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Abstract
Background The identification and assessment of sentinel lymph nodes (SLNs) in breast cancer is important for 
optimised patient management. The aim of this study was to develop an interactive 3D breast SLN atlas and to 
perform statistical analyses of lymphatic drainage patterns and tumour prevalence.

Methods A total of 861 early-stage breast cancer patients who underwent preoperative lymphoscintigraphy and 
SPECT/CT were included. Lymphatic drainage and tumour prevalence statistics were computed using Bayesian 
inference, non-parametric bootstrapping, and regression techniques. Image registration of SPECT/CT to a reference 
patient CT was carried out on 350 patients, and SLN positions transformed relative to the reference CT. The reference 
CT was segmented to visualise bones and muscles, and SLN distributions compared with the European Society for 
Therapeutic Radiology and Oncology (ESTRO) clinical target volumes (CTVs). The SLN atlas and statistical analyses 
were integrated into a graphical user interface (GUI).

Results Direct lymphatic drainage to the axilla level I (anterior) node field was most common (77.2%), followed by 
the internal mammary node field (30.4%). Tumour prevalence was highest in the upper outer breast quadrant (22.9%) 
followed by the retroareolar region (12.8%). The 3D atlas had 765 SLNs from 335 patients, with 33.3–66.7% of axillary 
SLNs and 25.4% of internal mammary SLNs covered by ESTRO CTVs.

Conclusion The interactive 3D atlas effectively displays breast SLN distribution and statistics for a large patient 
cohort. The atlas is freely available to download and is a valuable educational resource that could be used in future to 
guide treatment.
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Introduction
Breast cancer is the most commonly diagnosed cancer 
worldwide [1]. Without treatment, breast cancer can 
spread from the primary tumour site to regional lymph 
nodes, decreasing a patient’s chance for survival [2, 3]. 
Accurate identification and assessment of sentinel lymph 
nodes (SLNs), defined as lymph nodes which receive 
direct lymphatic drainage from a primary tumour site, 
is crucial for optimising patient management [4, 5]. The 
location and number of SLNs varies among breast cancer 
patients, however, and are best identified for each patient 
using lymphoscintigraphy (LS) and SPECT/CT imaging.

To better understand variations in breast lymphatic 
drainage and SLN distribution, previous studies have sta-
tistically analysed aggregated planar LS or 3D SPECT/CT 
data [6–8]. In 2004, Estourgie et al. [6] analysed 700 LS 
studies and computed lymphatic drainage probabilities 
from five breast regions. In 2012, Uren et al. [7] analysed 
LS and SPECT/CT data from 741 patients and reported 
frequencies of drainage from nine breast regions. How-
ever, neither study reported confidence intervals to quan-
tify uncertainty in their results. For additional insights, 
Blumgart et al. [8] analysed data from 2304 patients 
imaged at the same centre as Uren et al. [7], calculating 
lymphatic drainage and tumour prevalence statistics with 
confidence intervals, and displayed results via an interac-
tive web-based tool [8]. Despite the benefits of this tool, 
it was limited to a generic 2D representation of SLN loca-
tion and all axillary SLNs were categorised into one node 
field.

Recently, several 3D atlases have been developed by 
mapping lymph node locations or contours from mul-
tiple breast cancer patients onto a single patient dataset 
[9–13]. Each 3D atlas aimed to evaluate radiation ther-
apy clinical target volume (CTV) delineation guidelines, 
including the European Society for Radiotherapy and 
Oncology (ESTRO), and the Radiation Therapy Oncol-
ogy Group (RTOG) guidelines. One atlas by Novikov et 
al. [13] co-registered SPECT/CT data from 254 patients 
to show the distribution of breast SLNs. Other atlases 
analysed the distribution of lymph node metastases, 
including one by Borm et al. [9] created using 18F-flu-
orodeoxyglucose positron emission tomography/CT 
(FDG-PET/CT) data from 235 patients, which they later 
followed with another FDG-PET/CT-derived atlas com-
paring metastatic and non-pathological lymph nodes in 
143 patients [10]. Zhang et al. [11] developed an atlas of 
FDG-avid regional nodes using data from 154 patients 
with recurrent or advanced breast cancer. Meanwhile 
Beaton et al. [12] created an atlas of regional nodal recur-
rences using 69 PET/CT datasets. Each 3D atlas was 
informative, however none were presented in an interac-
tive manner which limited their educational utility. Fur-
thermore, lymph node distributions alongside radiation 

therapy CTVs were shown on 2D CT slices, making it dif-
ficult to understand their 3D spatial location.

To address these limitations, we aimed to develop an 
interactive 3D atlas of breast SLN distributions using 
LS and SPECT/CT data from a large patient cohort. We 
selected a new sample from the same centre as Uren et 
al. [7] and Blumgart et al. [8], which had enhanced SLN 
location information from SPECT/CT including refine-
ment of the axillary node fields into multiple levels. We 
also aimed to perform statistical analysis of lymphatic 
drainage and tumour prevalence to complement the SLN 
atlas, optimising its educational and clinical utility.

Methods
Figure 1 summarises the workflow performed to develop 
the atlas, which is described in more detail in the follow-
ing sections.

Patient data
All breast cancer patients who underwent LS and 
SPECT/CT prior to SLN biopsy at Alfred Nuclear Med-
icine and Ultrasound (ANMU) in Sydney, Australia 
between April 2018 and December 2022 were retrospec-
tively identified (Fig. 1). Patients who had past surgery or 
neoadjuvant therapy were excluded as past treatment can 
influence lymphatic drainage [14], and patients with mul-
tifocal disease or large tumours (diameter > 3  cm) were 
excluded because it was unclear which injection site was 
the source of the lymph flow. Details of patients in the 
final atlas are described in Table 1. A total of 861 patients 
(mean age 60.0 years) were statistically analysed, while a 
smaller subset of 335 patients (mean age 60.1 years) were 
used in the 3D SLN atlas to reduce computational power 
required and ensure sufficient SLN visualisation without 
too many overlapping SLNs. A minimum of 20 patients 
from each breast region were selected for the 3D SLN 
atlas to provide data from each region. Most patients 
(99.1%) had a single primary tumour visible on ultra-
sound, while eight patients had bilateral primary tumours 
and underwent LS and SPECT/CT on both breasts.

The LS and SPECT/CT procedure at the ANMU has 
previously been described [7]. In brief, one to four peritu-
moral injections of 99mTc-antimony sulphide colloid were 
administered around the tumour under ultrasound guid-
ance, with the needle tip less than 1 cm from the tumour 
edge. Following five minutes of massage around the injec-
tion site, LS was undertaken and if SLNs were observed, 
SPECT/CT was acquired with patients in the supine 
position with most patients having their arms above 
the head. At the time of imaging, the nuclear medicine 
physician annotated the SLN positions on the SPECT 
images (Fig. 2). The patient’s primary tumour was classi-
fied into one of 12 clockface regions, with the distance of 
the tumour from the nipple also recorded. If this distance 
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was ≤ 1 cm, the tumour was reclassified as being within a 
0 o’clock region. Patient SLNs were classified within one 
of 12 node fields, as described previously [7]: axilla level 
I (either anterior, central, lateral, posterior or interpec-
toral), axilla level II, axilla level III, internal mammary, 
supraclavicular, mediastinal, interval, and contralateral.

Statistical analysis
Statistical analysis was performed using data from 861 
patients (Table  1), using the R statistical package [15]. 
First, drainage probabilities, defined as the probability 

Table 1 Patient characteristics
Characteristic Statistical Analysis 3D SLN Atlas
Number of patients 861 335
Number of tumours 869 336
Left tumours 452 169
Right tumours 417 167
Age, mean (range) 60.0 (25.5–92.5) 60.1 (25.5–89.3)
Female 856 335
Male 5 0

Fig. 1 Flow chart summarising the methods and number 
of patients (n) involved at each step
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of SLNs being present in each node field given the pri-
mary tumour being in a particular breast region, were 
estimated. Second, tumour prevalence, defined as the 
probability of the primary tumour being in each breast 
region, given SLNs being in a certain node field, were 
calculated.

All data on the right side of the body was reflected 
to the left side of the body, as done by Blumgart et al. 
[8] who previously showed drainage probabilities and 
tumour prevalence are symmetric [16]. Data from both 
males and females were used, as lymphatic drainage pat-
terns are not significantly different between sexes [16]. 
For patients with bilateral breast tumours (8 of 861), the 
lymphatic drainage from each breast was considered 
independently.

Drainage probabilities
Probability estimates were computed using Bayesian 
inference, non-parametric bootstrapping, and regression. 
As in Blumgart et al. [8], Bayesian inference was used to 
evaluate drainage probabilities with a uniform prior and 
binomial likelihood. Bayesian inference was performed 
in WinBUGS [17], using the R2WinBUGS package [18]. 
Bayesian posterior distributions were summarised as 
posterior means and 95% confidence intervals. Non-
parametric bootstrapping confidence intervals were 
computed using 10,000 bootstrap replicates, with resa-
mpling done at a patient level. For the regression confi-
dence intervals, a binary response variable represented 
the presence or absence of drainage to the selected 
node field, and the breast region (a categorical variable 
between 0 and 12) was the only predictor variable. Then, 

Fig. 2 Example SPECT/CT images from a breast cancer patient showing a SLN annotated with a red cross in the axilla level I (anterior) node field
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95% Wald-based confidence intervals were calculated for 
the fitted values [19].

Tumour prevalence
To evaluate tumour prevalence using Bayesian inference, 
a Dirichlet prior and multinomial likelihood were used, 
similar to Blumgart et al. [8]. Results were summarised 
as posterior means and 95% confidence intervals, using 
WinBUGS [17]. Non-parametric bootstrapping con-
fidence intervals were calculated as above. Regression 
confidence intervals for multinomial proportions were 
calculated using the DescTools package, with the default 
Sison and Glaz method [20].

3D SLN atlas development
Registration and segmentation
SPECT/CT images from 350 patients were used to con-
struct the 3D SLN atlas (Fig. 1). All patients had SPECT/
CT performed with their arms above the head, which 
provided consistency in patient pose when modelling 
inter-patient deformations during co-registration. Each 
patient’s CT image was registered to a reference patient 
CT scan, as demonstrated in Fig.  3 for an example 
patient. The reference CT was chosen from a random 
subset of 30 patients (one patient per breast tumour 
region plus six randomly selected patients), by identify-
ing the patient with the median scapula length which is a 
predictor for body height [21] (see Table S1).

The remaining 349 CT images were registered to the 
reference CT with linear and deformable registration 
using the open-source Python library PlatiPy [22]. Lin-
ear registration gave an initial alignment and was applied 
using the scaleversor method, which performed 3D rigid 
transformation and anisotropic scaling [23]. Deformable 
registration, through the fast symmetric forces demons 
algorithm, was then used to refine the initial alignment 
by calculating local (voxel-wise) deformations. The 3D 
coordinates of each SLN identified by the nuclear medi-
cine physician on SPECT images, were registered to the 
reference CT using the pre-computed linear transform 
and deformation vector fields.

To validate the image registration and quantify the 
uncertainty, CT images of the 30 patients in the previ-
ously selected sample were analysed. Thirteen skeletal 
landmarks (positions described in the Table S1) were 
manually selected by one observer in the reference CT 
and remaining 29 CT images, and the Euclidean dis-
tances between corresponding points were computed 
before and after image registration. Since estimation of 
the registration error was influenced by landmark anno-
tation variability, an inter-observer study was performed. 
For this, three observers annotated 13 landmark points in 
five randomly selected patients from the 30 patient sam-
ple and the Euclidean distances between landmark points 
were computed.

Fig. 3 Registration workflow for an example patient, showing: a unregistered moving CT (purple) and reference CT images (green), b moving and refer-
ence CT images after linear registration, c deformation vector fields, d moving and reference CT images after deformable image registration
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The reference CT image was segmented using a semi-
automatic approach. Bones were segmented using the 3D 
Slicer v5.2.2 [24] extension, SlicerTotalSegmentator [25], 
a fully automated tool based on a trained nnU-Net algo-
rithm [26]. The sternum and anterior portions of the ribs 
were only partially segmented using this tool, so further 
manual segmentation was performed within 3D Slicer. 
Three muscles relevant for defining the axillary node field 
positions: the latissimus dorsi, pectoralis major and pec-
toralis minor muscles, were manually segmented on the 
reference patient CT image using 3D Slicer.

ESTRO CTV coverage
Correspondences between the ANMU SLN node fields 
and ESTRO CTVs are outlined in Table 2. There are no 
ESTRO CTVs corresponding to the ANMU mediastinal 
and interval SLN node fields, so these were not analysed. 
The ESTRO CTVs were downloaded from Offersen et 
al. [27] which had the left and right CTVs delineated on 
two different patients. Hence, the CT images from each 
patient were co-registered with the atlas reference CT 
image separately, using methods described above, and 
propagated to the ESTRO CTVs. The percentage SLN 
coverage and distances of non-covered SLN centroids 
from the CTVs were calculated for corresponding CTVs 
(Table 2) and for all CTVs. Following the criteria outlined 
by Zhang et al. [11], each SLN was assumed to have a 
diameter of 5 mm and was defined as inside if > 50% of its 
volume was within the CTV contours.

Interactive graphical user interface
A graphical user interface (GUI) was developed in 3D 
Slicer, to interactively visualise the atlas, and can be 
downloaded following the instructions in the supplemen-
tary information. Visualisation of the breast regions was 
considered important to view the associated lymphatic 
drainage statistics interactively. A generic schematic rep-
resentation of the breast regions was created for this pur-
pose, using segmentation tools in 3D Slicer [28].

One centrally located representative SLN from each 
node field was chosen to display node field names or rel-
evant statistics. Each representative SLN was selected to 
ensure it was not obscured by adjacent SLNs and so its 
label did not overlap with other labels. The right medi-
astinal and left supraclavicular node fields had no SLNs 
from the subset of patients chosen. For these node fields, 
a representative SLN was manually placed in the equiva-
lent position on the opposite side of the body.

Results
Patient data
The number of patients with SLNs in each node field and 
each breast region, after data reflection, is summarised 
in Table 3. The axilla level I (anterior) node field was the 
most common (77.2%, n = 671), with the second most 
common being the internal mammary node field (30.4%, 
n = 264). The most common primary tumour site was the 
2 o’clock region, which was closest to the axilla (22.9%, 
n = 199), while the least common were the 6 o’clock and 7 
o’clock regions (both 2.6%, n = 23).

Statistical analysis
Table  4 presents the drainage probabilities to each 
node field location for all patients including point esti-
mates and confidence intervals. For the most common 
axilla level I (anterior) node field, Bayesian and regres-
sion confidence intervals were the same (74.3–79.9%), 
while the bootstrap confidence interval was marginally 
higher (74.4–80.0%). The internal mammary node field 
had the same Bayesian and Regression drainage prob-
abilities (27.4–33.5%), with the Bootstrap confidence 
interval upper bound being slightly lower (33.4%). The 
mean drainage probabilities and 95% confidence interval 
bounds were within 0.3% points across all methods.

Drainage probabilities for each separate breast region 
are given in Tables S2-S4. The axilla level I (anterior) node 
field was the most common, where all breast regions had 
mean drainage probabilities over 60%. The probability 
of SLNs in the internal mammary node field was high-
est from the 7 o’clock region in the lower inner breast 
quadrant (Bayesian mean 69.2%, bootstrap mean 71.0%, 
and regression mean 70.8%). When there were over 100 
patients with a primary tumour in a breast region and 
over 20 patients with drainage to a specified node field, 
all three methods gave comparable results, with the mean 
and 95% confidence interval bounds varying by less than 
1% point.

Table  5 details the tumour prevalence statistics for 
each breast region across all patients. Tumour preva-
lence confidence intervals in the 2 o’clock breast region 
ranged from (20.0–25.5%) from Bayesian inference 
to (20.0–25.9%) from regression. For the retroareo-
lar 0 o’clock breast region, Bayesian (10.6–15.0%) and 

Table 2 ANMU SLN node fields and their corresponding ESTRO 
CTVs
ANMU SLN node fields ESTRO CTV
Axilla level I (anterior, posterior, central, and 
lateral)

Axilla level I (L1)

Axilla level I (interpectoral) Interpectoral nodes 
(INTPECT)

Axilla level II Axilla level 2 (L2)
Axilla level III Axilla level 3 (L3)
Supraclavicular Lymph node level 

4 (L4)
Internal mammary Internal mammary 

chain (IMN and IC4a)
a The caudal limit is generally the cranial side of the 4th rib but it can be 
extended by an additional intercostal space under some protocols [27].
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bootstrap (10.5–15.1%) confidence intervals were simi-
lar. The regression confidence intervals were wider than 
the Bayesian or bootstrap confidence intervals, though 
the mean tumour prevalence was comparable. Tumour 
prevalence values for each node field are given in Tables 
S5-S7. Tumour prevalence was highest in the 2 o’clock 
breast region, given an SLN in the axilla level I (anterior, 
central, posterior, interpectoral), axilla level III, supracla-
vicular, and interval node fields.

3D SLN atlas
Registration and segmentation
CT images from 334 patients were successfully regis-
tered to the reference CT, while CT images from 15 
patients failed to register (4.3%) due to significant ana-
tomical differences or variations in patient position-
ing. The mean registration errors and inter-observer 
variations for each landmark are provided in Table S8. 
Overall, the mean registration error after linear regis-
tration was 138.7  mm (SD = 5.1  mm), which improved 
to 11.2  mm (SD = 4.9  mm) after deformable registra-
tion. The inter-observer variability ranged from a mean 
of 6.6 mm (SD = 2.7 mm) to 7.4 mm (SD = 2.8 mm). The 
final 3D atlas, as shown in Fig. 4, had 765 SLNs from 335 
patients and an additional two manually placed SLNs in 
the right mediastinal and left supraclavicular node fields. 
Full segmentation of muscles and bones near the axilla 
was achieved, but the anterior ribs and full extent of the 
muscles were only partially segmented due to challenges 
with identification on CT.

ESTRO CTV coverage
Table  6 summarises the number of SLNs in each node 
field and the coverage by the corresponding ESTRO 
CTVs and all ESTRO CTVs. The overall percentage of 
axillary and internal mammary SLNs covered by all CTVs 
and corresponding CTVs was 36.4% and 30.8% respec-
tively, with non-covered SLN centroids a mean distance 
of 5.7 mm (SD = 5.8 mm) and 5.9 (SD = 5.7 mm) respec-
tively, from the nearest CTV border. The SLN coverage 
for all CTVs ranged from 33.3 to 66.7% for the axilla level 
I node fields, while the internal mammary node field had 
the lowest coverage of 25.5%.

Interactive graphical user interface
The interactive GUI design is shown in Fig.  5. In the 
viewing window, the user can rotate, translate, and zoom 
in and out to achieve different perspectives. The user can 
interact with any breast region or SLNs by double click-
ing, which brings up the appropriate lymphatic drainage 
or tumour prevalence statistics. Within the left control 
panel (Fig. 5), the user can toggle the visibility and adjust 
the opacity of objects including the muscles and breast 
regions, and show SLN field volumes or representative 
SLNs. The co-registered ESTRO CTVs can be viewed on 
the reference CT in the axial, coronal, and sagittal slice 
views alongside the 3D rendered view (Fig. 6).

Discussion
To our knowledge, this is the first interactive anatomically 
based 3D atlas of SLNs that drain the breast which com-
bines the 3D anatomical distribution of SLN positions 

Table 4 Drainage probabilities to each node field for the entire 
breast. CI = confidence interval
Node Field n Bayesian 

Mean % (95% 
CI)

Bootstrap 
Mean % 
(95% CI)

Regression 
Mean % 
(95% CI)

Axilla level I 
(anterior)

671 77.2 (74.3, 79.9) 77.2 (74.4, 
80.0)

77.2 (74.3, 
79.9)

Axilla level I 
(central)

253 29.2 (26.2, 32.2) 29.1 (26.1, 
32.1)

29.1 (26.2, 
32.2)

Axilla level I 
(lateral)

11 1.4 (0.7, 2.2) 1.3 (0.6, 2.1) 1.3 (0.7, 2.3)

Axilla level I 
(posterior)

85 9.9 (8.0, 11.9) 9.8 (7.8, 11.8) 9.8 (8.0, 11.9)

Axilla level I 
(interpectoral)

21 2.5 (1.6, 3.7) 2.4 (1.5, 3.6) 2.4 (1.6, 3.7)

Axilla level II 72 8.4 (6.6, 10.3) 8.3 (6.5, 10.1) 8.3 (6.6, 10.3)
Axilla level III 4 0.6 (0.2, 1.2) 0.5 (0.1, 0.9) 0.5 (0.2, 1.2)
Internal 
mammary

264 30.4 (27.4, 33.5) 30.4 (27.4, 
33.4)

30.4 (27.4, 
33.5)

Supraclavicular 5 0.7 (0.3, 1.3) 0.6 (0.1, 1.2) 0.6 (0.2, 1.4)
Mediastinal 4 0.6 (0.2, 1.2) 0.5 (0.1, 0.9) 0.5 (0.2, 1.2)
Interval 83 9.6 (7.8, 11.7) 9.6 (7.6, 11.5) 9.6 (7.8, 11.7)
Contralateral 2 0.3 (0.1, 0.8) 0.2 (0.0, 0.6) 0.2 (0.1, 0.9)

Table 5 Tumour prevalence in each breast region. 
CI = confidence interval
Tumour 
Region (L)

n Bayesian 
Mean %
(95% CI)

Bootstrap 
Mean %
(95% CI)

Regression 
Mean %
(95% CI)

0 (retroareolar) 111 12.7 (10.6, 15.0) 12.8 (10.5, 15.1) 12.8 (9.9, 
15.8)

1 85 9.7 (7.9, 11.8) 9.8 (7.8, 11.8) 9.8 (6.9, 12.8)
2 199 22.7 (20.0, 25.5) 22.9 (20.1, 25.8) 22.9 (20.0, 

25.9)
3 (lateral) 94 10.8 (8.8, 12.9) 10.8 (8.8, 12.9) 10.8 (7.9, 

13.9)
4 56 6.5 (4.9, 8.2) 6.5 (4.8, 8.2) 6.4 (3.6, 9.5)
5 41 4.8 (3.5, 6.3) 4.7 (3.3, 6.2) 4.7 (1.8, 7.8)
6 (inferior) 31 3.6 (2.5, 5.0) 3.6 (2.4, 4.8) 3.6 (0.7, 6.6)
7 24 2.8 (1.8, 4.0) 2.8 (1.7, 3.9) 2.8 (0.0, 5.8)
8 23 2.7 (1.8, 3.9) 2.6 (1.6, 3.8) 2.6 (0.0, 5.7)
9 (medial) 23 2.7 (1.8, 3.9) 2.6 (1.6, 3.8) 2.6 (0.0, 5.7)
10 56 6.5 (4.9, 8.2) 6.5 (4.8, 8.2) 6.4 (3.6, 9.5)
11 60 6.9 (5.3, 8.7) 6.9 (5.3, 8.7) 6.9 (4.0, 9.9)
12 (superior) 66 7.6 (5.9, 9.4) 7.6 (5.9, 9.3) 7.6 (4.7, 10.6)
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with comprehensive statistical analyses. The study has 
several strengths and advantages, including the largest 
number of patient images used to create an atlas, and the 
precise anatomical localisation of SLNs using SPECT/CT 
data. No other 3D anatomical breast SLN atlases [9–13] 
have incorporated multiple statistical analyses, and pre-
vious studies have either not reported confidence inter-
vals to quantify uncertainty [6, 7], or used only Bayesian 
inference [8]. The use of more detailed classifications of 
node field locations compared to Blumgart et al. [8] and 
Estourgie et al. [6] is an additional advantage.

The drainage probabilities reported here are compara-
ble with previous studies [6–8], with axillary and internal 
mammary drainage being the most common while SLNs 
tend to be in node fields closest to the primary tumour 
[8]. Similarly, drainage to the internal mammary node 
field were higher from primary tumours in the 7 and 8 

o’clock regions, which is consistent with the lower inner 
quadrant region drainage results in Estourgie et al. [6], 
Uren et al. [7], and Blumgart et al. [8]. Most tumours were 
in the 2 o’clock region (closest to the axilla), consistent 
with the upper outer breast quadrant being most com-
mon in Estourgie et al. [6], Uren et al. [7], and Blumgart 
et al. [8]. The retroareolar 0 o’clock breast region was the 
second most common tumour location, with a higher 
prevalence (12.8%; bootstrapping 95% CI: 10.5–15.1%) 
reported in this study compared to the results of Estour-
gie et al. [6] (8.7%), Uren et al. [7] (4.2%), and Blumgart et 
al. [8] (4.0%), which could be due to differences in region 
size between studies.

The co-registration of patient CT images to a reference 
CT allowed SLN positions from a large representative 
sample of patients to be aligned to a common patient 
geometry. The registration process was successful for 

Fig. 4 The 3D SLN atlas showing: a anterior, b right, c left, d superior, and e inferior views of all registered SLNs on the reference patient with segmented 
bones and muscles
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over 95% of CT images, and CT images for which reg-
istration failed typically had large anatomical variations 
compared to the reference CT. Computation of regis-
tration error provided quantitative metrics of the accu-
racy and precision of SLN positions, not provided by 
other breast atlases [9–13]. The estimated registration 
error (mean 11.2 mm) was slightly larger than the inter-
observer variation (mean 7.4  mm for Observers 2 and 
3) and the reference CT slice thickness (4.4  mm). This 
indicates that misalignments between the reference and 
moving images persisted after registration. However, 
as the registration error was only slightly larger than 
the inter-observer variation, the SLN positions were 
regarded suitable for this work. Registration and seg-
mentation accuracy is primarily limited by the quality 
of the CT images, which are subject to motion-related 
blurring, poor soft-tissue contrast, and image artefacts. 
Anatomical differences between the reference and other 
patients may not be accounted for by image registration 
alone.

Although the purpose of the atlas is not to guide 
radiotherapy, comparisons with ESTRO CTVs were 
performed. Coverage ranged from 33.3 to 66.7% for the 
axilla level I node fields, which was lower than Novikov 
et al. [13], who found 82.7% coverage for the entire axilla 
level I node field. However, Novikov et al. [13], calcu-
lated coverage per patient with less restrictive criteria 
(> 10% SLN overlap was considered covered, compared 
to > 50% in this study). In addition to criteria differ-
ences, discordant results may be due to ESTRO CTV 
distortion during the registration process, demonstrated 
by the asymmetrical CTVs in Fig. 6. Non-covered SLNs 
were a mean distance of 5.7  mm away from the near-
est CTV boundary, which may be covered when mar-
gins are added for planning purposes [27]. Future work 
to analyse discrepancies could involve manual delinea-
tion of ESTRO CTVs on the reference CT by radiation 
oncologists, as performed in other studies [11–13]. An 
additional limitation to our work is the low-dose ref-
erence CT slice thickness of 4.4  mm, which was larger 
than the 2–3 mm recommended for CTV delineation by 
Offerson et al. [27].

There are several limitations to this study. The 3D 
SLN atlas contains data from female patients only, while 
the statistical analysis has a very small number of male 
patients, and hence neither may be representative of a 
male cohort. The reference CT image was a low dose CT 
scan with relatively thick slices, which meant it was not 
possible to visualise and segment blood vessels which are 
important for SLN identification. Therefore, future work 
could involve using a higher quality diagnostic CT scan 
as the reference image which could enable visualisation 
of relevant blood vessels. This would also improve regis-
tration and segmentation accuracy.Ta
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Fig. 6 Breast Cancer Atlas 3D Slicer module layout showing a axial, b 3D perspective, c coronal, d sagittal views, when the ‘Show ESTRO contours’ check-
box is selected

 

Fig. 5 The Breast Cancer Atlas 3D Slicer module layout after selecting the right breast region 10. The SLNs are colour-coded, and drainage probabilities 
are shown in the table on the right. Note that selecting the corresponding left breast region (e.g., left breast region 2 here) will show the same statistics 
due to data reflection
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Conclusions
This study presents the first interactive 3D atlas of breast 
SLNs developed using SPECT/CT data with integrated 
statistical results. The 3D atlas enhances our understand-
ing of breast lymphatic drainage patterns and tumour 
prevalence from a large patient cohort and provides 
a valuable resource for medical education which has 
potential to aid breast cancer treatment planning.
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