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Abstract
Background Survival prognosis of patients with gastric cancer (GC) often influences physicians’ choice of their 
follow-up treatment. This study aimed to develop a positron emission tomography (PET)-based radiomics model 
combined with clinical tumor-node-metastasis (TNM) staging to predict overall survival (OS) in patients with GC.

Methods We reviewed the clinical information of a total of 327 patients with pathological confirmation of GC 
undergoing 18 F-fluorodeoxyglucose (18 F-FDG) PET scans. The patients were randomly classified into training 
(n = 229) and validation (n = 98) cohorts. We extracted 171 PET radiomics features from the PET images and 
determined the PET radiomics scores (RS) using the least absolute shrinkage and selection operator (LASSO) and 
random survival forest (RSF). A radiomics model, including PET RS and clinical TNM staging, was constructed to 
predict the OS of patients with GC. This model was evaluated for discrimination, calibration, and clinical usefulness.

Results On multivariate COX regression analysis, the difference between age, carcinoembryonic antigen (CEA), 
clinical TNM, and PET RS in GC patients was statistically significant (p < 0.05). A radiomics model was developed based 
on the results of COX regression. The model had the Harrell’s concordance index (C-index) of 0.817 in the training 
cohort and 0.707 in the validation cohort and performed better than a single clinical model and a model with clinical 
features combined with clinical TNM staging. Further analyses showed higher PET RS in patients who were older 
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Introduction
GC is the fifth most common cancer in the world, and 
East Asia continues to have a high incidence of the dis-
ease [1]. GC is usually asymptomatic in its early stages. 
hence, it often remains undiagnosed until it reaches an 
advanced stage. Comprehensive surgery-based treatment 
remains the primary approach for advanced GC manage-
ment [2]. Although the 5-year overall survival rate of GC 
patients has improved recently and is higher than before 
[3, 4], predictive models and scoring tools for the progno-
sis of patients with GC are essential to improve individu-
alized treatment. These tools can provide clinicians with 
follow-up treatment options to improve patient survival.

18F-FDG PET/CT imaging is a vital tool for the char-
acterization, staging, and detection of distant metas-
tases in patients with malignant tumors, including GC 
[5–7]. Particularly, this machine has a superior diag-
nostic ability for detecting distant metastases from 
cancer compared to computed tomography (CT) [8]. 
Parameters such as the maximum standardized intake 
value (SUV), total lesion glycolysis (TLG), and meta-
bolic tumor volume (MTV) are often used to evaluate 
the prognosis of GC patients [9]. However, the spatial 
information of diagnostic images has not been fully 
analyzed and still relies on the rich experience and 
subjectivity of doctors.

Radiomics is an innovative technique that involves 
extracting high-dimensional information from stan-
dard medical images and delving deeply into hidden 
information regarding potential diseases that may 
not be visible to the human eye [10–13]. This holds 
tremendous potential for the diagnosis, prognostic 
assessment, and treatment prediction of GC, offer-
ing new opportunities in the field of precision medi-
cine [14–17]. However, the number of radiomics tools 
based on PET imaging to predict survival models in 
patients is still limited in GC compared to other types 
of cancers [18–20].

Therefore, in this study, we attempted to extract image 
features from PET images to establish a relevant model 
that could be combined with the clinical TNM staging for 
patients with GC to determine whether the prognosis of 
patients with GC can be improved.

Materials and methods
Patient population
A retrospective review of the medical records and 
imaging data of patients with GC who underwent 18F-
FDG PET/CT at the First Hospital of Wenzhou Medi-
cal University between January 2012 and June 2021 was 
conducted. The inclusion criteria were age > 18 years, 
pathologically confirmed GC, and availability of com-
plete follow-up data and clinicopathological character-
istics. The exclusion criteria were GC patients who had 
previously received any previous anticancer treatment, 
patients with other tumors or serious organic diseases, 
and patients with incomplete clinical data or miss-
ing diagnostic images. The study ultimately recruited 
327 cancer patients who were randomized 7:3 into the 
training and validation cohorts. A flowchart of patient 
screening is shown in Fig.  1. Clinical and pathological 
data of the patients, including sex, age, Nutritional Risk 
Screening 2002 (NRS 2002), body mass index (BMI), 
chemotherapy, CEA, Carbohydrate antigen199 (CA199), 
surgery, and clinical TNM staging, were retrospectively 
collected from medical records. Clinical TNM staging 
was determined by a radiologist and general surgeon 
according to the 8th edition of the American Joint Com-
mittee on Cancer staging system [21]. Each patient was 
followed up regularly. During the first 2 years, patients 
were monitored every 3 months and then every 6 months 
through outpatient treatment. OS was defined as the time 
to death from any cause and was used as the endpoint.

PET/CT image acquisition
GC patients who underwent 18F-FDG PET/CT were 
imaged after a 6-hour fast, and blood glucose levels were 
maintained below 110 ml/dl. Patients were injected intra-
venously with 18F-FDG (3.7 MBq/kg) and imaged 60 min 
later using a 18F-FDG PET/CT scanner. (GEMINI TF 64, 
Philips, The Netherlands). The parameter settings were 
as follows: matrix size, 144 × 144; slice thickness, 5 mm; 
field of view, 576  mm; and emission scan time, 1.5  min 
for each bed position.

PET/CT image segmentation and feature extraction
LIFEX software tools were used for volume of inter-
est (VOI) delineation and feature extraction from each 
patient’s PET images [22]. Initially, a radiologist and a 

(p < 0.001) and those who had elevated CEA (p < 0.001) and higher clinical TNM (p < 0.001). At different clinical TNM 
stages, a higher PET RS was associated with a worse survival prognosis.

Conclusions Radiomics models based on PET RS, clinical TNM, and clinical features may provide new tools for 
predicting OS in patients with GC.

Keywords Radiomics, Machine learning, Gastric cancer, Clinical tumor-node-metastasis, Positron emission 
tomography
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general surgeon drew the VOI segmentation using the 
Digital Imaging and Communications in Medicine pro-
tocol; then, an experienced radiologist checked this to 
ensure the accuracy of subsequent analyses. Two weeks 
later, the radiologists selected 50 patients and again seg-
mented their VOI for assessment of VOI image quality. 
The LIFEX software program automatically measured 
the SUVmax of the segmented VOI for the target gas-
tric lesions and selected the VOI using a 40% SUVmax 
threshold. Additionally, it automatically measured the 
MTV and TLG of target gastric lesions.

LIFEX software was used to extract 171 radiological 
features from tumor image VOI. The radiomics features 
were first-order statistics, shape-based features, gray-
level co-occurrence matrix, gray-level run length matrix, 
gray-level size zone matrix, and neighborhood gray tone 
difference matrix.

Construction of PET radiomics scores
To assess the consistency of the features and feature 
screening, we processed the extracted features. First, 
two radiologists calculated intraclass correlation coef-
ficients (ICC) for the radiomics features extracted from 
the segmentation of 50 patients. High consistent features 
were defined as those with ICC values > 0.75. All high 
consistent features from the patients were standardized 

using the mean and standard deviation with the z-score 
algorithm.

Next, we used the LASSO with ten-fold cross-vali-
dation for feature selection in the training cohort; the 
features were ranked using the RSF method based on 
their importance and data predictive ability to obtain 
radiomics scores, called PET RS. Further validation was 
performed on clinical data of patients in the validation 
cohort. Based on this model, the PET RS for each patient 
was calculated for the validation cohort. The median 
PET RS (60) of the training cohort was used to classify 
all patients into high-risk and low-risk groups in order to 
reduce the distributional differences between the training 
and validation cohorts.

Development and validation of predictive model
For further analysis of the clinical features and PET RS 
of the patients, we performed univariate and multivari-
ate Cox regression analyses to identify prognostically 
relevant clinical features. Subsequently, we selected fea-
tures with p < 0.05 and constructed a nomogram that 
included clinical features, clinical TNM staging, and PET 
RS to visualize the results. Additionally, we constructed 
two other models, one with only clinical features and 
the other with clinical features combined with clinical 
TNM staging data, and used the C-index to assess the 

Fig. 1 Patient enrollment process
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discrimination between the three models. A decision 
curve analysis (DCA) was performed to assess the clini-
cal value of the nomograms [23]. The workflow is illus-
trated in Fig. 2.

Statistical analysis
The R (version 4.3.3, https://www.r-project.org/) was 
used for statistical analysis. The t-test was used for nor-
mally distributed continuous data, and the Mann-Whit-
ney U test for non-normally distributed continuous 
data. The chi-square test or Fisher’s exact test was used 
for categorical data. Independent prognostic factors that 
influenced outcomes were identified using univariate and 
multivariate Cox analyses. The Kaplan–Meier method 
was employed to construct survival curves, with the log-
rank test subsequently employed to compare differences 
between the two cohorts. Nomograms, calibration, and 
DCA plots were generated using the R package. Statisti-
cal significance was set at p < 0.05.

Results
Patient characteristics
A total of 327 GC patients with were randomised to 
training (n = 229) and validation (n = 98) cohorts in 
a 7:3 ratio. The training cohort included 171 males 
and 58 females, and the validation cohort included 

72 males and 26 females. Each patient was followed 
for at least two years, with 215 (65.7%) deaths and the 
median survival time of 19 months. Table  1 summa-
rizes the detailed characteristics of the patients in the 
two cohorts.

Radiomics feature selection and PET radiomics scores 
building
Lifex software extracted 171 PET radiomics features 
from the PET images of each GC patient. These charac-
teristics were analyzed according to the following steps. 
Initially, according to the standard that the ICC value 
should be greater than 0.75, 160 features with high con-
sistency were selected for model construction. We then 
used LASSO analysis to obtain the optimum value and 
three PET radiomics features with nonzero LASSO coef-
ficients (Fig.  2a and b). Next, the selected features were 
further modeled based on the optimal iteration times of 
the RSF (Fig. 2c). Based on the PET RS calculated using 
this model, each patient was classified into high- and low-
PET RS groups. We conducted survival analysis using the 
Kaplan–Meier survival curve and log-rank test, which 
showed significant differences between the high-PET 
RS group and low-PET RS group in the training (log-
rank p < 0.001, Fig.  3a) and validation cohorts (log-rank 
p < 0.001, Fig. 3b). We further evaluated the accuracy of 

Fig. 2 The workflow of the study. (a) Partialiegel Rlihood deviation values with respect to different λ values in the LASSO model. (b) Select the optimal 
λ value. (c) Rank the importance of each feature in the RSF model. PET: Positron emission tomography; LASSO: Least absolute shrinkage and selection 
operator; RSF: Random survival forest
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PET RS in the two cohorts for OS prediction using time-
dependent receiver operator characteristics (Fig.  3c, d). 
Figure  3e-h depict the correlation between PET RS and 
survival outcomes, including survival status and time, for 
each patient.

Model construction and evaluation
To comprehensively evaluate the impact of PET RS and 
other clinical features on prognosis, we performed a uni-
variate Cox regression analysis in the training cohort. For 
features with p < 0.05 in univariate analysis, multivariate 
Cox regression analysis was performed (Table 2), show-
ing that independent risk factors for OS were age, CEA, 
clinical TNM stage and PET RS (Fig. 4a). Additionally, to 

provide clinicians with a practical tool for risk assessment 
and therapeutic decision support, we built a nomogram 
based on the significant variables (age, CEA, clinical 
TNM stage, and PET RS) in the multivariate COX regres-
sion results (Fig. 4b). The nomogram C-index was 0.817 
[95% CI: 0.790–0.844] for OS in the training cohort and 
0.707 [95% CI: 0.640–0.774] for OS in the validation 
cohort. In both cohorts, the 1-year and 2-year nomogram 
calibration curves showed good agreement between the 
estimates and actual observations (Fig. 5a, b). Moreover, 
we developed two other models: a single clinical fea-
tures model and a model of clinical features combined 
with clinical TNM staging characteristics. However, the 
nomogram’s C-index and the integrated Brier score (IBS) 

Table 1 Clinical features of patients according to the PET RS in the training and validation cohorts
Developing cohort Validation cohort
All Low High P All Low High p
N = 229 N = 114 N = 115 N = 98 N = 40 N = 58

Age 0.009* 0.008*
 <65 72 (31.4%) 50 (39.5%) 27 (23.5%) 43 (43.9%) 24 (60.0%) 19 (32.8%)
 ≥65 157 (68.6%) 64 (60.5%) 88 (76.5%) 55 (56.1%) 16 (40.0%) 39 (67.2%)
Gender 0.119 0.857
 Female 58 (25.3%) 34 (29.8%) 24 (20.9%) 26 (26.5%) 11 (27.5%) 15 (25.9%)
 Male 171 (74.7%) 80 (70.2%) 91 (79.1%) 72 (73.5%) 29 (72.5%) 43 (74.1%)
BMI 0.342 0.639
 Low 37 (16.2%) 15 (13.2%) 22 (19.1%) 13 (13.3%) 6 (15.0%) 7 (12.1%)
 Normal 165 (72.1%) 87 (76.3%) 78 (67.8%) 66 (67.3%) 28 (70.0%) 38 (65.5%)
 High 27 (11.8%) 12 (10.5%) 15 (13.0%) 19 (19.4%) 6 (15.0%) 13 (22.4%)
NRS2002 0.015* 0.670
 <3 162 (70.7%) 89 (78.1%) 73 (63.5%) 78 (79.6%) 31 (77.5%) 47 (81.0%)
 ≥3 67 (29.3%) 25 (21.9%) 42 (36.5%) 20 (20.4%) 9 (22.5%) 11 (19.0%)
Chemotherapy 0.090 0.581
 No 145 (63.3%) 66 (57.9%) 79 (68.7%) 63 (64.3%) 27 (67.5%) 36 (62.1%)
 Yes 84 (36.7%) 48 (42.1%) 36 (31.3%) 35 (35.7%) 13 (32.5%) 22 (37.9%)
CEA 0.001* 0.642
 Normal 141 (61.6%) 82 (71.9%) 59 (51.3%) 66 (67.3%) 28 (70.0%) 38 (65.5%)
 Elevated 88 (38.4%) 32 (28.1%) 56 (48.7%) 32 (32.7%) 12 (30.0%) 20 (34.5%)
CA199 < 0.001* 0.014*
 Normal 163 (71.2%) 99 (86.8%) 64 (55.7%) 70 (71.4%) 34 (85.0%) 36 (62.1%)
 Elevated 66 (28.8%) 15 (13.2%) 51 (44.3%) 28 (28.6%) 6 (15.0%) 22 (37.9%)
Surgery < 0.001* 0.013*
 No 93 (40.6%) 17 (14.9%) 76 (66.1%) 39 (39.8%) 10 (25.0%) 29 (50.0%)
 Yes 136 (59.4%) 97 (85.1%) 39 (33.9%) 59 (60.2%) 30 (75.0%) 29 (50.0%)
Clinical TNM < 0.001* 0.416
 Stage I 26 (11.4%) 25 (21.9%) 1 (0.87%) 8 (8.16%) 5 (12.5%) 3 (5.17%)
 Stage II 34 (14.8%) 28 (24.6%) 6 (5.22%) 21 (21.4%) 7 (17.5%) 14 (24.1%)
 Stage III 69 (30.1%) 36 (31.6%) 33 (28.7%) 32 (32.7%) 15 (37.5%) 17 (29.3%)
 Stage IV 100 (43.7%) 25 (21.9%) 75 (65.2%) 37 (37.8%) 13 (32.5%) 24 (41.4%)
SUVmean

† 4.37 [3.14;6.57] 3.81 [2.72;6.11] 4.83 [3.37;7.23] 0.009* 4.52 [3.02;7.13] 3.92 [2.85;7.13] 4.99 [3.39;7.13] 0.167
SUVmax

† 7.22 [4.68;11.1] 6.55 [4.08;10.3] 8.23 [5.10;12.0] 0.004* 7.34 [4.52;12.1] 6.23 [4.10;12.1] 8.73 [5.36;12.1] 0.061
MTV† 17.7 [8.33;31.6] 11.5 [6.06;21.5] 23.6 [15.5;40.2] < 0.001* 19.7 [8.46;33.8] 9.18 [7.24;16.9] 26.4 [18.8;43.6] < 0.001*
TLG† 83.7 [31.9;160] 43.9 [20.8;117] 110 [64.4;221] < 0.001* 90.0 [33.1;200] 37.2 [23.2;116] 124 [66.8;205] < 0.001*
Note: Unless otherwise stated, data are numbers of patients and percentages are in parentheses. *, P < 0.05; †, Data are median with interquartile range in parentheses; 
BMI: Body mass index; NRS 2002: Nutritional Risk Screening 2002; CEA: Carcinoembryonic antigen; CA199: Carbohydrate antigen199; TNM: Tumor-node-metastasis; 
SUVmean: Mean standardized intake value; SUVmax: Maximum standardized intake value; MTV: Metabolic tumor volume; TLG: Total pathological glycolysis
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Fig. 3 PET RS as a prognostic indicator. (a) Kaplan-Meier curves of OS between high- and low-PET RS groups in the training cohort. (b) Kaplan-Meier 
curves of OS between high- and low-PET RS groups in the validation cohort. (c) ROC curve of the PET RS in the training cohort. (d) ROC curve of the PET 
RS in the validation cohort. (e, g) The survival distribution of GC patients with different PET RS in the training cohort. (f, h) The survival distribution of GC 
patients with different PET RS in the validation cohort. PET: Positron emission tomography; RS: Radiomics score; OS: Overall survival; ROC: Receiver opera-
tor characteristics; GC: Gastric cancer
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were better than those of the other two models (Table 3). 
The DCA curves indicated that within a reasonable range 
of threshold probabilities, the nomogram provided more 
beneficial prognostic information for patients with GC 
(Fig. 5c).

Analysis of PET RS and associated clinical features
Differential analysis of PET RS with different clinical 
features in all patients showed that older age (p < 0.001, 
Fig.  6a), elevated CEA levels (p < 0.001, Fig.  6b), and 
more advanced clinical TNM stage (p < 0.001, Fig.  6c) 
were associated with higher PET RS. We performed a 
stratified analysis of clinical TNM in the two cohorts, 
and the results showed that PET RS could better dif-
ferentiate the survival of patients at different stages of 
GC (Fig. 6d-g).

Discussion
Radiomics is a combination of noninvasive imaging 
and artificial intelligence technologies for applications 
in the diagnosis, prognosis, and individualized treat-
ment of diseases. Jiang et al. used a CT-based radiomics 
model to predict disease-free survival (DFS) and OS in 
GC patients, and their results showed that the radiomic 
signal was a predictor of DFS and OS [24]. Wang et al. 
constructed a CT-based radiomic nomogram to predict 
lymph nodes in GC [25]. Xu et al. applied a machine-
learning model with CT to predict the pathological 
downgrading of neoadjuvant chemotherapy in patients 
with advanced GC, which contributed to subsequent 
surgical treatments [26]. However, compared to CT, 
PET has unique advantages in the differential diagnosis, 
precise staging, and distant metastasis diagnosis of GC 
[27], which are conducive to increasing the survival rate 

Table 2 Univariate and multivariate Cox analyses for OS of GC patients in the training cohort
Variables Univariate Cox analysis Multivariate Cox analysis

HR HR.95 L HR.95 H P HR HR.95 L HR.95 H P
Age (> 65 vs. ≤65) 1.83 1.26 2.63 0.001* 1.71 1.16 2.53 0.007*
Gender (Female vs. Male) 1.17 0.80 1.69 0.417 - - - -
BMI (Low vs. Normal) 1.47 0.98 2.23 0.064 - - - -
BMI (High vs. Normal) 1.26 0.76 2.07 0.371 - - - -
NRS2002(≥ 3 vs. <3) 1.41 0.81 2.45 0.219 - - - -
Chemotherapy (Yes vs. No) 0.79 0.57 1.10 0.169 - - - -
CA199 (Elevated vs. Normal) 2.86 2.05 3.99 P < 0.001* 1.41 0.99 2.01 0.055
CEA (Elevated vs. Normal) 2.08 1.51 2.86 P < 0.001* 1.67 1.19 2.35 0.003*
Surgery (Yes vs. No) 0.22 0.16 0.30 P < 0.001* 0.70 0.47 1.05 0.088
Clinical TNM (stage II vs. stage I) 3.58 1.01 12.70 0.048* 2.53 0.71 9.02 0.153
Clinical TNM (stage III vs. stage I) 9.02 2.80 29.02 P < 0.001* 3.65 1.10 12.15 0.035*
Clinical TNM (stage IV vs. stage I) 20.27 6.39 64.36 P < 0.001* 4.46 1.36 15.88 0.014*
PET RS 13.78 9.06 20.94 P < 0.001* 7.99 4.96 12.85 P < 0.001*
*, P < 0.05; HR: Hazard ratio; L: Low; H: high; BMI: Body mass index; NRS 2002: Nutritional Risk Screening 2002; CA199: Carbohydrate antigen199; CEA: Carcinoembryonic 
antigen; TNM: Tumor-node-metastasis; PET RS: positron emission tomography radiomics scores

Fig. 4 PET RS and different clinical features were used to predict OS. (a) Multivariate Cox analysis of PET RS and different clinical features in the training 
cohort. (b) Nomograms constructed based on PET RS and different clinical characteristics in the training cohort. PET: Positron emission tomography; RS: 
Radiomics score; OS: Overall survival; CEA: Carcinoembryonic antigen; CA199: Carbohydrate antigen199; TNM: Tumor-node-metastasis. *, P < 0.05
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of patients. Therefore, we extracted radiological features 
from PET images, calculated PET RS using LASSO and 
RSF models, and combined them with other features to 
construct a nomogram to predict the prognosis of GC 

in this study. The nomogram showed a better predictive 
ability in the two cohort.

Previous studies have demonstrated the potential of 
PET radiomics in the prediction of lymph node and 
peritoneal metastases [28, 29]. It has also been shown 
that PET radiomics was a predictor of OS and DFS, as 
well as the benefit of chemotherapy in patients [30]. Our 
study also demonstrated that PET RS predicted OS in 
patients with GC and that GC patients with high PET RS 
had poorer prognoses for survival. Findlay et al. showed 
that routine staging of GC using PET/CT could detect 
metastases and predict early postoperative recurrence 
[6]. Clinical TNM staging was added to take advantage 
of PET imaging and provide patients with more accurate 
clinical TNM staging. The results of this study indicate 
that clinical TNM staging is a reliable predictor of patient 
prognosis, which also provides a basis for treatment strat-
egies for patients with advanced GC who cannot undergo 

Table 3 OS prediction performance of the three models in the 
training and the validation cohorts
Model C-Index (95% CI) IBS
Training cohort
Nomogram 0.817(0.790–0.844) 0.089
Clinical features + Clinical TNM 0.730(0.691–0.769) 0.116
Clinical features 0.630(0.587–0.673) 0.165
Validation cohort
Nomogram 0.707(0.640–0.774) 0.122
Clinical features + Clinical TNM 0.675(0.641–0.709) 0.152
Clinical features 0.582(0.509–0.656) 0.167
C-index, The Harrell consistency index; CI: Confidence interval; IBS: Integrated 
Brier score

Fig. 5 The nomogram correction curve. This shows consistent correction of 1-year and 2-year OS predictions in the training cohort (a) and validation 
cohort (b). Decision curves were analyzed for each model in all patients with GC to show the survival benefit (C). OS: Overall survival; GC: Gastric cancer; 
TNM: Tumor-node-metastasis
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Fig. 6 Analysis of correlations between PET RS and clinical features in GC patients; Kaplan-Meier survival analysis of OS in patients with GC with different 
Clinical TNM stages according to PET RS. (a) Comparison of PET RS in GC patients of different ages. (b) Comparison of PET RS in GC patients with different 
CEA. (c) Comparison of PET RS in GC patients with different Clinical TNM stages. (d) Classification of Stage I and Stage II patients with GC in the training 
cohort (e) Classification of Stage I and Stage II patients with GC in the validation cohort. (f) Classification of Stage III and Stage IV patients with GC in the 
training cohort. (g) Classification of Stage III and Stage IV patients with GC in the validation cohort. PET: Positron emission tomography; RS: Radiomics 
score; GC: Gastric cancer; OS: Overall survival. TNM: Tumor-node-metastasis; CEA: Carcinoembryonic antigen; TNM: Tumor-node-metastasis
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invasive surgery. We constructed a nomogram that incor-
porated clinical TNM, clinical features, and PET RS and 
compared it with a single clinical feature model and a 
clinical feature combined with a clinical TNM model. 
These results suggest that PET RS can provide additional 
information to a certain extent, which can be obtained 
from the quantitative assessment of heterogeneity using 
the radiological features of PET [31]. This may be related 
to the effect of tumor heterogeneity on survival and prog-
nosis [32, 33]. In other words, PET RS can compensate 
for the predictive value of clinical TNM, contributing 
to personalized treatment and patient follow-up. The 
underlying mechanisms may be accessible at the genomic 
or histological levels [34].

There are several limitations to this study. This was a 
single-center study with a small sample size and no exter-
nal validation. We intend to increase the sample size and 
to conduct multicenter studies to ensure that the model 
can be applied to a larger population in subsequent stud-
ies. Additionally, most patients selected for PET had 
advanced GC, which may have led to a potential bias. 
Furthermore, we only studied PET images, but we plan 
to construct a combined CT and PET model to make full 
use of the imaging data in the future.

Conclusion
In conclusion, we constructed a PET-based radiomics 
model and combined it with clinical TNM staging and 
clinical features to predict OS in patients with GC. PET 
RS can be effective in predicting patients’ clinical out-
comes, adding predictive value to clinical TNM staging.
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CA199  Carbohydrate antigen199
VOI  volume of interest
C-index  The Harrell consistency index
ICC  Intraclass correlation coefficients
DCA  Decision curve analysis
IBS  integrated Brier score
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