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Abstract
Background Accurate prognostic assessment is vital for the personalized treatment of endometrial cancer (EC). 
Although radiomics models have demonstrated prognostic potential in EC, the impact of region of interest (ROI) 
delineation strategies and the clinical significance of peritumoral features remain uncertain. Our study thereby aimed 
to explore the predictive performance of varying radiomics models for the prediction of LVSI, DMI, and disease stage 
in EC.

Methods Patients with 174 histopathology-confirmed EC were retrospectively reviewed. ROIs were manually 
delineated using the 2D and 3D approach on T2-weighted MRI images. Six radiomics models involving intratumoral 
(2Dintra and 3Dintra), peritumoral (2Dperi and 3Dperi), and combined models (2Dintra + peri and 3Dintra + peri) were developed. 
Models were constructed using the logistic regression method with five-fold cross-validation. Area under the receiver 
operating characteristic curve (AUC) was assessed, and was compared using the Delong’s test.

Results No significant differences in AUC were observed between the 2Dintra and 3Dintra models, or the 2Dperi 
and 3Dperi models in all prediction tasks (P > 0.05). Significant difference was observed between the 3Dintra and 
3Dperi models for LVSI (0.738 vs. 0.805) and DMI prediction (0.719 vs. 0.804). The 3Dintra + peri models demonstrated 
significantly better predictive performance in all 3 prediction tasks compared to the 3Dintra model in both the training 
and validation cohorts (P < 0.05).

Conclusions Comparable predictive performance was observed between the 2D and 3D models. Combined models 
significantly improved predictive performance, especially with 3D delineation, suggesting that intra- and peritumoral 
features can provide complementary information for comprehensive prognostication of EC.
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Background
Endometrial cancer (EC) is the most common gyneco-
logical malignancy in developed country and second 
most common in China. Its incidence and mortality rate 
were still rising in recent years [1, 2]. Approximately 3% 
of women will develop EC in their lifetime with a median 
age of 61 years at first diagnosis [3]. While EC has an 
encouraging overall 5-year survival rate of 81% [4], clini-
cians face significant challenges in treatment decisions 
of overtreatment for low-risk patients and undertreat-
ment for high-risk patients. Accurate risk assessment 
rely heavily on important histopathological factors such 
as International Federation of Gynecology and Obstetrics 
(FIGO) stage, lymphovascular space invasion (LVSI), and 
depth of myometrial invasion (DMI) [5–8]. While pre-
cisely determining these prognostic metrics continues 
to be crucial for distant relapse assessment and of poor 
prognosis estimation. However, such prognostic bio-
markers can only be confirmed by histopathology, and is 
the main challenge of current clinical practice.

Magnetic resonance imaging (MRI) is considered 
mainstay for the preoperative evaluation of EC, given its 
high soft tissue contrast resolution allowing for the delin-
eation of tumor invasion [1, 9]. However, the subjective 
nature in visual interpretation remains a limitation of 
conventional MRI. As reported by Arnaiz et al. assessing 
its role in disease staging, accurate prediction was only 
achieved in 47.2% of cases [10]. Radiomics represent a 
novel technique enabling the extraction of large amounts 
of data from medical images in a high-throughput and 
quantitative manner [11]. Since its advent, it has dem-
onstrated great potential as a diagnostic and prognostic 
tool for a wide range of cancers [12–15]. In the context 
of EC, radiomics have demonstrated the value in not only 
the characterization of tumors, but also the prediction of 
high-risk diseases and survival outcomes [16–20].

Region of interest (ROI) delineation strategies can influ-
ence feature extraction and hence, affect the downstream 
performance of a radiomics model. Two approaches 
currently exist — the two-dimensional (2D) approach, 
which involves the delineation of lesions from a single 
image layer at the largest cross-section, or simply the 
center slice, and the three-dimensional (3D) approach, 
which involves the use of all tumor-containing slices. 
While the latter approach has been widely advocated for 
its comprehensiveness in tumor characterization [17, 
20, 21], the need for manual delineation renders it more 
time-consuming and labor-intensive. As of now, the opti-
mal ROI delineation strategy for the radiomics profiling 
of EC remains unclear. Besides, the majority of previ-
ous MRI-based radiomics research has placed focused 
on the characterization of intratumoral regions [16, 20, 
21]. However, the surrounding microenvironment has 

been increasingly shown to offer insight into the clinical 
behavior of primary lesions [22–24].

This study thereby aimed to compare the clinical value 
of 2D and 3D MRI-based radiomics features for the pre-
diction of LVSI, DMI, and disease stage in EC, as well as 
contribute to the existing literature on the significance of 
peritumoral radiomics features for prognostication of the 
disease.

Methods
Patient selection
Patients diagnosed with endometrial cancer between Jan-
uary 2017 and December 2022 at Peking University Third 
Hospital were retrospectively reviewed. All patients who 
underwent pelvic magnetic resonance imaging (MRI) 
within 14 days prior to hysterectomy were considered. 
The exclusion criteria included the following: (1) tumors 
with a maximum diameter of < 1  cm, (2) inadequate or 
poor image quality, (3) absence of relevant clinical or 
pathological information, (4) prior treatment with adju-
vant chemotherapy or radiotherapy, and (5) non-endo-
metrial primary malignancies.

This study was approved by the Ethics Committee of 
the institute (M2023637), who waived the requirement 
for informed patient consent.

Clinicopathological data collection
Clinicopathological characteristics including age, DMI, 
LVSI, tumor stage, histopathological type and serum 
CA125 and CA199 levels were obtained from medical 
records. Histopathological assessment was performed 
on all surgical specimens. Tumor staging was performed 
according to the 2009 FIGO staging system, with stages 
I – II and III – IV were classified as early- and late-stage 
EC, respectively [25].

Image acquisition and segmentation
Preoperative pelvic MRI was performed using 1.5 T 
Avanto scanner and 3.0 T Skyra scanners, with protocol 
parameters detailed in Supplementary Table S1. Axial 
T2-weighted images were acquired and used for subse-
quent analysis due to their ability to effectively distin-
guish between tumor-tissue and normal surrounding 
myometrial-tissue [1]. All images were imported into uAI 
Research Portal (V1.1, United Imaging Intelligence, Co., 
Ltd., Shanghai, China).

Intratumoral ROIs (ROIintra) were manually delineated 
by a radiologist (R.Y.) with 5-year experience, which were 
then reviewed and refined where necessary by a second 
radiologist (X.X.) with 15-year experience. Both radiolo-
gists were blinded to the study. ROIintra was defined as 
the entire tumor volume across all tumor slices on 3D 
images, and as the maximum tumor cross-section on 2D 
images. Any cystic or hemorrhagic areas were avoided. 
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Peritumoral ROIs (ROIperi) were automatically delineated 
by extending the tumor margin by 3 mm generated using 
the boundary “dilation” tool in the uAI platform [19, 24].

Image preprocessing and radiomics feature extraction
Image preprocessing and radiomics feature extraction 
were performed in accordance to the Image Biomarker 
Standardisation Initiative (IBSI [26]). All T2-weighted 
images were resampled to an isotropic pixel size of 
1 × 1 × 1  mm using BSpline interpolation to eliminate 
resolution discrepancies between devices. Pixel intensi-
ties were subsequently standardized to a common scale 
to further minimize background noise.

Radiomics features were extracted using the 
PyRadiomics python package. A total of 1197 radiomics 
features were extracted for each ROI, and consisted of 
the following 7 classes: first-order statistics (19.5%), 
shape-based features (1.2%), texture-based features 
including gray level co-occurrence matrix (GLCM) 
(23.9%) capturing texture, gray level run length matrix 
(GLRLM) (17.4%) describing gray level runs, gray level 
size zone matrix (GLSZM) (17.4%) characterizing zone 
sizes, neighboring gray tone difference matrix (NGTDM) 
(5.4%) quantifying differences between tumor and 
neighborhood pixels, and gray level dependence matrix 
(GLDM) (15.2%) analyzing dependency of gray levels. 
Subsequently Combined feature (ROIintra+peri) was fused 
by merging the extracted features from intra-tumoral 
models and respective peritumoral models. All extracted 
features were standardized using the Z-score normaliza-
tion method to standardize the different measurement 
units across features, preventing model results from 
being influenced by feature-scale variations.

Radiomic feature selection and machine learning model 
construction
First, features with correlation coefficients P-value less 
than 0.05 were remained. Least absolute shrinkage and 
selection operator regression (LASSO) was subsequently 
performed to select for those with non-zero coefficients. 
Five-fold cross-validation was applied, features appeared 
in more than two times were finally selected by “vote” 
function on the uAI platform to establish the radiomic 
models.

The models were eventually constructed using selected 
radiomics features using logistic regression. Patients were 
randomly divided into five equal size subsets, one subset 
served as the validation set. The remaining four-fifths 
were the training set. This process was then repeated five 
times with different subsets for validation and training. 
The performance was averaged across the five times pro-
cess to obtain a robust estimate of generalizability. The 
radiomics workflow is illustrated in Fig. 1.

Statistical analysis
All statistical analyses were conducted using the SPSS 
software (IBM, Chicago, IL, USA, R23.0.0.0). Diagnos-
tic performance was assessed using the receiver operat-
ing characteristic (ROC) curve analysis in terms of areas 
under the ROC curve (AUC), sensitivity, and specificity 
and accuracy. AUCs were compared using the Delong 
test. and are illustrated in the form of heatmaps.

Results
Baseline clinicopathological characteristics
A total of 174 patients with EC were enrolled in our 
study. The patient selection process is illustrated in Fig. 2. 
The average age was 56.96 ± 11.43 years (range, 27–86 
years). Among them, 37 (21.3%) presented with late-stage 

Fig. 1 The radiomics workflow
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disease. LVSI was observed in 39 (22.4%) patients, while 
DMI was seen in 55 (31.6%). The most common EC cell 
type was observed to be endometrioid adenocarcinoma 
(88.5%). All baseline characteristics of the patients are 
shown in Table 1.

Radiomics feature selection
Six models, 2Dintra, 2Dperi, 2Dintra + peri, 3Dintra, 3Dperi, and 
3Dintra + peri, were constructed for each task. The total 
number of radiomics features retained in each model 
were as follows: 11, 8, 11, 2, 7, and 6, respectively, for 
LVSI prediction; 8, 14, 13, 14, 10, and 13, respectively, for 
DMI prediction; and 6, 6, 7, 7, 7, and 11, respectively, for 
FIGO stage prediction. The distribution of radiomics fea-
ture classes of intra- and peri-tumoral region across all 
models is shown in Fig. 3a. The number of intra- and per-
itumoral features incorporated into each model is shown 
in Fig. 3b. The exact feature names and type are provided 
in Supplementary Tables S2 – S4.

Predictive performance of the independent radiomics 
models
The ROC curve results of the six established models are 
shown in both Table 2; Fig. 4. The Delong test results are 
shown in Fig. 5 and Supplementary Tables S5 – S10.

In terms of ROI delineation strategies, significant dif-
ferences were observed between the 2Dintra and 3Dintra 
models for LVSI prediction in the training cohort [0.810 
(0.718–0.903) vs. 0.738 (0.634–0.844), P = 0.001]. Addi-
tionally, significant differences were shown between the 
2Dperi and 3Dperi models for both DMI [0.928 (0.889–
0.972) vs. 0.833 (0.761–0.909), P = 0.000] and stage pre-
diction [0.760 (0.658–0.860) vs. 0.824 (0.747–0.908), 
P = 0.000] in the training data. Such significant differ-
ences were not observed between all models in the vali-
dation cohort (P > 0.05).

Table 1 Baseline clinicopathological characteristics of the 
included patients
Variables
Age (year), ± SD 56.96 ± 11.43
FIGO stage, n (%)
 Early-stage 137 (78.7%)
 Late-stage 37 (21.3%)
LVSI, n (%)
 + 39 (22.4%)
 - 135 (77.6%)
DMI, n (%)
 + 55 (31.6%)
 - 119 (68.4%)
CA125 (u/ml), ± SD 34.97 ± 45.70
CA199 (u/ml), ± SD 40.60 ± 88.96
Type, n (%)
 Endometrioid carcinoma 154 (88.5%)
 Non-Endometrioid carcinoma 20 (11.5%)
Abbreviations: FIGO stage, International Federation of Gynecology and 
Obstetrics (2009) stage, stages I– II and III – IV defined as early- and late-stage EC, 
respectively; LVSI, lymphovascular space invasion; and DMI, deep myometrial 
invasion; Non-Endometrioid carcinoma: include Serous carcinoma, Clear cell 
carcinoma, Mixed carcinoma, Undifferentiated carcinoma and Dedifferentiated 
carcinoma

Fig. 2 The patient selection process
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In terms of intra-and peri-tumoral features, significant 
differences were observed between the 2Dintra and 2Dperi 
models for DMI prediction [0.784 (0.699–0.871) vs. 0.928 
(0.889–0.972, P = 0.000] in the training cohort, which was 
not observed in the validation cohort (P > 0.05). Signifi-
cant differences were observed between the 3Dintra ver-
sus 3Dperi models for LVSI [0.738 (0.634–0.844) vs. 0.813 
(0.782–0.898), P = 0.000], DMI [0.761 (0.679–0.847) vs. 
0.833 (0.761–0.909), P = 0.000], and stage prediction 
[0.782 (0.688–0.877) vs. 0.824 (0.747–0.908), P = 0.049)] 
in the training cohort. Such significance remained 
in the validation cohort for LVSI prediction [0.738 

(0.634–0.844) vs. 0.805 (0.625–0.977), P = 0.049] and DMI 
prediction [0.719 (0.538–0.904) vs. 0.804 (0.654–0.953), 
P = 0.019], but not for stage prediction [0.738 (0.540–
0.932) vs. 0.763 (0.581–0.942].

Predictive performance of the combined radiomics models
For LVSI prediction, the 2Dintra + peri and 3Dintra + peri mod-
els demonstrated AUC values of 0.853 (0.773–0.933) and 
0.816 (0.730–0.901), respectively, in the training cohort 
and values of 0.720 (0.493–0.944) and 0.812 (0.633–
0.979), respectively, in the validation cohort. For DMI 
prediction, the AUC values were 0.839 (0.768–0.913) 

Fig. 3 Distribution and composition of (a) the three feature classes (first-order, shape, texture) across the models, and (b) the intra- and peritumoral 
features across the models
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and 0.845 (0.776–0.917), respectively, in the training 
cohort, and were 0.799 (0.638–0.963) and 0.807 (0.653–
0.959), respectively, in the validation cohort. For stage 
prediction, significant differences were demonstrated in 
both the training cohort [0.814 (0.719–0.909) vs. [0.864 
(0.795–0.933), P = 0.006] and the validation cohort [0.687 
(95% CI, 0.472–0.896) vs. 0.804 (0.640–0.967), P = 0.023] 
in the validation cohort.

Compared to the 2Dintra model, significantly increase 
in predictive performance was observed with inclusion 
of peritumoral features for LVSI (+ 0.043, P = 0.006) and 
DMI (+ 0.055, (P = 0.000)) in the training cohort. Signifi-
cant increase was observed for DMI prediction (+ 0.039, 
P = 0.045) in the validation cohort. Compared to the 
3Dintra model, significant increase in prediction efficacy 

was observed for LVSI prediction (+ 0.078, P = 0.000), 
DMI prediction (+ 0.084, P = 0.000), and FIGO stage 
prediction (+ 0.066, P = 0.000) in the training cohort. 
Such significance was also observed for LVSI prediction 
(+ 0.074, P = 0.018), DMI prediction (+ 0.088, P = 0.003), 
and FIGO stage prediction (+ 0.066, P = 0.039) in the vali-
dation cohort.

Discussion
Six prognostic radiomics models of various ROI delinea-
tion strategies were constructed in this study, all of which 
yielded favorable diagnostic performance, demonstrating 
the potential as non-invasive tools for the prediction of 
LVSI, DMI, and FIGO stage to guide the management of 
EC. Our study further found comparable results between 

Table 2 Logistic regression with five-fold cross-validation for predictive performance of the models
Model Group Mean AUC (95%CI) ACC SEN SPE
LVSI 2Dintra Train 0.810 (0.718–0.903) 0.730 0.737 0.728

Val 0.725 (0.505–0.937) 0.666 0.639 0.674
2Dperi Train 0.784 (0.695–0.874) 0.682 0.731 0.669

Val 0.706 (0.490–0.920) 0.644 0.668 0.637
2Dintra + peri Train 0.853 (0.773–0.933) 0.730 0.789 0.713

Val 0.720 (0.493–0.944) 0.667 0.639 0.674
3Dintra Train 0.738 (0.634–0.844) 0.675 0.647 0.683

Val 0.738 (0.534–0.933) 0.684 0.614 0.704
3Dperi Train 0.813 (0.782–0.898) 0.726 0.769 0.713

Val 0.805 (0.625–0.977 0.695 0.771 0.674
3Dintra + peri Train 0.816 (0.730–0.901) 0.737 0.750 0.733

Val 0.812 (0.633–0.979) 0.737 0.743 0.726
DMI 2Dintra Train 0.784 (0.699–0.871) 0.762 0.636 0.819

Val 0.760 (0.582–0.938) 0.736 0.600 0.800
2Dperi Train 0.928 (0.889–0.972) 0.826 0.936 0.775

Val 0.773 (0.614–0.932) 0.684 0.727 0.663
2Dintra + peri Train 0.839 (0.768–0.913) 0.783 0.741 0.803

Val 0.799 (0.638–0.963) 0.753 0.691 0.782
3Dintra Train 0.761 (0.679–0.847) 0.700 0.641 0.727

Val 0.719 (0.538–0.904) 0.679 0.618 0.707
3Dperi Train 0.833 (0.761–0.909) 0.757 0.791 0.742

Val 0.804 (0.654–0.953) 0.724 0.745 0.715
3Dintra + peri Train 0.845 (0.776–0.917) 0.779 0.782 0.777

Val 0.807 (0.653–0.959) 0.770 0.745 0.782
Stage 2Dintra Train 0.773 (0.673–0.872) 0.703 0.703 0.703

Val 0.704 (0.478–0.928) 0.625 0.701 0.683
2Dperi Train 0.760 (0.658–0.860) 0.716 0.699 0.703

Val 0.706 (0.491–0.919) 0.704 0.701 0.701
2Dintra + peri Train 0.814 (0.719–0.909) 0.757 0.725 0.731

Val 0.687 (0.472–0.896) 0.575 0.693 0.667
3Dintra Train 0.782 (0.688–0.877) 0.663 0.732 0.717

Val 0.738 (0.540–0.932) 0.621 0.694 0.678
3Dperi Train 0.824 (0.747–0.908) 0.730 0.748 0.744

Val 0.763 (0.581–0.942) 0.704 0.715 0.713
3Dintra + peri Train 0.864 (0.795–0.933) 0.717 0.854 0.825

Val 0.804 (0.640–0.967) 0.700 0.833 0.805
Abbreviations: AUC, area under the receiver operating characteristic curve; ACC, accuracy; SEN: sensitivity, and SPE: specificity
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Fig. 5 The Delong test results for (a, b) LVSI prediction, (c, d) DMI prediction, and (e, f) disease stage prediction between the training and validation 
cohorts, respectively

 

Fig. 4 The receiver operating characteristic curve analysis results for (a, b) LVSI prediction, (c, d) DMI prediction, and (e, f) disease stage prediction
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the 2D and 3D radiomics models, implying the lack of 
added value with the more labor-intensive 3D delineation 
approach. Our findings also demonstrated that assess-
ment of combined intra- and peritumoral features can 
further enhance the predictive ability of the model.

There has been ongoing debate regarding the use of 2D 
and 3D radiomics features. Several studies have reported 
the superiority of 3D models in capturing tumor charac-
teristics, Ortiz-Ramón et al. employed 2D and 3D MRI 
radiomics to differentiate the origins of brain metas-
tases. Machado et al. utilized MRI radiomics to pre-
dict recurrence in clinically non-functioning pituitary 
macroadenomas. Watzenboeck et al. employed MRI 
radiomics to assess fetal lung development [27–29], but 
are often limited in sample size and in their overlooking 
of peritumoral regions for feature extraction. Our study 
found comparable performance between 2D and 3D 
approaches both for intra- and peritumoral ROIs, which 
is in line with the those of the study by Zhang et al. for 
tumor phenotype prediction in non-small cell lung car-
cinomas [30], and the study by Arefan et al. for axillary 
lymph node metastasis risk in breast cancer [31], which 
also reported similar performance between 2D and 3D 
radiomics approaches. However, it’s important to note 
that findings in EC have been mixed. Fasmer et al. [25], 
using a relatively small sample size, found that 3D whole-
tumor radiomic signatures yielded comparable AUC in 
the training set but significantly lower AUC in the valida-
tion set for advanced FIGO stage prediction in EC. These 
varying results across studies highlight the need for fur-
ther investigation into the optimal radiomics approach 
for EC, particularly with larger sample sizes and robust 
validation.

Such observations may be attributable to the inevi-
table amplification of noise as the whole tumor volume 
is delineated across multiple image slices. While 2D ROI 
delineation within a representative slicing plane may 
encapsulate key characteristics of the entire tumor vol-
ume. Our study highlighted that despite the potential for 
additional information provided in assessing the entire 
tumor volume, the marginal gains in predictive ability 
may not outweigh the practical demands associated with 
manual multi-slice annotation. This observation could 
provide support for the promising model performance 
reported in previous literature, where the utilization of a 
single slice yielded comparable results [28]. Nonetheless, 
large-sample studies are warranted for verification of our 
results.

The growing recognition of the role of the tumor 
microenvironment in cancer biology has resulted in the 
recent shift in focus from the primary tumor itself to the 
surrounding stroma for radiomics feature extraction [32, 
33]. Such significance in prognostic value of surrounding 
tissues has been demonstrated in breast [34] and ovarian 

cancers [35]. In this study, we simultaneously developed 
predictive models through an automated 3 mm boundary 
expansion of the intratumoral ROI, aimed at capturing 
spatial characteristics beyond the primary tumor. To our 
knowledge, this is the first study to compare the effects 
of 2D versus 3D ROI delineation approaches on peritu-
moral region. Our results demonstrated useful informa-
tion that combined models can indeed be attained by 
inclusion of peritumoral lesion, showed highest diagnos-
tic performance in both the 2D and 3D models, especially 
3D models. The obtained AUC results demonstrate rea-
sonable performance and are consistent with those of 
the study by Yan et al., who demonstrated the comple-
mentary nature of intra- and peritumoral features for 
LVSI and DMI prediction with AUCs of 0.859 and 0.856 
respectively [22, 23]. This indicates that, compared to 
intratumoral features alone, peritumoral regions provide 
supplementary prognostic information. When coupled 
with intratumoral radiomics, this minimally invasive 
multi-regional segmentation provided a balanced assess-
ment of the local tumor-stroma interplay for improved 
prognostic modeling.

Interesting, the 3Dperi model was observed to signifi-
cantly outperform the 3Dintra model in our study. This 
may suggest that tissues in direct contact with the tumor 
are likely to undergo microstructural alterations prior to 
histologic changes. 3D peritumoral radiomics may thus 
offer the sensitivity required for identifying such pre-
invasive alterations, and enable a more comprehensive 
characterization of spatial heterogeneity in the tumor 
microenvironment. Based on our findings, we propose 
the potential clinical utility of sampling adjacent stromal 
tissues, in addition to the primary lesion, for the histo-
pathological assessment of ECs.

Our study had several limitations. First, the retrospec-
tive design and relatively modest sample size may limit 
the generalizability of our findings. Larger prospective 
studies are thereby needed to validate our results. Sec-
ond, only a narrow set of histopathological variables 
with unbalanced cohorts were included due to data 
availability constraints, these differences could influ-
ence the radiomics features extracted and potentially 
impact the performance of our models. While our study 
was predominantly endometrioid adenocarcinoma, the 
validation results demonstrated good stability across the 
iterations of cross-validation. This suggests that despite 
pathology variability not fully accounted for, the valida-
tion approach helped improve generalizability to these 
cases Third, the optimal extent of peritumoral expansion 
was not explored in this study. Fourth, manual delinea-
tion may have inevitably resulted in inter-observer vari-
ability, which could have been mitigated by utilization 
of a semi-automated or automated approach. Lastly, 
more advanced hyperparameter optimization and deep 
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learning methods were not applied due to the sample size 
of this study.

Conclusions
This study developed and investigated the role of 2D 
and 3D intratumoral and peritumoral radiomics models 
in the prediction of LVSI, DMI, and disease stage in EC. 
A 3D ROI delineation approach did not achieve signifi-
cant improvement in prediction performance. Inclusion 
of peritumoral features significantly enhanced prediction 
accuracy of the models, especially the 3D model. Fur-
ther studies with standardized delineation strategies are 
warranted to validate our results and advance the clini-
cal translation of radiomics in the field of gynecological 
oncology.
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3Dintra  Three-dimensional intratumoral model
3Dperi  Three-dimensional peritumoral model
3Dintra + peri  Three-dimensional intratumoral + peritumoral model
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