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Abstract
Objectives To develop and validate a radiomics nomogram combining radiomics features and clinical factors for 
preoperative evaluation of Ki-67 expression status and prognostic prediction in clear cell renal cell carcinoma (ccRCC).

Methods Two medical centers of 185 ccRCC patients were included, and each of them formed a training group 
(n = 130) and a validation group (n = 55). The independent predictor of Ki-67 expression status was identified by 
univariate and multivariate regression, and radiomics features were extracted from the preoperative CT images. 
The maximum relevance minimum redundancy (mRMR) and the least absolute shrinkage and selection operator 
algorithm (LASSO) were used to identify the radiomics features that were most relevant for high Ki-67 expression. 
Subsequently, clinical model, radiomics signature (RS), and radiomics nomogram were established. The performance 
for prediction of Ki-67 expression status was validated using area under curve (AUC), calibration curve, Delong test, 
decision curve analysis (DCA). Prognostic prediction was assessed by survival curve and concordance index (C-index).

Results Tumour size was the only independent predictor of Ki-67 expression status. Five radiomics features were 
finally identified to construct the RS (AUC: training group, 0.821; validation group, 0.799). The radiomics nomogram 
achieved a higher AUC (training group, 0.841; validation group, 0.814) and clinical net benefit. Besides, the radiomics 
nomogram provided a highest C-index (training group, 0.841; validation group, 0.820) in predicting prognosis for 
ccRCC patients.

Conclusions The radiomics nomogram can accurately predict the Ki-67 expression status and exhibit a great 
capacity for prognostic prediction in patients with ccRCC and may provide value for tailoring personalized treatment 
strategies and facilitating comprehensive clinical monitoring for ccRCC patients.
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Introduction
Renal cell carcinoma (RCC) is a prevalent form of cancer 
worldwide, ranking as the tenth and thirteenth most fre-
quent cancer in men and women, respectively [1]. Clear 
cell renal cell carcinoma (ccRCC), the most predominant 
subtype of RCC, accounts for 75-90% of kidney cancers 
[2, 3]. Despite surgical intervention remaining the cor-
nerstone of management, the 5-year relative survival rate 
of ccRCC patients remains dismal [4]. Besides, a steady 
stream of immunotherapeutic drugs has been approved 
and used for treatment over the past decade, however, 
a substantial proportion of cases does not demonstrate 
objective and durable responses when treated with such 
novel modalities [5–7]. This heterogeneity highlights 
the imperative role that robust predictive factors play in 
patient stratification and subsequent individualization 
of care plans. Therefore, the identification of prognostic 
biomarkers assumes paramount importance in the strati-
fication of ccRCC patients, aiding clinical decision-mak-
ing for treatment.

The Ki-67 nucleoprotein, existing in all phases of the 
cell cycle except resting phase (G0), is closely associ-
ated with the status of cellular proliferation [8]. Utiliz-
ing standard immunohistochemistry, the Ki-67 index is 
measured after biopsy or surgery, offering quantitative 
insights into the heterogeneity and aggressiveness of neo-
plasms [9]. The Ki-67 index has proved to be a valuable 
prognostic predictive tool in various malignancies [10–
12]. As for ccRCC, previous studies have shown that a 
high Ki-67 proliferation status (Ki-67 ≥ 15%) serves as an 
independent prognostic factor, which is strongly corre-
lated with a poor prognosis [13, 14]. For ccRCC patients, 
particularly those classified as high-risk based on their 
Ki-67 index, close postoperative monitoring, adjunctive 
immunotherapy and targeted therapy are recommended 
[15, 16]. However, the current method of immunohisto-
chemical evaluation from surgical or biopsy specimens is 
invasive, posing risks such as needle tract implantation 
and limited reflection of neoplastic heterogeneity [17]. 
There is an urgent need for a non-invasive, precise, and 
effective preoperative assessment of the Ki-67 index to 
overcome sampling biases in clinical practice.

Radiomics, as an emerging technique in oncology, 
presents a promising approach for the transformation of 
medical images into quantitative and high-dimensional 
image features. Through the application of model-build-
ing algorithms, radiomics features have the capacity to 
reveal associations between tumour imaging and his-
topathology as well as heterogeneity [18–21]. Besides, 
radiomics has been successfully applied in various oncol-
ogy fields, such as to distinguish between benign renal 
masses and RCCs and to predict prognosis in ccRCC 
[22, 23]. Moreover, it has been utilized to predict the 
Ki-67 expression status in breast cancer [24], sinonasal 

malignancies [25], and gastrointestinal stromal tumours 
[26]. However, to date, radiomics has not been used for 
predicting Ki-67 expression status in ccRCC.

The purpose of this study was to establish and validate 
a radiomics nomogram combining radiomics features 
and clinical factors for preoperative evaluation of Ki-67 
expression status and prognostic prediction in ccRCC.

Materials and methods
Patients
The study adhered to the principles of the Declaration 
of Helsinki. The approval was obtained from the Insti-
tutional Review Board of the two participating hospitals 
with the informed consent waived.

This retrospective research involved patients from 
two hospitals (Shandong Provincial Hospital Affiliated 
to Shandong First Medical University and the Affiliated 
Hospital of Qingdao University) between 2015 and 2019. 
The inclusion criteria were as follows: (1) Histopathologi-
cal confirmation of ccRCC through surgical procedures, 
(2) Performance of a CT scan within a 14-day period 
before the initiation of therapy, (3) Measurement of the 
Ki-67 index via an immunohistochemical examination 
following the surgical procedure. Patients with incom-
plete clinical data or poor image quality were excluded, 
resulting in the enrollment of 185 patients (121 males 
and 64 females) with a median age of 58 years (age range: 
28 to 87 years).

According to the TRIPOD statement, 130 patients from 
the Affiliated Hospital of Qingdao University assigned to 
training group, and 55 patients from Shandong Provin-
cial Hospital Affiliated to Shandong First Medical Uni-
versity assigned to validation group.

The radiomics procedure employed in this research is 
illustrated in Fig. 1.

Acquisition of CT images
A volume of 90–100 mL of iodinated contrast medium, 
with concentrations of 350 mg I/mL or 370 mg I/mL, was 
intravenously administered via hand or peripheral veins 
in the elbow using a power injector at a controlled rate of 
2.5 - 3.0 mL/s. Subsequently, two post-contrast CT scans 
were acquired during the corticomedullary phase (CMP) 
at 30  s and the nephrographic phase (NP) at 90  s after 
injection. Table 1 presents the CT scan protocols utilized 
by the 2 participating hospitals.

Clinical and pathological data collection
The clinical and pathological information were collected, 
including the age, gender, Ki-67 index, hematuria, lum-
bago, Eastern Cooperative Oncology Group Performance 
Status (ECOG-PS), hemoglobin, leukocyte count, plate-
let count (PLT), lactate dehydrogenase (LDH), alkaline 
phosphatase (ALP), calcium level, creatinine level, blood 
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urea nitrogen (BUN), tumour size and necrosis (mea-
sured and evaluated on CT images). Following surgery, 
the Ki-67 index was determined using standard immuno-
histochemistry, which involved calculating the fraction of 
Ki-67-positive cells. According to the previous study [13], 
the ccRCC patients in this investigation were stratified 
into two groups based on their Ki-67 expression status, 
categorized as either high (≥ 15%) or low (<15%) Ki-67 
expression.

Analysis of the clinical information and clinical model 
construction
Variables in the training group underwent univari-
ate logistic regression analysis and multivariate logistic 
regression analysis to identify the independent predic-
tors significantly linked to the Ki-67, thus constructing a 
clinical model. For each predictor, odds ratios (OR) were 
calculated as measures of relative risk, along with 95% 
confidence intervals (CI).

Tumour segmentation and radiomics feature extraction
Three-dimensional (3D) segmentation of regions of 
interest (ROI) was conducted using ITK-SNAP software 
(Version 3.8, www.itksnap.org). With careful exclusion 
of adjacent renal parenchyma and perinephric fat, the 
contours were meticulously drawn within the tumour 
boundaries on NP and CMP images.

To standardize the CT images before feature extrac-
tion, procedures such as image resampling and gray-level 
discretization were applied. A total of 3376 radiomics 
features were extracted from CMP and NP images using 
Pyradiomics software. These features were categorized 
into four groups: (1) intensity statistic features: This 
group consisted of 18 features designed to quantitatively 
describe the distribution of voxel intensities within the 
ROIs, utilizing commonly used and basic metrics. (2) 
shape features: Comprising 14 3D features, this group 
reflected the shape and size characteristics of the ROIs. 
(3) texture features: This group comprised 93 features 
calculated by gray level dependence matrix (GLDM), 

Table 1 CT scan protocols 
CT scanner CT 256 CT 128 CT 64 CT 16 CT 64 CT 16 CT 16
Scanner model Brilliance iCT 

256
Somatom Definition 
Flash

Somatom 
Sensation 64

Brilliance 16 Discovery 750 Aquilion One Bright-
speed 
16

Manufacturer Philips Siemens Siemens Philips General Electric Toshiba General 
Electric

Gantry rotation time (s) 0.5 0.28 0.5 0.5 0.5 0.5 0.6
Tube voltage (kV) 120 120 120 120 120 120 120
Tube current 250 mA Ref. 200 mAs (Care 

Dose 4D)
200 mAs 200 mAs 200–400 mA

(Automatic tube 
current modulation)

100–400 mA 100–
400 mA

Detector collimation (mm) 0.625 0.6 0.6 0.75 0.625 1 0.625
Matrix 512 × 512 512 × 512 512 × 512 512 × 512 512 × 512 512 × 512 512 × 512
Pitch 0.915 1.0 1.0 1 1.375 0.9375 1.375
Slice thickness (mm) 5 5 5 5 5 5 5
Slice spacing (mm) 5 5 5 5 5 5 5
Reconstruction kernel B B30f B30f B standard FC18 standard
Hospital a a a a b b b
Note: s (second); kV (kilovolt); mA (milliampere); mm (millimeter); (a) The Affiliated Hospital of Qingdao University; (b) Shandong Provincial Hospital Affiliated to 
Shandong First Medical University

Fig. 1 Workflow of the radiomics procedure
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gray level co-occurrence matrix (GLCM), gray level run 
length matrix (GLRLM), gray level size zone matrix 
(GLSZM), and neighboring gray tone difference matrix 
(NGTDM), which quantified the heterogeneity differ-
ences of ROIs. (4) filter and wavelet features: This group 
included the intensity and texture features derived from 
wavelet and filter transformations of the original images. 
These transformations were achieved by applying filters 
such as square, square root, exponential, logarithm, gra-
dient, lbp_two dimensional (2D), lbp_3D_k, and wavelet 
(wavelet-LLL, wavelet-LLH, wavelet-LHL, wavelet-LHH, 
wavelet-HLL, wavelet-HLH, wavelet-HHL and wavelet-
HHH). Detailed instructions regarding the radiomics 
features can be found in the Pyradiomics document (Ver-
sion 3.0) available at https://pyradiomics.readthedocs.io.

To assess inter- and intra-observer reproducibility 
of ROI contouring, 50 randomly selected CT data were 

evaluated by two radiologists. After an interval of 1 
month, Reader 1 repeated the ROI segmentations, allow-
ing for an evaluation of intra-observer reproducibility. 
The assessment of feature extraction agreement was con-
ducted by evaluating the intra- and inter-class correla-
tion coefficients (ICCs). An ICC value greater than 0.75 
was deemed as indicative of satisfactory inter- and intra-
observer reproducibility. The remaining segmentations 
were conducted by Reader 1.

Construction of the radiomics signatures
In order to mitigate the risk of overfitting the signa-
ture, we employed a three-step process to reduce the 
dimensionality of the features. Initially, radiomics fea-
tures exhibiting intra- and inter-reader ICCs exceed-
ing 0.75 were preserved, thus guaranteeing the 
mitigation of potential subjectivity in the delineation of 

Table 2 Characteristics of ccRCC patients in the high and low Ki-67 expression groups
Variables Training group (n = 130) Validation group (n = 55)

High expression
(n = 34)

Low expression
(n = 96)

P-value High expression
(n = 14)

Low expression
(n = 41)

P-value

Age (years) 58.26 ± 8.26 55.01 ± 11.14 0.122 58.00 ± 9.54 55.93 ± 11.35 0.543
Gender 0.397 0.957
Female 10 36 4 14
Male 24 60 10 27
Hematuria 0.161 0.808
Absent 25 81 12 34
Present 9 15 2 7
Lumbago 0.023* 0.889
Absent 22 80 10 32
Present 12 16 4 9
ECOG-PS 0.031* 0.485
0 14 60 6 22
1–2 20 36 8 19
Hemoglobin 0.062 0.046*
Absent 21 75 7 32
Present 13 21 7 9
Leukocyte count 0.623 0.978
Absent 33 89 13 36
Present 1 7 1 5
PLT 0.037* 0.186
Absent 25 85 11 39
Present 9 11 3 2
Calcium 1 1
Absent 33 95 14 41
Present 1 1 0 0
Necrosis 0.508 0.566
Absent 30 90 12 39
Present 4 6 2 2
Tumour size (mm) 69.71 ± 26.42 49.43 ± 25.01 < 0.001* 72.07 ± 36.03 51.17 ± 27.55 0.028*
ALP (U/L) 77.00 69.00 0.157 66.00 72.70 0.288
Creatinine (µmol/L) 85.19 ± 15.79 80.60 ± 20.88 0.246 79.37 ± 17.23 77.03 ± 17.55 0.668
BUN (mmol/L) 5.17 ± 1.31(5.22) 5.57 ± 1.51(5.44) 0.171 (0.234) 5.15 ± 1.28 5.41 ± 1.37 0.533
ECOG-PS, Eastern Cooperative Oncology Group Performance Status, PLT, platelet, ALP, alkaline phosphatase, BUN, Blood urea nitroge

https://pyradiomics.readthedocs.io
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ROIs. Secondly, we employed the maximum relevance 
minimum redundancy (mRMR) method to select the 30 
most relevant radiomics features for prediction while 
eliminating irrelevant and redundant ones. Finally, the 
least absolute shrinkage and selection operator algorithm 
(LASSO) was utilized to identify the optimal radiomics 
features. Subsequently, these selected features were 
amalgamated to constitute the radiomics signature (RS), 
following which a radiomics score (Rad-score) was calcu-
lated for each individual patient.

Radiomics nomogram construction and performance 
assessment of different models
Based on the analysis of the clinical information, these 
independent predictors, in addition to the radiomic fea-
tures, were utilized to construct a radiomics nomogram. 
To evaluate the discriminative performance of the clini-
cal model, RS, and radiomics nomogram, the area under 
the curve (AUC) of the receiver operating characteristics 
(ROC) curve and Delong test was calculated for both 
the training and validation groups. Additionally, sensi-
tivity, specificity, and accuracy metrics were computed 
for the three models. In order to assess the clinical util-
ity of the three models when applied to the validation 

Table 3 Univariate and multivariate logistic regression analysis of the preoperative clinical of training group
Variables Univariate logistic regression Multivariate logistic regression

OR (95% CI) P-value OR (95% CI) P-value
Age 1.031 (0.992–1.071) 0.124
Gender 1.440 (0.618–3.354) 0.398
Hematuria 1.944 (0.759–4.978) 0.166
Lumbago 2.727 (1.126–6.607) 0.026* 2.814 (0.723–10.951) 0.136
ECOG-PS 2.381 (1.072–5.290) 0.033* 0.711 (0.170–2.980) 0.641
Hemoglobin 2.211 (0.951–5.142) 0.065
Leukocyte count 0.385 (0.046–3.252) 0.381
PLT 2.782 (1.036–7.467) 0.042* 1.515 (0.397–5.785) 0.544
Calcium 2.879 (0.175–47.339) 0.459
Necrosis 2.000 (0.528–7.569) 0.307
Tumour size 1.029 (1.013–1.045) < 0.001* 1.028 (1.006–1.050) 0.011*
ALP 1.004 (0.995–1.013) 0.390
Creatinine 1.012 (0.992–1.032) 0.245
BUN 0.817 (0.611–1.092) 0.172
ECOG-PS, Eastern Cooperative Oncology Group Performance Status, PLT, platelet, ALP, alkaline phosphatase, BUN, Blood urea nitrogen

Table 4 Selected radiomics features
Feature Meaning
lbp_2D_firstorder_10Percentile.CMP This feature is derived from LBP texture analysis and represents a first-order statistical mea-

sure based on the 10th percentile value of pixel intensity distribution within an image or 
region of interest. It provides information about the lower range of gray levels present in 
the image, which can be useful for detecting subtle changes associated with pathology.

gradient_firstorder_Minimum.NP The minimum gradient magnitude computed over all directions is represented by this 
feature. Gradients capture edge information, and their magnitudes indicate how abrupt 
these edges are across different scales. The minimum value taken among various gradi-
ents helps identify regions where the structure is less pronounced.

exponential_ NGTDM _Busyness.NP Busyness refers to a measure of activity or complexity within an image patch. In the 
context of NGTDM features, it could reflect the amount of variation observed between 
neighboring pixels when considering multiple gray level differences simultaneously.

exponential_ GLSZM _GrayLevelVariance.CMP GLSZM quantify co-occurrences of zones with similar sizes but varying intensities; 
GrayLevelVariance specifically describes how much individual grayscale values vary inside 
these zones relative to their mean value. This feature captures heterogeneity within struc-
tures under observation.

exponential_ GLCM _Imc2.NP GLCM records the frequency of occurrence of pixel intensity pairs at different positions 
and directions. Imc2 was a specific element or submatrix within a GLCM. Such elements 
encode relationships between pairs of pixels at certain distances and orientations, provid-
ing insights into spatial arrangement and regularity/irregularity of tissues under study.

CMP, corticomedullary phase, NP, nephrographic phase, LBP, Local Binary Patterns, NGTDM, Neighborhood Gray Tone Difference Matrix, GLSZM, Grayscale zone 
matrices, GLCM, Gray-level co-occurrence matrix
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set, decision curve analysis (DCA) was conducted. This 
involved quantifying the net benefits at various threshold 
probabilities.

Follow-up and survival analysis
The final follow-up date was July 31, 2019. The endpoint 
of this study was the recurrence-free survival (RFS), 
determined by measuring the duration from the date 
of surgery to the occurrence of either a recurrence, the 
last recorded negative follow-up, or patient demise. The 
median follow-up was 50 months (range: 1-118 months). 
After surgery, patients received regular follow-up assess-
ments at intervals of every 6 to 12 months during the 
initial 2 years, followed by annual evaluations. Follow-
up data, including physical exams and images, were col-
lected from medical records. Additionally, telephone 
enquiries and medical insurance records were utilized to 
gather relevant information.

Survival curves based on the pathological Ki-67 expres-
sion status and Ki-67 expression status identified by three 
models were generated using the Kaplan-Meier method, 
and their concordance index (C-index) was calculated. 
The C-index serves as a measure of the proportion of 
correctly ordered pairs of individuals with predicted sur-
vival times [27], and its computation relies on Harrell’s 
C statistics [28]. A C-index score of approximately 0.70 
is indicative of a well-performing model, while a score 
around 0.50 suggests random background. A higher 

C-index indicates a more accurate prognostic prediction 
[29].

Statistical analysis
The statistical analysis was conducted using SPSS soft-
ware (Version 26.0). Continuous variables were assessed 
through either independent t-tests or Mann-Whitney 
U tests, while categorical variables were analyzed using 
the chi-square test or Fisher’s exact test, as appropriate. 
Univariate and multivariate logistic regression analysis, 
mRMR, ICC, LASSO Cox regression, survival analysis, 
AUC, C-index, and DCA were carried out using R statis-
tical software (Version 3.3.3, https://www.r-project.org). 
Statistical significance was determined based on a two-
sided P-value < 0.05.

Result
Clinical model construction
The characteristics of the patients in the training and 
validation groups are detailed in Table 2. In the training 
group, lumbago, ECOG-PS, PLT and tumour size showed 
significant differences between the high Ki-67 expression 
group and low Ki-67 expression group. After multiple 
logistic regression analysis, only tumour size (p < 0.05, 
odds ratio = 1.024, 95%CI, 1.007 to 1.042) remained an 
independent predictor in the clinical model (Table 3).

Fig. 2 Steps for radiomics feature downscaling and selection. a LASSO path map, tuning parameter (λ) selection; b A coefficient profile plot, versus the 
selected log λ value; c 5 radiomics features with non-zero coefficients were selected; LASSO the least absolute shrinkage and selection operator algorithm
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Radiomics signature construction
Among the 3376 radiomics features, 2530 demonstrated 
favorable inter- and intra-observer agreement. 30 most 
relevant radiomics features were selected using mRMR 
and subsequently employed into the LASSO regression 
model to identify the most valuable features. Ultimately, 

the RS was constructed based on 5 selected features 
(Table 4), and their correlation coefficients are presented 
in Fig. 2. The Rad-score was calculated using the follow-
ing formula:

Rad-score = - (0.192*lbp_2D_firstorder_10Percentile.
CMP)

Table 5 Diagnostic performance of the various models
Models Training group (n = 130) Validation group (n = 55)

AUC (95% CI) Sensitivity Specificity Accuracy AUC (95% CI) Sensitivity Specificity Accuracy
Clinical model 0.724

(0.621–0.827)
0.559 0.833 0.762 0.698

(0.546–0.849)
0.5 0.756 0.691

RS 0.821
(0.745–0.897)

0.853 0.594 0.662 0.799
(0.668–0.929)

0.857 0.561 0.636

Nomogram 0.841
(0.765–0.917)

0.765 0.833 0.815 0.814
(0.704–0.925)

0.571 0.756 0.709

RS, radiomics signature, CI, confidence interval

Fig. 3 Radiomics nomogram based on radiomics features and the independent clinical predictor
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+ (0.032*exponential_ GLSZM _GrayLevelVariance.
CMP).
− (0.042*exponential_ NGTDM _Busyness.NP).
− (0.497*gradient_firstorder_Minimum.NP).
− (0.049*exponential_ GLCM _Imc2.NP) -1.117.

The Rad-score of the high Ki-67 expression group dem-
onstrated a significant increase in comparison to the low 
Ki-67 expression group in the training (p < 0.001, 95%CI, 
-1.479 to -0.722) and validation groups, respectively 
(p < 0.001, 95%CI, -1.484 to -0.515).

Radiomics nomogram construction
As stated above, only tumour size emerged as an inde-
pendent predictor of high-expression of Ki-67 (Table 3). 
Consequently, a radiomics nomogram, which integrates 
the radiomic features with the independent clinical pre-
dictor (tumour size), was formulated (Fig.  3). Notably, 
Hosmer-Lemeshow test showed good calibration in 
the training group (p = 0.290) and the validation group 
(p = 0.214), indicating good performance of the nomo-
gram in the evaluation of Ki-67 expression status.

The discrimination performance of the different models
Table 5 presents the diagnostic performance of the three 
CT models. Fig.  4 displays the ROC curves for each 
model in both the training and validation groups. The 
radiomics nomogram showed a higher AUC value than 
both clinical model and RS, and the Delong test demon-
strated a superior performance for radiomics nomogram 
when compared to clinical model (p < 0.05). There was no 
significant difference in performance when compared to 
RS (p > 0.05).

In terms of the DCA results, the radiomics nomogram 
consistently exhibited a superior overall clinical net ben-
efit compared to the other models within a significant 
portion of the reasonable threshold probabilities for 
stratifying the Ki-67 index. (Fig. 5).

Survival prediction
Figure 6 displays the survival curves based on the patho-
logical Ki-67 expression status and Ki-67 expression sta-
tus identified by three models, while Table 6 presents the 
corresponding C-index for both the training and valida-
tion groups. All models and the Ki-67 expression status 
demonstrated favorable outcomes (C-index  >  0.7). The 
radiomics nomogram exhibited the highest C-index 

Fig. 4 Receiver operating characteristic curves for each model in both the training (a) and validation (b) groups
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among all models, achieving 0.841in the training group 
and 0.820 in the validation group.

Discussion
In our study, a radiomics nomogram integrating CT 
radiomic features with clinical parameters was developed 
and validated, which demonstrated great performance in 
effectively predicting the status of Ki-67 expression and 
the prognosis in ccRCC patients.

The Ki-67 nucleoprotein, a crucial biomarker asso-
ciated with tumour heterogeneity and aggressiveness, 
demonstrates a significant correlation with the progno-
sis of various tumours [9, 12, 30, 31]. Based on previous 
research [13, 14, 32–34], it has proved as an indepen-
dent predictor of malignant potential and a dependable 
prognostic tool for predicting outcomes in patients with 
ccRCC. In this study, we retrospectively utilized medical 
data from 185 ccRCC patients to analyze traditional clini-
cal factors (age, gender, hematuria, lumbago, ECOG-PS, 

hemoglobin, leukocyte count, PLT, LDH, ALP, calcium, 
creatinine, BUN, tumour size and necrosis). Among these 
factors, tumour size was found to be the only significantly 
independent variable for predicting Ki-67 index stratifi-
cation. However, tumour size, as an independent predic-
tor, achieved a relatively lower AUC values of 0.724 and 
0.698 in the training and validation groups, respectively, 
suggesting that the factor derived from conventional clin-
ical data made a restricted contribution to the prediction 
of the Ki-67 expression status in ccRCC patients.

The significance of standardized preprocessing of CT 
images prior to feature extraction in diminishing varia-
tions stemming from diverse scanners and imaging 
parameters has been well-established [35]. In our study, 
the standardized preprocessing was adhered before fea-
ture extraction, including gray-level discretization and 
voxel size resampling. This approach enabled us to obtain 
features in line with the feature definitions prescribed by 
the Image Biomarker Standardization Initiative (IBSI) 

Fig. 5 Decision curve analysis for the pathological Ki-67 expression status (Label, purple line) and three models. The radiomics nomogram (Nomo-
gram, blue line) had better clinical net benefit than other models within a significant portion of the reasonable threshold probabilities for stratifying the 
Ki-67 index
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[36]. By doing so, we minimized potential confounding 
effects and the discrepancies arising from differences in 
image specifications to ensure improved reproducibil-
ity of CT features [35]. However, future investigations 
should consider exploring the complex interplay between 
these imaging parameters and radiomics performance. 
Such efforts could lead to the development of robust 
normalization methods or adaptive feature sets that can 
accommodate varying imaging protocols without com-
promising accuracy, aiming towards establishing univer-
sal benchmarks for CT screening programs worldwide.

Radiomics has been proven to facilitate the precise 
assessment of tumour heterogeneity, which has been 
shown to have an important prognostic relationship in 
various malignancies [37], including lung cancer [38], 
breast cancer [39], esophageal cancer [40], hepatocel-
lular carcinoma [41], and RCC [42]. Our group has also 
found a definitive correlation between the heterogene-
ity based on CT radiomics and the clinical outcomes of 
patients with ccRCC. The rad-score of the high Ki-67 
expression group, composed of the most valuable 5 

radiomics features, demonstrated a significant elevation 
compared to that of the low Ki-67 expression group, indi-
cating greater pixel differences between the images and 
increased tumour heterogeneity [43]. Besides, radiomics 
has also been shown to have great potential to predict 
high Ki-67 expression in malignancies (Table  7). Zhang 
et al. developed a CT-based radiomics nomogram 
(AUC = 0.784) to predict high Ki-67 expression in gas-
trointestinal stromal tumours [26]. Wu et al. constructed 
a radiomics nomogram based on a combination of 
radiomic features and clinical factors (AFP and Edmond-
son grades) to predict Ki-67 expression status in hepa-
tocellular carcinoma, they found that the efficacy of the 
combined nomogram (AUC = 0.819) in predicting Ki-67 
expression status was significantly better than the clinical 
models (AUC = 0.630, 0.699) [44]. Similarly, a radiomics 
nomogram combining the radiomic features with inde-
pendent clinical factors was constructed by our group, 
achieving the highest predictive performance (AUC: 
training, 0.884; validation, 0.819) and good calibration 
capability (p > 0.05 in the Hosmer-Lemeshow test). The 
Delong test results demonstrated better performance in 
predicting than clinical factors (p < 0.05) and comparable 
performance to RS (p > 0.05), highlighting the important 
role of radiomics in predicting Ki-67 expression status. 
Furthermore, DCA provided additional support for the 
enhanced clinical utility of the radiomics nomogram 
when contrasted with the RS. This suggests that clinical 
factors serve a complementary function, and their inte-
gration offers superior practicality in a clinical context. 
These findings suggest that the radiomics nomogram 
holds promise as a dependable clinical diagnostic tool for 

Table 6 The corresponding C-index for both the training and 
validation groups
Models C-index (95% CI)

Training group (n = 130) Validation group (n = 55)
Label 0.831 (0.728–0.933) 0.805 (0.716–0.883)
Clinical model 0.802 (0.727–0.877) 0.773 (0.666–0.881)
RS 0.819 (0.751–0.886) 0.794 (0.657–0.930)
Nomogram 0.841 (0.764–0.918) 0.820 (0.715–0.925)
Label, pathological Ki-67 expression status, RS, radiomics signature, CI, 
confidence interval

Fig. 6 Survival curves of the pathological Ki-67 expression status, clinical model, RS and radiomics nomogram in training group (a-d) and validation 
group (e-h), respectively
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stratifying the Ki-67 index, which can contribute to pre-
cise clinical decision-making.

Previous studies have shown that radiomics also has 
significant potential for predicting the prognosis of 
ccRCC (Table  7). Gao et al. established a prognostic 
nomogram (AUC = 0.768) containing a radiomic signa-
ture and clinicopathological parameters to predict the 
outcomes in ccRCC [45]. While He et al. developed a 
radiomics score-based nomogram to predict prognosis 
and the AUC of predictive performance were 0.826 at 
12 months, 0.805 at 36 months, and 0.76 at 60 months 
[46]. Our study evaluated the predictive efficacy of mod-
els for RFS in ccRCC by using the Ki-67 index as a strati-
fication factor. The pathological Ki-67 expression status 
as well as the Ki-67 expression status predicted by the 
three models were found to be associated with RFS of 
RCC. The radiomics nomogram, combining radiomic 
features and clinical features, showed the highest predic-
tive performance among the models in the training group 
(C-index: 0.841; 95%CI, 0.764 to 0.918) and the validation 
group (C-index: 0.820; 95%CI: 0.715 to 0.925). Patients 
with high Ki-67 expression predicted using the radiomics 
nomogram are at high risk of recurrence and should be 
given active follow-up and adjuvant therapy. Conversely, 
patients with low risk can be followed up routinely using.

However, certain limitations need to be acknowledged 
in this study. First, despite meticulously applied rigor-
ous inclusion and exclusion criteria, retrospective stud-
ies pose inherent challenges in eliminating selection bias. 
Second, manual segmentation for defining tumor regions 
introduces the potential for error and variance. Future 
research should explore semi-automatic methods for 
improved accuracy. Third, the relatively small sample size 
of 185 patients limits the study’s predictive power. Finally, 
although CT images undergo standardized preprocess-
ing, the use of different scanners with variable character-
istics can impact the radiomics score.

Despite the progress made in the application of 
radiomics in ccRCC, several challenges remain to be 
addressed. First, most studies have relatively small sam-
ple sizes and lack large-scale prospective validation. 
Second, differences in radiomic feature extraction and 
selection methods across studies limit the reproducibility 
and generalizability of the results. In the future, standard-
ized radiomics analysis need to be established to improve 
the robustness and interpretability of radiomics signa-
tures. Moreover, integrating radiomics with multi-omics 
data, such as clinical characteristics, histopathologi-
cal features, and genomic profiles, may further enhance 
the predictive performance of radiomics signatures. We 
believe that with the continuous advancement of artificial 
intelligence techniques and the accumulation of big data, 
radiomics has the potential to play a greater role in per-
sonalized diagnosis and treatment.

In summary, we have developed and verified a 
radiomics nomogram that combines radiomic features 
with clinical factors. This nomogram demonstrates 
strong predictive performance for assessing Ki-67 expres-
sion status and exhibits a great capacity for prognostic 
prediction in patients with ccRCC, providing a valuable 
resource for tailoring personalized treatment strategies 
and facilitating comprehensive clinical monitoring.

Conclusions
Our study demonstrated that the radiomics nomogram 
was the superior predictive model of Ki-67 expression 
status and prognosis compared with clinical model or 
RS alone. The effect of Ki-67 expression status on prog-
nosis was also verified. Radiomics nomogram based on 
CT radiomics features and clinical factors may offer sig-
nificant benefits in customizing individualized treatment 
approaches and enhancing thorough clinical surveillance 
for patients with ccRCC.

Abbreviations

Table 7 Studies based on radiomics to predict Ki-67 expression status and the prognosis of ccRCC
Radiomics predict Ki-67 expression status Radiomics predict the prognosis of ccRCC

Author Zhang et al. [26]. Wu et al. [44]. Gao et al. [45]. He et al. [46]. 
Year 2020 2022 2021 2022
Disease Type gastrointestinal stromal 

tumors
hepatocellular carcinoma ccRCC ccRCC

No. of Patients 339 172 214 493
Method* The radiomic nomogram in-

cluding the radiomic signature 
and tumor size

The radiomics nomo-
gram based on radiomic 
signature and clinical 
factors

The prognostic nomogram 
containing radiomic signa-
ture and clinicopathological 
parameters

The radiomics nomogram 
combining radiomics with 
clinical risk factors

AUC (95%CI)** 0.784 (0.701–0.868) 0.819 (0.688–0.912) 0.768 (NA) 12 months: 0.826 (0.717–0.936)
36 months: 0.805 (0.694–0.916)
60 months: 0.760 (0.635–0.886)

Note: * Take the best model; ** Take the validation set AUC firstly, otherwise take the training set AUC

ccRCC, clear cell renal cell carcinoma, AUC, area under curve, CI, confidence interval
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RCC  Renal cell carcinoma
ccRCC  Clear cell renal cell carcinoma
CMP  Corticomedullary phase
NP  Nephrographic phase
ECOG-PS  Eastern Cooperative Oncology Group Performance Status
PLT  Platelet count
LDH  Lactate dehydrogenase
ALP  Alkaline phosphatase
BUN  Blood urea nitrogen
OR  Odds ratios
CI  Confidence intervals
3D  Three-dimensional
2D  Two-dimensional
ROI  Regions of interest
GLDM  Gray level dependence matrix
GLCM  Gray level co-occurrence matrix
GLRLM  Gray level run length matrix
GLSZM  Gray level size zone matrix
NGTDM  Neighboring gray tone difference matrix
ICC  Intra- and inter-class correlation coefficients
mRMR  Maximum relevance minimum redundancy
LASSO  Least absolute shrinkage and selection operator algorithm
RS  Radiomics signature
Rad-score  Radiomics score
AUC  Area under the curve
ROC  Receiver operating characteristics
DCA  Decision curve analysis
RFS  Recurrence-free survival
C-index  Concordance index
IBSI  Image Biomarker Standardization Initiative

Supplementary Information
The online version contains supplementary material available at https://doi.
org/10.1186/s40644-024-00744-1.

Supplementary Material 1

Acknowledgements
Not applicable.

Author contributions
Ben Li and Guangjie Yang: designed the study; Yanmei Wang, Yuchao Xu 
and Ben Li: analyzed the data; Ben Li, Jie Zhu, Hailei Shi, Ju Zhang, and Yuan 
Zhuang: conducted the experiments; Jie Zhu, Pei Nie and Zhenguang Wang: 
advised study and revised the draft; Ben Li wrote the draft. All authors read 
and approved the final manuscript.

Funding
Not applicable.

Data availability
The datasets used and/or analyzed during the current study are available from 
the corresponding author on reasonable request.

Declarations

Ethics approval and consent to participate
The study adhered to the principles of the Declaration of Helsinki. The 
approval was obtained from the Institutional Review Board of the two 
participating hospitals with the informed consent waived.

Consent for publication
Consent to publish has been received from all participants.

Competing interests
The authors declare that they have no competing interests.

Author details
1Department of Nuclear Medicine, The Affiliated Hospital of Qingdao 
University, No. 59, Haier Road, Qingdao 266061, Shandong, China
2School of Basic Medicine, Qingdao University, Qingdao, Shandong, China
3Department of Scientific Research Management and Foreign Affairs, The 
Affiliated Hospital of Qingdao University, Qingdao, Shandong, China
4GE Healthcare China, Pudong New Town, Shanghai, China
5School of Nuclear Science and Technology, University of South China, 
Hengyang, Hunan, China
6Department of Pathology, The Affiliated Hospital of Qingdao University, 
No. 16, Jiangsu Road, Qingdao 266003, Shandong, China
7Department of Radiology, The Affiliated Hospital of Qingdao University, 
No. 16, Jiangsu Road, Qingdao 266003, Shandong, China

Received: 8 January 2024 / Accepted: 24 July 2024

References
1. Ferlay J, Ervik M, Lam F, Laversanne M, Colombet M, Mery L, Piñeros M, Znaor 

A, Soerjomataram I, Bray F. (2024). Global Cancer Observatory: Cancer Today. 
Lyon, France: International Agency for Research on Cancer. https://gco.iarc.
who.int/today, accessed [Jan 1, 2024].

2. Patard J-J, Leray E, Rioux-Leclercq N, Cindolo L, Ficarra V, Zisman A, et al. 
Prognostic value of histologic subtypes in renal cell carcinoma: a multicenter 
experience. J Clin Oncol off J Am Soc Clin Oncol. 2005;23:2763–71.

3. Rizzo A, Mollica V, Dall’Olio FG, Ricci AD, Maggio I, Marchetti A, et al. Quality of 
life assessment in renal cell carcinoma phase II and III clinical trials published 
between 2010 and 2020: a systematic review. Future Oncol Lond Engl. 
2021;17:2671–81.

4. National Cancer Institute. Cancer Stat Facts 2023. 2023. https://seer.cancer.
gov/statfacts/html/kidrp.html

5. Rosellini M, Marchetti A, Mollica V, Rizzo A, Santoni M, Massari F. Prognostic 
and predictive biomarkers for immunotherapy in advanced renal cell carci-
noma. Nat Rev Urol. 2023;20:133–57.

6. Santoni M, Rizzo A, Mollica V, Matrana MR, Rosellini M, Faloppi L, et al. The 
impact of gender on the efficacy of immune checkpoint inhibitors in cancer 
patients: the MOUSEION-01 study. Crit Rev Oncol Hematol. 2022;170:103596.

7. Mollica V, Rizzo A, Marchetti A, Tateo V, Tassinari E, Rosellini M, et al. The 
impact of ECOG performance status on efficacy of immunotherapy and 
immune-based combinations in cancer patients: the MOUSEION-06 study. 
Clin Exp Med. 2023;23:5039–49.

8. Jonat W, Arnold N. Is the Ki-67 labelling index ready for clinical use? Ann 
Oncol. 2011;22:500–2.

9. Menon SS, Guruvayoorappan C, Sakthivel KM, Rasmi RR. Ki-67 protein as a 
tumour proliferation marker. Clin Chim Acta Int J Clin Chem. 2019;491:39–45.

10. Pujol JL, Simony J, Jolimoy G, Jaffuel D, Demoly P, Quantin X, et al. Hypodip-
loidy, Ki-67 growth fraction and prognosis of surgically resected lung cancers. 
Br J Cancer. 1996;74:964–70.

11. Finkelman BS, Zhang H, Hicks DG, Turner BM. The evolution of Ki-67 and 
breast carcinoma: past observations, present directions, and future consider-
ations. Cancers. 2023;15:808.

12. Zeng M, Zhou J, Wen L, Zhu Y, Luo Y, Wang W. The relationship between 
the expression of Ki-67 and the prognosis of osteosarcoma. BMC Cancer. 
2021;21:210.

13. Kim HL, Seligson D, Liu X, Janzen N, Bui MHT, Yu H, et al. Using protein expres-
sions to predict survival in clear cell renal carcinoma. Clin Cancer Res off J Am 
Assoc Cancer Res. 2004;10:5464–71.

14. Xie Y, Chen L, Ma X, Li H, Gu L, Gao Y, et al. Prognostic and clinicopathological 
role of high Ki-67 expression in patients with renal cell carcinoma: a system-
atic review and meta-analysis. Sci Rep. 2017;7:44281.

15. Motzer RJ, Jonasch E, Agarwal N, Alva A, Baine M, Beckermann K, et al. Kidney 
Cancer, Version 3.2022, NCCN Clinical Practice guidelines in Oncology. J Natl 
Compr Cancer Netw JNCCN. 2022;20:71–90.

16. Choueiri TK, Tomczak P, Park SH, Venugopal B, Ferguson T, Chang Y-H, et al. 
Adjuvant pembrolizumab after Nephrectomy in Renal-Cell Carcinoma. N Engl 
J Med. 2021;385:683–94.

17. Renshaw AA, Powell A, Caso J, Gould EW. Needle track seeding in renal mass 
biopsies. Cancer Cytopathol. 2019;127:358–61.

18. Dong D, Tang L, Li Z-Y, Fang M-J, Gao J-B, Shan X-H, et al. Development and 
validation of an individualized nomogram to identify occult peritoneal 

https://doi.org/10.1186/s40644-024-00744-1
https://doi.org/10.1186/s40644-024-00744-1
https://gco.iarc.who.int/today
https://gco.iarc.who.int/today
https://seer.cancer.gov/statfacts/html/kidrp.html
https://seer.cancer.gov/statfacts/html/kidrp.html


Page 13 of 13Li et al. Cancer Imaging          (2024) 24:103 

metastasis in patients with advanced gastric cancer. Ann Oncol off J Eur Soc 
Med Oncol. 2019;30:431–8.

19. Ji G-W, Zhu F-P, Xu Q, Wang K, Wu M-Y, Tang W-W, et al. Machine-learning 
analysis of contrast-enhanced CT radiomics predicts recurrence of hepatocel-
lular carcinoma after resection: a multi-institutional study. EBioMedicine. 
2019;50:156–65.

20. Zhang B, Tian J, Dong D, Gu D, Dong Y, Zhang L, et al. Radiomics Features of 
Multiparametric MRI as Novel prognostic factors in Advanced Nasopharyn-
geal Carcinoma. Clin Cancer Res off J Am Assoc Cancer Res. 2017;23:4259–69.

21. Lucia F, Visvikis D, Desseroit M-C, Miranda O, Malhaire J-P, Robin P, et al. Predic-
tion of outcome using pretreatment 18F-FDG PET/CT and MRI radiomics in 
locally advanced cervical cancer treated with chemoradiotherapy. Eur J Nucl 
Med Mol Imaging. 2018;45:768–86.

22. Nassiri N, Maas M, Cacciamani G, Varghese B, Hwang D, Lei X, et al. A 
Radiomic-based Machine Learning Algorithm to reliably differentiate Benign 
Renal masses from Renal Cell Carcinoma. Eur Urol Focus. 2022;8:988–94.

23. Gao J, Ye F, Han F, Jiang H, Zhang J. A radiogenomics biomarker based on 
immunological heterogeneity for non-invasive prognosis of renal clear cell 
carcinoma. Front Immunol. 2022;13:956679.

24. Liang C, Cheng Z, Huang Y, He L, Chen X, Ma Z, et al. An MRI-based Radiomics 
Classifier for Preoperative Prediction of Ki-67 status in breast Cancer. Acad 
Radiol. 2018;25:1111–7.

25. Bi S, Li J, Wang T, Man F, Zhang P, Hou F, et al. Multi-parametric MRI-based 
radiomics signature for preoperative prediction of Ki-67 proliferation status in 
sinonasal malignancies: a two-centre study. Eur Radiol. 2022;32:6933–42.

26. Zhang Q-W, Gao Y-J, Zhang R-Y, Zhou X-X, Chen S-L, Zhang Y, et al. Personal-
ized CT-based radiomics nomogram preoperative predicting Ki-67 expres-
sion in gastrointestinal stromal tumors: a multicenter development and 
validation cohort. Clin Transl Med. 2020;9:12.

27. Steck H, Krishnapuram B, Dehing-oberije C, Lambin P, Raykar VC. On rankin-
ginsurvival analysis: boundsontheconcordanceindex.In:JCPlatt, D Koller, 
Y Singer, ST Roweis, editors. Advances in neural information processing 
systems 20. Proceedings of theTwenty-First Annual Conference on Neural 
Information Processing Systems (NIPS 2007); 2007 Dec 3–6; Vancouver, BC, 
Canada. La Jolla (CA): Neural Information Processing Systems Foundation; 
2008. pp. 1209–16.

28. Harrell FE, Lee KL, Mark DB. Multivariable prognostic models: issues in devel-
oping models, evaluating assumptions and adequacy, and measuring and 
reducing errors. Stat Med. 1996;15:361–87.

29. Huitzil-Melendez F-D, Capanu M, O’Reilly EM, Duffy A, Gansukh B, Saltz LL, et 
al. Advanced hepatocellular carcinoma: which staging systems best predict 
prognosis? J Clin Oncol off J Am Soc Clin Oncol. 2010;28:2889–95.

30. Zhu X, Chen L, Huang B, Wang Y, Ji L, Wu J, et al. The prognostic and predic-
tive potential of Ki-67 in triple-negative breast cancer. Sci Rep. 2020;10:225.

31. Tian Y, Ma Z, Chen Z, Li M, Wu Z, Hong M, et al. Clinicopathological and 
prognostic value of Ki-67 expression in bladder Cancer: a systematic review 
and Meta-analysis. PLoS ONE. 2016;11:e0158891.

32. Rioux-Leclercq N, Turlin B, Bansard J-Y, Patard J-J, Manunta A, Moulinoux J-P, et 
al. Value of immunohistochemical Ki-67 and p53 determinations as predictive 
factors of outcome in renal cell carcinoma. Urology. 2000;55:501–5.

33. Aaltomaa S, Lipponen P, Ala-Opas M, Eskelinen M, Syrjänen K. Prognostic 
Value of Ki-67Expression in Renal CellCarcinomas. Eur Urol. 1997;31:350–5.

34. Gayed BA, Youssef RF, Bagrodia A, Darwish OM, Kapur P, Sagalowsky A, et al. 
Ki67 is an independent predictor of oncological outcomes in patients with 
localized clear-cell renal cell carcinoma: Ki67 predicts outcomes in localized 
RCC. BJU Int. 2014;113:668–73.

35. Shafiq-Ul-Hassan M, Zhang GG, Latifi K, Ullah G, Hunt DC, Balagurunathan 
Y, et al. Intrinsic dependencies of CT radiomic features on voxel size and 
number of gray levels. Med Phys. 2017;44:1050–62.

36. Zwanenburg A, Vallières M, Abdalah MA, Aerts HJWL, Andrearczyk V, Apte A, 
et al. The image Biomarker Standardization Initiative: standardized quantita-
tive Radiomics for High-Throughput Image-based phenotyping. Radiology. 
2020;295:328–38.

37. Sun R, Limkin EJ, Vakalopoulou M, Dercle L, Champiat S, Han SR, et al. A 
radiomics approach to assess tumour-infiltrating CD8 cells and response to 
anti-PD-1 or anti-PD-L1 immunotherapy: an imaging biomarker, retrospec-
tive multicohort study. Lancet Oncol. 2018;19:1180–91.

38. Moon SH, Kim J, Joung J-G, Cha H, Park W-Y, Ahn JS, et al. Correlations 
between metabolic texture features, genetic heterogeneity, and muta-
tion burden in patients with lung cancer. Eur J Nucl Med Mol Imaging. 
2019;46:446–54.

39. Kim J-H, Ko ES, Lim Y, Lee KS, Han B-K, Ko EY, et al. Breast Cancer hetero-
geneity: MR Imaging Texture Analysis and survival outcomes. Radiology. 
2017;282:665–75.

40. Ganeshan B, Skogen K, Pressney I, Coutroubis D, Miles K. Tumour heteroge-
neity in oesophageal cancer assessed by CT texture analysis: preliminary 
evidence of an association with tumour metabolism, stage, and survival. Clin 
Radiol. 2012;67:157–64.

41. Mulé S, Thiefin G, Costentin C, Durot C, Rahmouni A, Luciani A, et al. 
Advanced Hepatocellular Carcinoma: pretreatment contrast-enhanced CT 
texture parameters as predictive biomarkers of survival in patients treated 
with Sorafenib. Radiology. 2018;288:445–55.

42. Lubner MG, Stabo N, Abel EJ, Del Rio AM, Pickhardt PJ. CT textural analysis of 
large primary renal cell carcinomas: pretreatment tumor heterogeneity cor-
relates with histologic findings and clinical outcomes. AJR Am J Roentgenol. 
2016;207:96–105.

43. Lambin P, Rios-Velazquez E, Leijenaar R, Carvalho S, van Stiphout RGPM, 
Granton P, et al. Radiomics: extracting more information from medical images 
using advanced feature analysis. Eur J Cancer Oxf Engl 1990. 2012;48:441–6.

44. Wu C, Chen J, Fan Y, Zhao M, He X, Wei Y, et al. Nomogram based on CT 
Radiomics features combined with clinical factors to Predict Ki-67 expression 
in Hepatocellular Carcinoma. Front Oncol. 2022;12:943942.

45. Gao R, Qin H, Lin P, Ma C, Li C, Wen R, et al. Development and validation of a 
Radiomic Nomogram for Predicting the prognosis of kidney renal clear cell 
carcinoma. Front Oncol. 2021;11:613668.

46. He H, Jin Z, Dai J, Wang H, Sun J, Xu D. Computed tomography-based 
radiomics prediction of CTLA4 expression and prognosis in clear cell renal 
cell carcinoma. Cancer Med. 2023;12:7627–38.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in 
published maps and institutional affiliations.


	Radiomics nomogram based on CT radiomics features and clinical factors for prediction of Ki-67 expression and prognosis in clear cell renal cell carcinoma: a two-center study
	Abstract
	Introduction
	Materials and methods
	Patients
	Acquisition of CT images
	Clinical and pathological data collection
	Analysis of the clinical information and clinical model construction
	Tumour segmentation and radiomics feature extraction
	Construction of the radiomics signatures
	Radiomics nomogram construction and performance assessment of different models
	Follow-up and survival analysis
	Statistical analysis

	Result
	Clinical model construction
	Radiomics signature construction
	Radiomics nomogram construction
	The discrimination performance of the different models
	Survival prediction

	Discussion
	Conclusions
	References


