socio-economic implications [2, 3]. In 2022, 
China witnessed over 111,820 new cases and 61,579 
deaths attributed to CC, underscoring the urgency for 
effective diagnostic and treatment strategies [4]. Among 
the various types of CC, adenocarcinoma (AC), consti-
tuting 20% of cases, is notably aggressive and linked to 
worse outcomes compared to squamous cell carcinoma 
(SCC) [5, 6]. AC and its precancerous stages often origi-
nate in the endocervix, making them difficult to detect 
through standard HPV + PAP smear screenings due to 
their inconspicuous nature and tendency for skip lesions, 
thereby necessitating reliance on imaging modalities like 
MRI for diagnosis [4, 6]. Key clinical prognostic factors 
for AC include tumor stage, size, para-uterine invasion, 
and metastasis, with AC showing higher recurrence rates 
than SCC despite available treatments [7]. Despite the 
availability of comprehensive treatments, AC is associ-
ated with a higher recurrence rate than SCC [8, 9]. For 
early-stage CC patients, the conventional approach 
often involves radical hysterectomy combined with pel-
vic lymph node dissection [10]. The ability to accurately 
predict prognostic markers before surgery could signifi-
cantly enhance treatment planning and prognostication 
[5, 11]. Magnetic resonance imaging (MRI) serves as a 
crucial noninvasive tool for CC diagnosis and staging [12, 
13], offering detailed insights into tumor morphology 
and extent within the pelvis, including potential bladder 
and rectal invasion, and predicting responses to neoad-
juvant chemotherapy [14, 15]. Furthermore, radiomics 
models derived from MRI data can predict lymph node 
metastasis (LNM) and lymphovascular space invasion 
(LVSI), critical factors in determining post-operative care 
and patient outcomes [16, 17].

The deep learning (DL) model as a newly emerging 
model, allows the automatic discovery of the represen-
tations with the use of fully connected layers in the net-
work and can analyze the nonlinear correlations that are 

more common in the real world [18]. Several deep learn-
ing models have been reported to be effective in the diag-
nosis, treatment stratification, and prognostic prediction 
for CC [19–21]. Notably, DL models have demonstrated 
efficacy in various studies, including precise identifica-
tion of deep stromal invasion in AC and cervical adeno-
squamous carcinoma, and accurate segmentation of 
gross tumor volume in CC patients [22, 23]. Additionally, 
DL models have shown potential in predicting outcomes 
for non-surgical CC patients based on pathological image 
analysis [24].

Despite AC representing a smaller fraction of the 
overall CC population, the exploration of MRI-based 
radiomics and deep learning in AC remains limited. 
This study aims to investigate the performance of MRI-
based radiomics and deep learning models in the context 
of AC, addressing a critical gap in the current research 
landscape.

Methods
Patients
This retrospective study was approved by the ethical 
committee at the First Affiliated Hospital of Zhengzhou 
University. A total of 216 AC patients who took a sur-
gery in our hospital were recruited for this study, from 
December 1st, 2013 to October 31st, 2019. After the pre-
liminary treatments, follow up was performed every 2–3 
months in first and second year, then every 6 months in 
third and fourth year, and once a year in the fifth year and 
later. During this period, 19 patients were lost before the 
third year and thus excluded for the final analysis. The 
inclusion criteria were as follows: (1) patients with stage 
Ia1-IIA2 AC (usual-type) and accepted (radical) hyster-
ectomy ± lymphadenectomy was qualified for recruit-
ment; (2) MRI was performed within one week before the 
surgery; (3) no previous treatment was given prior to the 
MRI examination. The exclusion criteria were: (1) before 
MRI, the biopsy for pathological diagnosis was permit-
ted, but conization or LEEP (loop electrosurgical excision 
procedure) was not qualified; (2) poor image quality; (3) 
rare histological subtypes (like gastric-type, neuroendo-
crine carcinoma, clear cell, and serous); (4) patients who 

DFS, 4-year DFS and 5-year DFS prediction, respectively. And the combined deep learning models got a improved 
performance, the AUCs were 0.903. 0.862 and 0.969. In the independent test set, the combined model achieved an 
AUC of 0.873, 0.858 and 0.914 for 3-year DFS, 4-year DFS and 5-year DFS prediction, respectively.

Conclusions We demonstrated the prognostic value of integrating MRI-based radiomics and clinicopathological 
features in cervical adenocarcinoma. Both radiomics and deep learning models showed improved predictive 
performance when combined with clinical data, emphasizing the importance of a multimodal approach in patient 
management.
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accepted NACT (neoadjuvant chemotherapy treatment) 
was ruled out to avoid the impacts on final pathology 
results. The diagnosis was re-confirmed by an experi-
enced pathologist. Clinical-pathological parameters were 
extracted from medical records. Tumor stages were 
determined according to the FIGO 2018 criteria. If there 
was no suspicious lymph node metastasis (indicated 
by MRI, CT, or other imaging tests), the patients with 
stage IA1 tumor (invasion depth < 3.0  mm, determined 
by conization or LEEP) did not undergo the systematic 
lymphadenectomy. All the other patients accepted the 
systematic lymphadenectomy (both pelvic and paraaortic 
lymphadenectomy) according to the NCCN guidelines, 
version 2023. For the independent test cohort, another 
group of 56 AC patients were recruited from Qilu Hos-
pital of Shandong University (the time of surgery ranged 
from June 1st, 2014 to Dec 31st, 2020). The pipeline of 
this study is illustrated in Figure 1.

MRI acquisition protocol
All scans were performed on a Siemens Syra 3.0T MRI 
scanner (Siemens, Germany), 18 channel surface phased 
array coil. The T2-weighted (T2W) sequence which are 
routinely performed along with T1-weighted (T1W) was 

used for the analysis. The details of the scan parameters 
were shown in Table 1.

Enhancement scans were performed by a rapid (< 10 s) 
bolus injection of gadopentetate dimeglumine (Gd-
DTPA) via the elbow vein with a high-pressure syringe at 
a dose of 0.2 mmol/kg and a rate of 2–3 ml/s. One phase 
of plain scanning was conducted before injection, and 23 
phases of uninterrupted repeat scanning were performed 
after injection.

Regions of interest segmentation
3D Slicer software Version 4.13 was used to delineate 
the whole cervix uteri as volume of interest (VOI) on the 
axial orientation T2-weighted images manually by a radi-
ologist of three years of experience, and confirmed by a 
senior radiologist of 5 years of experience [25].

Radiomics feature extraction and feature engineering
For each patient, a total 107 radiomics features was 
extracted using the “PyRadiomics” package implemented 
in Python [26]. The radiomics features included: (1) 14 
shape-based features; (2) 18 first-order features; (3) 24 
GLCM features; (4) 16 GLRLM features; (5) 16 GLSZM 
features; (6) 14 GLDM features; (7) 5 NGTDM features.

To address collinearity among the radiomics features, 
we performed an initial reduction step using Spearman 
correlation analysis. Features with a correlation coef-
ficient greater or equal to 0.8 were considered redun-
dant and removed from further analysis. In addition to 
radiomics features, we collected 6 clinicopathological 
features for each patient: age, FIGO stage, differentiation 
degree, invasion depth, LVSI, and LNM. The reduced 
radiomics features were then combined with the clinico-
pathological features for final feature selection. Random 

Table 1 The details of the scan parameters for T2-weighted 
(T2W) sequence acquisition
Parameters Axial T2WI
TR (msec) 3000
TE (msec) 116
Slice thickness (mm) 4
FOV 180 mm×180 mm
Matrix 384 × 269

Fig. 1 The pipeline of this study. Radiomics-based predictive model construction: Firstly, manual segmentation of ROI on MRI. Then feature extraction 
and feature selection were performed using Spearman correlation and random forest. Model training and validation was performed through SVM. MRI-
based deep learning predictive construction: MRI with or without clinicopathological features were included for model training through deep learning 
network. ROI, Region of Interest; RF, Random Forest; SVM, Support Vector Machine
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forest was also applied to select the features that were 
important to the prognosis. Based on random forest, the 
contribution value of each feature on each tree in a ran-
dom forest was estimated. Specifically, the contribution 
value was calculated based on the Gini index.

Machine learning predictive models
After feature selection, support vector machine (SVM) 
was used to build prediction models. Cross-validation 
scheme was applied with 80% training and 20% validation 
ratios across 5 folds. To correct the sample imbalance of 
different labels, ‘class_weight’ was set to ‘balanced’ mode 
in the model of each fold. Before model training, Ran-
domizedSearchCV was used to perform hyper-parame-
ters fine-tuning from the specified parameter space, and 
the best parameters was selected based on area under the 
curve (AUC). It should be noted that the random forest 
feature selected and hyperparameter fine-tuning were 
conducted in the inner loop cross validation of the train-
ing set, and the validation set was only used to evaluate 

the performance of the model. In addition to AUC, other 
indicators such as accuracy, sensitivity, specificity, PPV, 
NPV are also used to evaluate model performance. Pre-
dictive models of 3-year DFS, 4-year DFS and 5-year 
DFS were trained using radiomics features alone as well 
radiomics features combined with clinicopathological 
features.

Kaplan-Meier analysis
According to the random forest feature importance, we 
further selected the four most important features and 
performed Kaplan-Meier analysis to validate the prog-
nostic value of these features. In which, the continuous 
variables were divided into high-value and low-value 
groups based on the optimal truncation value generated 
by R package survminer (Version 0.4.9), while category 
variables were directly used to draw Kaplan-Meier curve.

Deep learning prognostic predictive model
We first converted the spacing of the MRI images of T2 
sequence to the median of the data spacing of this batch: 
(0.5468, 0.5468, 6). Since the position of the cervix in 
MRI images is relatively fixed, and there are many redun-
dant areas, we applied fixed size center crop to the data 
after the unified spacing: (224,224,18). Finally, Z-Score 
normalization was performed on the trimmed data.

The dataset was randomly divided into training and 
validation cohorts by 8:2. Our model adopted the self-
developed convolutional neural network structure and 
the batch size is set to 8 during training. The details of the 
model structure and training were described in supple-
mentary files.

Statistical analysis
The area under the receiver operating characteristics 
curve (ROC AUC), sensitivity, specificity, positive pre-
dictive value, negative predictive value and accuracy 
were used to assess the discrimination performance 
of the machine learning models. SVM and ROC curve 
visualization was performed by using the Python (v3.8) 
package scikit-learn (v1.2.0) and matplotlib (v 3.5.1). 
Kaplan-Meier curve was analyzed using the R package 
survival (v3.2-13). P-value less than 0.05 was considered 
statistically significant.

Results
Patients characteristics
The baseline characteristics of 197 AC (usual-type) 
patients were provided in Table  2. The median age at 
diagnosis was 45.5 years-old (ranged from 26 to 72). 
The median DFS was 51 months (ranged from 5 to 115 
months). According to the FIGO 2018 staging system, 
133 women (67.5%) exhibited stage I (6 IA1, 10 IA2, 70 
IB1, 32 IB2, 15 IB3) and 27 (13.7%) had disease stages 

Table 2 Baseline clinical parameters of AC patients. LVSI, 
lymphovascular space invasion; LNM, lymph node metastasis
Variables n (%)
Median age (range) 45.5 (26–72) years-old
Grade
High 28 (14.2)
Medium 123 (62.4)
Low 46 (23.4)
Tumor size
≤ 2 cm 96 (48.7)
2–4 cm 61 (31.0)
> 4 cm 40 (20.3)
FIGO stage
IA1 6 (3.0)
IA2 10 (5.1)
IB1 70 (35.5)
IB2 32 (16.2)
IB3 15 (7.6)
IIA1 17 (8.6)
IIA2 8 (4.1)
IIB 2 (1.0)
IIIB 1 (0.5)
IIIC1p 35 (17.8)
IIIC2p 1 (0.5)
LVSI
Negative 137 (69.5)
Positive 60 (30.5)
Depth of invasion
< 1/3 58 (29.4)
1/3 − 2/3 96 (48.7)
> 2/3 43 (21.8)
LNM
Negative 161 (81.7)
Positive 36 (18.3)
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II tumors (17 IIA1, 8 IIA2 and 1 IIB). The other 37 
cases (18.8%) belong to stage III (1 IIIB, 35 IIIC1p, and 
1 IIIC2p). As for the histology, 28 (14.2%), 123 (62.4%), 
and 46 (23.4%) cases were high, medium, and low differ-
entiation. As for the tumor size, 96 (48.7%), 61 (31.0%), 
and 40 (20.3%) tumors are divided into ≤ 2 cm, 2–4 cm, 
and > 4 cm groups. According to the invasion depth, 58 
(29.4%), 96 (48.7%), and 43 (21.8%) patients presented 
with < 1/3, 1/3 − 2/3, and > 2/3 depth of invasion. 30.5% 
(n = 60) and 18.3% (n = 36) cases were positive with LVSI 
and LNM.

As shown in Table 3, the median age at diagnosis was 
49.5 years-old. In the independent test group (ranged 
from 26 to 72). The median DFS was 37 months (ranged 
from 4 to 74 months). 41 women (73.2%) exhibited stage 
I (1 IA1, 25 IB1, 9 IB2, 6 IB3) and 2 (3.6%) had disease 
stages IIA1 tumors. The other 13 cases (23.2%) belong to 
stage III (12 IIIC1p, and 1 IIIC2p). As for the histology, 
10 (17.9%), 26 (46.4%), and 20 (35.7%) cases were high, 
medium, and low differentiation. As for the tumor size, 
28 (50.0%), 16 (28.6%), and 12 (21.4%) tumors are divided 

into ≤ 2 cm, 2–4 cm, and > 4 cm groups. According to the 
invasion depth, 20 (35.7%), 13 (23.2%), and 20 (35.7%) 
patients presented with < 1/3, 1/3 − 2/3, and > 2/3 depth 
of invasion. 23.2% (n = 13) and 23.2% (n = 13) cases were 
positive with LVSI and LNM (Fig. 1).

Feature selection and radiomics-based machine learning 
model performances
The fifteen features with the highest weight were 
remained for the model construction. For 3-year DFS 
prediction, the model trained with radiomics features 
alone achieved an AUC of 0.659 (95%CI: 0.620–0.716). 
The combined model got a better performance than the 
radiomics model (AUC 0.934, 95% CI: 0.885–0.981). The 
combined model also had a better performance in sensi-
tivity, specificity, positive predictive value, negative pre-
dictive value and accuracy (Fig. 2a and d).

For 4-year DFS prediction, the radiomics model 
yielded an AUC of 0.791 in the validation set (95%CI: 
0.603–0.922). And the combined model showed perfor-
mance improvement (AUC 0.937, 95%CI: 0.867–0.995). 
The other performance indicators were also better in the 
combined model (Fig. 2b and e).

We got a similar result in the prediction of 5-year DFS, 
the combined model demonstrated an AUC of 0.916 
(95%CI: 0.857–0.970), while the radiomics model got an 
AUC of 0.853 (95%CI: 0.745–0.912). The other perfor-
mance indicators were also better in the combined model 
(Fig. 2c, g and f ).

Kaplan-Meier analysis of selected features
The Kaplan-Meier analysis was used for the validation 
of the prognostic value of the selective radiomics and 
clinicopathological features. One radiomics features orig-
inal_glcm_Correlation (OGC) and three clinicopatholog-
ical features including FIGO stage, LNM and LVSI were 
selected to perform Kaplan-Meier analysis. As shown in 
Fig. 3, higher OGC (p = 0.0003), stage 3 (p < 0.0001), LNM 
(p < 0.0001) and LVSI (p < 0.0001) positive were all signifi-
cantly associated with worse DFS. Especially, FIGO stage 
and LNM had more obvious impact for prognostic value, 
which patients had only 50% survival probability for 
FIGO stage 3 group or LNM positive group undergo 30 
months. While OGC and LVSI didn’t have so important 
impact for prognostic value.

The feature importance of the models was calculated 
through RF method. For 3-year DFS model, the first three 
important features were FIGO stage, LNM and origi-
nal_glcm_Correlation. While for 4-year DFS model and 
5-year DFS model, the three most important features 
included two radiomics features and one clinicopatholog-
ical feature. Especially for 5-year DFS model, the first two 
important features were both radiomics features (origi-
nal_glcm_Correlation and original_glszm_GrayLevelNon 

Table 3 Baseline clinical parameters of AC patients in the 
independent test group. LVSI, lymphovascular space invasion; 
LNM, lymph node metastasis
Variables n (%)
Median age (range) 49.5 (26–72) years-old
Grade
High 10 (17.9)
Medium 26 (46.4)
Low 20 (35.7)
Tumor size
≤ 2 cm 28 (50.0)
2–4 cm 16 (28.6)
> 4 cm 12 (21.4)
FIGO stage
IA1 1 (1.8)
IA2 0 (0.0)
IB1 25 (44.6)
IB2 9 (16.1)
IB3 6 (10.7)
IIA1 2 (3.6)
IIA2 0 (0.0)
IIIC1p 12 (21.4)
IIIC2p 1 (1.8)
LVSI
Negative 43 (76.8)
Positive 13 (23.2)
Depth of invasion
< 1/3 20 (35.7)
1/3 − 2/3 13 (23.2)
> 2/3 20 (35.7)
LNM
Negative 43 (76.8)
Positive 13 (23.2)
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Uniformity) (Fig.  4). Representative MRI scans of two 
patients with poor prognosis or better prognosis were 
illustrated, the corresponding values of the most related 
features were recorded (Fig. 5).

MRI-based deep learning predictive model performances
We also trained predictive models with T2W images 
and clinicopathological features through deep learning 
approach. MRI-based deep learning models achieved an 
AUC of 0.857, 0.777 and 0.828 for 3-year DFS, 4-year DFS 
and 5-year DFS prediction, respectively in the validation 
cohort. While for the combined deep learning models, 
they got a better performance than the MRI-based deep 
learning models. The AUCs of the 3-year DFS, 4-year 
DFS and 5-year DFS prediction models were 0.903, 0.862 
and 0.969, respectively (Fig. 6).

Models performances confirmed by the independent test 
cohort
A total of 56 AC patients were recruited for the indepen-
dent test analysis. The model performances for both of 
the radiomics-based machine learning model and deep 
learning predictive model were also shown in Figs. 2 and 
6. Under the radiomics-based machine learning models, 
the combined model achieved an AUC of 0.725 (95%CI: 
0.706–0.752), 0.750 (95%CI: 0.709–0.772) and 0.669 
(95%CI: 0.621–0.705) for 3-year DFS, 4-year DFS and 
5-year DFS prediction, respectively in the independent 

test set (Fig. 2). The combined model got a better perfor-
mance than the radiomics model, which was consistent 
with the validation results. Under the deep learning pre-
dictive models, the combined model achieved an AUC 
of 0.873, 0.858 and 0.914 for 3-year DFS, 4-year DFS and 
5-year DFS prediction, respectively in the independent 
test set (Fig. 6), which was also consistent with the valida-
tion results on a better performance than the MRI-based 
deep learning models.

Discussion
According to the world health organization (WHO) clas-
sification system, the usual-type AC accounts for about 
80% of all ACs, following with other rare histologic sub-
types such as gastric-type, clear cell, mesonephric, endo-
metrioid, and others [27]. In this study, we developed 
and validated prognostic models for early-stage cervical 
adenocarcinoma (AC) patients by integrating MRI-based 
radiomics and clinicopathological features. Our key find-
ings indicate that the combined model, which incorpo-
rates both radiomics and clinicopathological features, 
outperformed models based solely on radiomics features 
in predicting 3-year, 4-year, and 5-year disease-free sur-
vival (DFS). Specifically, the combined model achieved 
higher AUC values, indicating better predictive accuracy 
and robustness. Additionally, deep learning models that 
incorporated clinicopathological features demonstrated 
enhanced performance compared to those using MRI 

Fig. 2 ROC curves of radiomics-based predictive models of 3-year DFS (a), 4-year DFS (b) and 5-year DFS (c). The other performance matric of the pre-
dictive models of 3-year DFS (d), 4-year DFS (e) and 5-year DFS (f) were also shown. SNS, sensitivity; SPC, specificity; PPV, positive predictive value; NPV, 
negative predictive value; ACC, accuracy. DFS, disease-free survival
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images alone. These results underscore the importance 
of combining clinical data with advanced imaging tech-
niques to improve prognostic predictions in cervical AC 
patients.

Cervical AC is usually more aggressive, exhibit-
ing a greater propensity for local and distant metas-
tasis, reduced responsiveness to radiotherapy and 
chemotherapy, and an unfavorable prognosis [28, 29]. 
While conventional MRI has demonstrated efficacy in 
predicting risk factors and prognosis in CC, the emerging 
field of radiomics has garnered attention due to its ability 
to objectively and accurately extract quantitative features 

from MRI images, including density, contour, volume, 
and texture [30]. In this study, we present, for the first 
time, the prognostic value of MRI in a cohort of patients 
specifically diagnosed with the usual-type cervical AC 
through radiomics-based machine learning method and 
deep learning method, respectively. Our results reveal 
that the radiomics model achieved AUC values of 0.659, 
0.791, and 0.853 for predicting 3-year, 4-year, and 5-year 
DFS, respectively. Notably, while the 3-year DFS predic-
tion was relatively modest, it demonstrated a gradual 
increase over time, suggesting the potential of radiomics 
in predicting long-term disease-free survival. OGC 

Fig. 3 Kaplan-Meier analysis of selected features. A) Kaplan-Meier curves of the radiomics feature OGC. B-D represent Kaplan-Meier curves of the FIGO 
stage, LVSI and LNM. Shadows represent 95% CI. LVSI, lymph-vascular space invasion; LNM, lymph node metastasis; OGC, original_glcm_Correlation. CI, 
confidence interval
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appeared importance in all prognostic models, it is a 
first-order GLCM feature reflecting on the information 
content of the linear dependency of gray level values in 
the image. A higher correlation implies a greater linear 
relationship between the gray levels of pixel pairs, often 
used to assess the heterogeneity or complexity of the tex-
ture in medical images. Thus, this OGC can be critical 
in analyzing textures in radiology images, helping in the 
treatment planning, and prognosis of diseases by high-
lighting patterns not always visible to the human eye. For 
the MRI-based deep learning models, the AUC values 
were 0.857, 0.777 and 0.828 for 3-year, 4-year and 5-year 
DFS, respectively. The deep learning model presented a 

better performance than the radiomics-based model for 
3-year DFS prediction.

Earlier investigations have also explored the predic-
tive capacity of MRI radiomics in cervical cancer. In a 
prior study encompassing 191 cases of early SCC, the 
incorporation of age, FIGO stage, LVSI, and other indica-
tors into the model construction revealed a significantly 
superior predictive value of the radiomics model for DFS 
compared to traditional clinical models [31]. Similarly, 
a separate study involving 378 stage I-II cervical cancer 
patients, including a subset of 33 AC cases, demonstrated 
the extraction of textural features from T2-weighted and 
ADC data, which, when combined with clinical patho-
logical parameters using stepwise logistic regression, 

Fig. 5 Representative H&E staining and MRI scans of 2 patients who presented poor prognosis or better prognosis. H&E staining (a), H&E staining marked 
by LVSI (b) and MRI scan (c) for the patient with poor prognosis. H&E staining (d), H&E staining marked by LVSI (e) and MRI scan (f) for the patient with 
better prognosis

 

Fig. 4 Feature Importance of the combined model of 3-year DFS, 4-year DFS and 5-year DFS by Built-in Random Forest Importance
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yielded an impressive AUC of 0.916 for predicting tumor 
recurrence [32]. Furthermore, a study utilizing the least 
absolute shrinkage and selection operator (LASSO) 
regression and Cox proportional hazard model, incorpo-
rating 248 CC patients, including 33 AC cases, reaffirmed 
the superior predictive value of MRI radiomics for DFS 
compared to traditional clinical pathological parameters 
[33]. Collectively, these findings underscore the promis-
ing predictive value of MRI radiomics in early CC and 
provide objective evidence to inform clinical decision-
making. However, the majority of current researches in 
the realm of MRI radiomics in cervical cancer primar-
ily concentrates on SCC, leaving the value of radiomics 
in AC inadequately explored. Given the significant dis-
parities and inherent heterogeneity between AC and 
SCC, it is imperative to investigate the potential of MRI 
radiomics specifically in cervical AC.

Commonly employed prognostic indicators in clini-
cal practice encompass FIGO stage, tumor size, depth of 
cervical stromal invasion, LVSI, and LNM [34]. Drawing 
upon parameters from the Surveillance, Epidemiology, 
and End Results (SEER) database, Ni et al. [35] identified 
histological grade, T stage, N stage, M stage, tumor vol-
ume, and surgical intervention as independent prognos-
tic indicators for cervical AC. Similarly, Zhou et al. [36] 
conducted a retrospective analysis of stage I-IIB cervical 

AC, revealing LNM and age as independent prognostic 
indicators for overall survival, while tumor volume and 
LNM were independent prognostic indicators for recur-
rence-free survival. In a cohort comprising 305 cases of 
cervical AC, researchers validated 5-year overall survival 
rates of 80%, 37%, and 11% for stages I, II, and III, respec-
tively [37]. In this present study, we incorporated clinical 
parameters alongside cervical AC radiomics to establish a 
comprehensive model, resulting in significantly improved 
AUC values. Furthermore, clinical parameters were also 
added into the deep learning models and also presented 
improved performances. This enhancement in predictive 
performance underscores the potential benefits of amal-
gamating objective and accurate MRI images with clini-
cal indicators, particularly for midterm and long-term 
prognosis. However, the need for confirmation through 
large-scale, multicenter, randomized controlled studies 
cannot be understated.

Several limitations must be acknowledged in our 
study. All patients included in our analysis presented 
with early-stage tumors and underwent extensive hys-
terectomy accompanied by lymph node dissection. 
Postoperative adjuvant treatments were administered 
according to authoritative guidelines such as those pro-
vided by the National Comprehensive Cancer Network 
(NCCN). Additionally, all patients exhibited the usual 

Fig. 6 ROC curves of deep learning predictive models of 3-year DFS (a), 4-year DFS (b) and 5-year DFS (c). The other performance matric of the predictive 
models of 3-year DFS (d), 4-year DFS (e) and 5-year DFS (f) were also shown. SNS, sensitivity; SPC, specificity; PPV, positive predictive value; NPV, negative 
predictive value; ACC, accuracy. DFS, disease-free survival
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type of cervical adenocarcinoma, ensuring consistency 
in case selection and minimizing significant biases, 
thereby enhancing the reliability and reproducibility 
of our results. However, in accordance with the FIGO 
2018 staging system, some patients were pathologically 
confirmed to have lymph node metastasis, potentially 
resulting in stage upgrading and introducing confound-
ing factors. Despite these limitations, we believe that our 
study, being the sole and most expansive radiomics inves-
tigation focused on usual-type cervical adenocarcinoma, 
contributes novel tools for clinical diagnosis, treatment 
selection, and prognosis prediction. Another limitation 
of this study is that the sample size is insufficient for deep 
learning model construction, and more samples need 
to be added to optimize the model. Moreover, the ret-
rospective design, the single-center nature of our study, 
and the reliance on a specific patient population might 
limit the applicability of our findings to broader contexts. 
Finally, Only T2 sequence was used in this study could 
limited the performance of established model, the deci-
sion to omit other sequence, e.g. DWI was made due 
to its inherent variability in interpretation, which could 
potentially compromise the uniformity of our data-
set. Thus, our study primarily emphasized T2w MRI 
sequences to ensure consistency across the entire cohort. 
Moreover, T2w MRI sequences are more ubiquitously 
available for AC imaging and are deemed more appro-
priate for facilitating cross-center validation efforts. The 
potential confounding effects of clinical and pathologi-
cal parameters and how our analyses help mitigate these 
influences, thereby providing a more accurate prognostic 
model.

Conclusion
In our study, we demonstrated the prognostic power of 
integrating MRI-based radiomics and clinicopathologi-
cal features for evaluating usual-type cervical adeno-
carcinoma. Both radiomics and deep learning models 
showed enhanced predictive accuracy when combined 
with clinical data. These findings advocate for the use of 
a multimodal approach, integrating radiomics with clini-
cal and pathological information, to improve prognos-
tication and guide clinical decision-making in cervical 
adenocarcinoma.
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