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Abstract 

Purpose To develop a radiomics-based model using  [68Ga]Ga-PSMA PET/CT to predict postoperative adverse pathol-
ogy (AP) in patients with biopsy Gleason Grade Group (GGG) 1–2 prostate cancer (PCa), assisting in the selection 
of patients for active surveillance (AS).

Methods A total of 75 men with biopsy GGG 1–2 PCa who underwent radical prostatectomy (RP) were enrolled. The 
patients were randomly divided into a training group (70%) and a testing group (30%). Radiomics features of entire prostate 
were extracted from the  [68Ga]Ga-PSMA PET scans and selected using the minimum redundancy maximum relevance algo-
rithm and the least absolute shrinkage and selection operator regression model. Logistic regression analyses were conducted 
to construct the prediction models. Receiver operating characteristic (ROC) curve, decision curve analysis (DCA), and calibra-
tion curve were employed to evaluate the diagnostic value, clinical utility, and predictive accuracy of the models, respectively.

Results Among the 75 patients, 30 had AP confirmed by RP. The clinical model showed an area under the curve 
(AUC) of 0.821 (0.695–0.947) in the training set and 0.795 (0.603–0.987) in the testing set. The radiomics model 
achieved AUC values of 0.830 (0.720–0.941) in the training set and 0.829 (0.624–1.000) in the testing set. The com-
bined model, which incorporated the Radiomics score (Radscore) and free prostate-specific antigen (FPSA)/total 
prostate-specific antigen (TPSA), demonstrated higher diagnostic efficacy than both the clinical and radiomics mod-
els, with AUC values of 0.875 (0.780–0.970) in the training set and 0.872 (0.678–1.000) in the testing set. DCA showed 
that the net benefits of the combined model and radiomics model exceeded those of the clinical model.

Conclusion The combined model shows potential in stratifying men with biopsy GGG 1–2 PCa based on the pres-
ence of AP at final pathology and outperforms models based solely on clinical or radiomics features. It may be 
expected to aid urologists in better selecting suitable patients for AS.
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Introduction
Active surveillance (AS) is the recommended strategy for 
patients with low-risk, localized prostate cancer (PCa) 
and is being recommended for some intermediate-risk 
patients [1, 2]. It aims to postpone or avoid active treat-
ment in individuals with localized PCa, while maintain-
ing their quality of life and functional outcomes, and 
reducing overtreatment [1, 3]. However, the lack of con-
sensus on inclusion criteria stringency and disease pro-
gression definition has led to significant variability in AS 
protocols across different centers and guidelines [4, 5]. 
Consequently, the cumulative five-year dropout rate on 
AS reaches 44%, with 27% triggered by disease progres-
sion [6, 7]. Given the potential for tumor progression and 
metastasis during AS, determining optimal selection cri-
teria remains a crucial issue.

According to established clinical criteria and indi-
cators, including the prostate-specific antigen (PSA), 
clinical T-stage, and biopsy findings, current guidelines 
classify patients with localized PCa into risk categories 
and recommend AS for all low-risk patients [8]. Further-
more, AS has been proposed as an option for selected 
intermediate-risk PCa patients with low-volume Glea-
son Grade Group (GGG) 2. Several studies have demon-
strated the oncologic safety of AS relative to aggressive 
treatment [9–11]. However, biopsy results tend to under-
estimate the actual GGG of patients, resulting in some 
patients not meeting the enrollment criteria for receiving 
an AS regimen. Up to 25% of patients with biopsy GGG 
1–2 PCa may qualify for AS but harbour adverse pathol-
ogy (AP: pT3 and/or N1 and/or GGG ≥ 3) at radical 
prostatectomy (RP) [12, 13]. By enrolling these patients 
in AS, they may miss the opportunity for curative treat-
ment due to disease progression [14, 15]. Additionally, 
the inflexibility of risk categories may limit the number of 
patients with pathologically indolent PCa who qualify for 
AS, increasing the risk of overtreatment [16]. Recently, 
several multivariate models and nomograms based on 
clinical and multiparametric magnetic resonance imag-
ing (mpMRI) features have been developed to overcome 
these limitations and have shown superior diagnostic 
efficacy compared to traditional risk categories [17, 18]. 
However, the usefulness of these models in terms of diag-
nostic accuracy is still controversial, and prostate biop-
sies for confirming PCa still tend to rely on PSA-based 
specificity [19].

Positron emission tomography/computed tomography 
(PET/CT) with  [68Ga]-labeled prostate-specific mem-
brane antigen inhibitors  ([68Ga]Ga-PSMA) has been 
widely used in the clinical staging of primary PCa and 
the restaging of biochemically recurrent PCa [20, 21]. 
Previous studies have demonstrated a strong positive 
correlation between the maximal standardized uptake 

value (SUVmax) of  [68Ga]Ga-PSMA PET and GGG for 
primary prostate tumors, indicating its potential to pre-
dict pathological upgrade from biopsy to RP [22]. The 
implementation of this novel molecular imaging tech-
nique could prove more advantageous than mpMRI in 
the patient screening process for AS [15]. In recent years, 
the field of radiomics has rapidly progressed, offering the 
ability to extract valuable quantitative data from digitally 
encrypted medical images, thereby providing additional 
information on lesions [23]. The combination of radi-
omics and machine learning has exhibited the capac-
ity to accurately predict postoperative GGG of PCa in a 
non-invasive manner [24]. Notably, unlike tumor biop-
sies, radiomics has the potential to characterize the local 
tumor phenotype based on the entire lesion, rather than 
relying on tumor subsamples.

Our study aims to develop and validate a stratified 
machine learning model that combines  [68Ga]Ga-PSMA 
PET/CT with traditional clinical risk factors. This model 
will be used to predict postoperative AP in patients with 
GGG 1–2 at biopsy, aiding in selecting patients for AS.

Materials and methods
Patients
The study protocol was approved by the Ethics Commit-
tee of Xiangya Hospital Central South University, and 
written informed consent to use the data was obtained 
from all included patients. We reviewed consecutive 
patients with biopsy GGG 1–2 PCa from April 2020 to 
May 2023. All enrolled men underwent transrectal ultra-
sound (TRUS)-guided biopsy and were treated with 
RP ± lymph node dissection in the Department of Urol-
ogy, Xiangya Hospital. The exclusion criteria were as fol-
lows (a) patients who had prior PCa treatment before RP; 
(b) patients who had missing clinical data or nonstand-
ard examinations; (c) patients who underwent a prostate 
biopsy with less than 12 cores taken. Overall, 75 patients 
were enrolled, and clinical features such as age, total 
PSA (TPSA), and free PSA (FPSA) were gathered for all 
selected patients.

[68Ga]Ga‑PSMA‑617 PET/CT examination and image 
evaluation
[68Ga]Ga-PSMA-617 was administered to patients 
intravenously, with an activity of 3.7 − 4.44  MBq/kg. 
PET imaging was then performed after low-dose CT 
scanning at 40 ± 10  min post-injection. All scans were 
acquired using a PET/CT scanner (690 Elite; General 
Electric Healthcare). First, a CT scan (140 kV; 340 mAs; 
pitch, 1:1; slice thickness, 3.75  mm; matrix, 512 × 512) 
was performed from the head to mid-thigh for anatomi-
cal localization and attenuation correction. Next, PET 
scanning was performed, with 1.75 min per bed position. 
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Finally, all PET images were reconstructed as a 256 × 256 
transaxial matrix using the 3-dimensional ordered-sub-
sets expectation maximization algorithm with 2 itera-
tions and 23 subsets. The voxel size of the PET images 
was 2.7 × 2.7 × 3.8 mm.

Two experienced nuclear medicine doctors who were 
blind to the pathological outcomes evaluated the  [68Ga]
Ga-PSMA-617 PET/CT images independently, with disa-
greements being settled through discussion. Any focal 
uptake above the background in the prostate that couldn’t 
be explained by physiological uptake was considered a 
positive lesion. The SUVmax, the mean SUV (SUVmean), 
and PSMA tumor volume (PSMA-TV) were produced 
automatically from the volume of interest (VOI) with 
isocontours set at 41% of the maximum uptake within 
the respective focus [25, 26]. PSMA total lesion (PSMA-
TL) was calculated by multiplying the PSMA-TV and 
SUVmean.

Histopathology examination
All patients participating in the study underwent TRUS-
guided biopsies under the supervision of an experienced 
urologist (Y Cai), who had performed over 1000 TRUS 
biopsies. RP ± pelvic lymph node dissection was subse-
quently performed for all patients with biopsy-proven 
PCa in this study using a laparoscopic approach. All of 
the slides from prostate biopsies and RP specimens were 
examined by a single, experienced uropathologist. Biopsy 
and pathological GGG were determined according to the 
2019 International Society of Urologic Pathology (ISUP) 
criteria [27]. Prostatectomy pathological T stage (pT) 
and N stage (pN) were evaluated according to American 
Joint Committee on Cancer (AJCC) guidelines [28]. The 
presence of adverse pathology at RP, which is defined as 
non-organ confined disease (pT3) and/or lymph node 
invasion (pN 1) and/or GGG ≥ 3, represented the study’s 
outcome, which means that the patient wasn’t suitable for 
AS. For patients who were under consideration for inclu-
sion in AS protocols, this represents a surrogate endpoint 
for stronger oncological outcomes.

Image segmentation
The whole prostate was manually delineated using 3D 
Slicer (vision 5.3.0) by two experienced nuclear medi-
cine physicians. The entire prostate was utilized as the 
VOI because it avoids sampling error, radiomics prob-
lems for small lesions, and the challenges of multi-lesion 
characterization. It also offers a more robust inter-reader 
reproducibility and better accounts for tumor hetero-
geneity. Considering the low anatomical accuracy of 
PET imaging, we drew the VOI of the whole prostate on 
the CT images and then matched it to the PET images. 
To ensure accurate matching of PET and CT, manual 

transformation of PET images in 3 axes was allowed and 
the panes of PET images were interpolated to match the 
CT in our study. If necessary, VOI would be adjusted to 
prevent the inclusion of bladder activity.

Radiomics features extraction and selection
The Radiomics features were extracted from the VOIs 
using the Pyradiomics platform (version 3.7.4) imple-
mented in Python (version 3.7.4), according to the 
guidelines of the Image Biomarker Standardization 
Initiative [29]. All VOIs were normalized, discretized 
using fixed bin width (FBW = 0.25), and then resampled 
to 2.0 × 2.0 × 2.0  mm3 voxels before feature extraction. 
A total of 107 3D radiological features were extracted, 
which were categorized into seven feature classes: 
shape (n = 14), first order (n = 18), Gray Level Co-occur-
rence Matrix (GLCM) (n = 24), Gray Level Depend-
ence Matrix (GLDM) (n = 14), Gray Level Run Length 
Matrix (GLRLM) (n = 16), Gray Level Size Zone Matrix 
(GLSZM) (n = 16), and Neighbouring Gray Tone Differ-
ence Matrix (NGTDM) (n = 5).

After radiomics feature extraction, we used two steps 
to select the features. At first, the minimum redundancy 
maximum relevance (mRMR) algorithm, which has been 
proven to be effective in radiomics feature selection [30], 
was performed to eliminate the redundant and irrelevant 
features. Then, the least absolute shrinkage and selection 
operator (LASSO) regression model, was conducted to 
choose the optimized subset of features to construct the 
final model.

Model construction
For model development and assessment, patients were 
randomly divided into a training and testing group in 
a ratio of 7:3. All models were developed based on the 
training cohorts and subsequently evaluated on the test-
ing cohorts.

The clinical model was constructed in two steps based 
on the clinical features. Firstly, univariate logistic regres-
sion was performed to assess clinical features including 
age, PSA, free PSA (FPSA), prostate volume, PSA den-
sity (PSAD), FPSA/total PSA (TPSA), biopsy GGG, % 
of positive cores, SUVmax, SUVmean, PSMA-TL and 
PSMA-TV. Then, those features with P < 0.05 in univari-
ate logistics analysis were analyzed in multivariate logis-
tic regression analysis to build a model.

We used a logistic regression classifier to build the 
radiomics model based on the selected radiomics fea-
tures. A stratified tenfold cross-validation was applied 
with 100 iterations in the training group to develop a reli-
able and stable model, and the model was then assessed 
in the testing group. Radiomics score (Radscore) was 
calculated for each patient via a linear combination of 
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selected features that were weighted by their respective 
coefficients.

For the combined model, clinical features with P < 0.05 
in univariate logistics and Radscore were imported into 
the multivariate logistic regression, and statistically sig-
nificant indicators were screened to establish a visualized 
quantitative model, the nomogram outcome stratification 
prediction model.

Statistical analysis
The t-tests/Spearman rank tests and Chi-square/Fisher’s 
exact tests were used to compare the clinical features 
between men with AP and those without. Univariate and 
multivariate logistic regression analyses were performed 
to determine independent predictors, and then build the 
prediction models.

The areas under the receiver operating characteristic 
(ROC), area under the curve (AUC), decision curve anal-
ysis (DCA), and calibration curve were used to assess the 
diagnostic value, clinical utility, and predictive accuracy 
of those models, respectively. Statistical analysis was per-
formed using IBM SPSS statistics software, version 26.0, 
and R software, version 4.1.3. P < 0.05 was considered sta-
tistically significant.

Results
Patient characteristics
A total of 75 patients with biopsy GGG 1–2 PCa were 
included in this study. At final pathology after RP for 
all patients, 30 patients (40%) had AP. Thirty patients 
with AP at RP were randomly divided into the training 
cohort (n = 21) and the testing cohort (n = 9). Of the 45 
patients without AP at RP, 32 patients were assigned to 
the training cohort and 13 patients were assigned to the 
test cohort. There were no significant differences in all 
clinical and image features between the training cohort 
and testing cohort. Table  1 shows the characteristics of 
all patients in detail.

Clinical model
The results of the clinical features in the comparison of 
the patients with AP and patients without AP are shown 
in Table  2. The univariate logistic regression analysis 
showed significant differences in FPSA/TPSA, SUVmax, 
SUVmean, PSMA-TL, and PSMA-TV between the two 
groups (P < 0.05). Subsequently, the significant variables 
from the univariate analysis were included in the multi-
variate logistic regression models. The results showed 
that FPSA/TPSA (odds ratio [OR]: 0.00, 95% confidence 
interval [CI]: 0.00–0.57) and PSMA-TV (OR: 1.29, 95% 
CI: 1.06–1.58) were the independent predictors for 
adverse pathology. Finally, the clinical model was estab-
lished according to FPSA/TPSA and the PSMA-TV. As 

shown in Table  3, the AUC, sensitivity, and specificity 
of the training group were 0.821 (0.695–0.947), 76.2% 
(58.0%–94.4%), 81.2% (67.7%–94.8%), respectively, and 
0.795 (0.603–0.987), 77.8% (50.6%-100%), 69.2% (42.4%-
87.3%) in the testing group.

Radiomics model
A total of 107 Image Biomarker Standardization Initia-
tive (IBSI) compliant radiomic features were extracted 
from whole prostate PET images. Among them, 30 radi-
omic features were retained by mRMR. Then, the opti-
mal adjustment weight λ (λ = 0.0672759851974577) was 
determined for the LASSO algorithm (Figure S1), and 6 
nonzero coefficient features were selected to construct 
the final radiomic model. Figure S2 shows the detailed 
names and weights of the 6 radiomics features.

Radscore was calculated by multiplying each feature 
coefficient by the corresponding eigenvalue and sum-
ming. The Radscores for all patients were shown in Fig. 1. 
In both training and testing cohorts, the patients with AP 
group had a higher Radscore than patients without, and 
the Radscores showed great discrimination performance 
to distinguish between these two groups. The radiom-
ics model yielded an AUC, sensitivity, and specificity 
of 0.830 (0.720–0.941), 90.5% (77.9%-100%), and 68.8% 
(52.7%-84.8%) in the training group. In the testing group, 
the radiomics model demonstrated an equal sensitivity of 
77.8% (50.6%-100%) and higher specificity (overlapping 
95% CIs) of 92.3% (77.8%-100%) than a clinical model, 
with an AUC of 0.829 (0.624–1.000) (Table 3).

Combined model
Clinical features with statistically significant differences 
between the two groups and Radscore were included in 
multivariate logistic regression to establish a combined 
model. The results showed that FPSA/TPSA (OR: 0.00, 
95% CI: 0.00–2.21) and Radscore (OR: 9.92, 95% CI: 
2.72–36.23) were the significant independent predictors 
of AP. A nomogram including FPSA/TPSA, and Radscore 
based on the combined model was shown in Fig. 2. ROC 
curve analysis showed that the AUC values for the com-
bined model were 0.875 (0.780–0.970) and 0.872 (0.678–
1.000) in the training and test cohorts, respectively, 
showing good sensitivity and specificity (Table 3).

The comparison and evaluation of the three models
A comparison of the ROC curves of these three models 
is shown in Figure S3. The combined model displayed 
the highest AUC (overlapping 95% CIs) values among 
the three models, with the highest sensitivity (overlap-
ping 95% CIs) and moderate specificity in both training 
and testing cohorts. The Hosmer–Lemeshow calibration 
curves for the three predictive models were constructed 
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in the training and testing groups. If the predicted prob-
abilities on the calibration curve closely resembled the 
observed probabilities, and the P-value of the Hosmer–
Lemeshow test was greater than 0.05, it indicated a high 
calibration accuracy of the model. In our study, it clearly 
demonstrated a high degree of concordance between the 
dotted lines (reference lines) and the coloured lines (cali-
bration curve) in Fig. 3. In addition, the P-values of the 
clinical model, radiomics model, combined model were 
0.303, 0.593, 0.445 in the training group, and 0.465, 0.598, 
0.685 in the testing group. These results showed good 
agreement between the predicted and actual results. As 
shown in Fig.  4, DCA was performed to compare the 

clinical utility of the three prediction models in predict-
ing the AP. The results indicated that the net benefit 
of the combined model and the radiomics model was 
greater than that of the clinical model.

Discussion
In this study, we developed three models based on clini-
cal and/or  [68Ga]Ga-PSMA PET-based radiomics fea-
tures to redefine the inclusion criteria for AS in patients 
with biopsy Gleason Grade Group 1–2 PCa, which 
may have important clinical value in maximally reduc-
ing overtreatment and avoiding inappropriate adverse 
pathology patients progressing. The combined model 

Table 1 Patient characteristics

AP adverse pathology, SD standard deviation, PSA prostate-specific antigen, IQR interquartile range, PV prostate volume, PSAD prostate-specific antigen density, FPSA 
free prostate-specific antigen, TPSA total prostate-specific antigen, mpMRI GGG, Gleason Grade Group, SUVmax maximum standardized uptake values, SUVmean 
mean standardized uptake values, PSMA-TL prostate-specific membrane antigen total lesion, PSMA-TV prostate-specific membrane antigen tumour volume, RP radical 
prostatectomy

*P < 0.05

Patients without AP 
at final pathology 
(n = 45)

Patients with AP 
at final pathology 
(n = 30)

P values Training Cohort 
(n = 53)

Testing Cohort (n = 22) P values

Mean age (SD), y 66.42 (7.88) 64.50 (6.7) 0.688 66.15 (7.38) 64.46 (7.62) 0.898

Median PSA (IQR), ng/ml 9.20 (5.80–13.92) 15.01 (11.14–25.50) 0.002* 12.89 (7.17–17.33) 9.52 (6.19–17.24) 0.120

Median FPSA (IQR), 
ng/ml

1.21 (0.58–1.91) 1.42 (0.81–2.27) 0.236 1.42 (0.76–2.18) 0.96 (0.55–1.60) 0.296

Median PV (IQR), ml 32.40 (21.45–32.40) 31.20 (22.15–52.75) 0.991 31.40 (20.20–47.60) 31.50 (25.53–42.20) 0.858

Median PSAD (IQR), ng/
ml2

0.29 (0.17–0.45) 0.45 (0.24–0.67) 0.023* 0.38 (0.17–0.59) 0.34 (0.17–0.47) 0.858

Median FPSA/TPSA (IQR) 0.14 (0.10–0.18) 0.09 (0.07–0.14) 0.017* 0.13 (0.09–0.16) 0.10 (0.06–0.14) 0.233

Biopsy GGG, n (%) 0.220 0.465

1 26 13 29 10

2 19 17 24 12

% of positive cores, 
median (IQR)

0.17 (0.09–0.25) 0.25 (0.12–0.39) 0.206 0.17 (0.11–0.32) 0.17 (0.08–0.27) 0.809

SUVmax 6.20 (5.15–11.25) 9.90 (6.80–17.43) 0.003* 7.80 (5.85–12.55) 8.45 (4.90–13.65) 0.633

SUVmean 3.90 (3.20–6.45) 5.65 (4.08–9.73) 0.005* 4.40 (3.70–6.90) 4.55 (2.90–7.63) 0.976

PSMA-TL 13.31(6.39–21.49) 25.88 (16.00–41.09)  < 0.001* 10.52 (5.47–23.54) 16.60 (0.00–41.97) 0.743

PSMA-TV 1.31 (0.00–2.68) 3.99 (2.66–6.56)  < 0.001* 1.64 (1.17–3.77) 2,73 (0.00–5.01) 0.404

Final pathology results

RP GGG  < 0.001* 0.409

1 20 2 14 8

2 25 10 24 11

3 0 9 8 1

4 0 5 3 2

5 0 4 4 0

pT stage  < 0.001* 0.669

pT1- pT2 45 12 41 16

pT3- pT4 0 18 12 6

pN stage 0.003* 1.000

pN0-pNx 45 23 48 20

pN1 0 7 5 2
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demonstrated superior predictive ability compared to 
the clinical and radiomics models alone, specifically in 
identifying patients with adverse pathology at the final 
analysis, who should not be considered for AS. Inter-
nal validation results revealed that the combined model 
effectively fulfills the clinical requirements for selecting 
appropriate AS candidates, leveraging the full potential 
of  [68Ga]Ga-PSMA PET/CT scans.

Currently, guidelines stratify PCa patients based on 
biopsy results, PSA levels, and clinical stage, with AS 
primarily recommended for low-risk patients [8]. How-
ever, the strict inclusion criteria of AS limit the inclu-
sion of suitable patients. Moreover, the limited number 
of included indicators omits some patient information, 

leading to the inclusion of patients who may not be 
appropriate for AS, resulting in delays in their treat-
ment [16, 31]. To extend the AS inclusion criteria and 
reduce the inclusion of unsuitable patients, several 
predictive models based on clinical characteristics and 
conventional imaging features have been developed in 
recent years. Gandaglia et  al. [32] developed a multi-
variable model using patients’ PSA levels, clinical stage, 
biopsy grade group, number of positive cores, and PSA 
density to assess the risk of poor outcomes in low-risk 
or intermediate-risk PCa patients, aiding in the selec-
tion of AS candidates. The results demonstrated a 10% 
increase in the number of patients eligible for AS com-
pared to PRIAS criteria, without increasing the risk 
of misclassification [33]. However, the diagnostic effi-
cacy of this model remains poor, possibly due to the 
absence of specific imaging characteristics from pros-
tate MRI and  [68Ga]Ga-PSMA PET/CT. Another study, 
which developed a multivariable model including vari-
ables from MRI and targeted biopsy, validated that 
the inclusion of MRI features significantly enhanced 
the diagnostic performance of the model for adverse 
pathology [16]. This improvement may be attrib-
uted to the correlation between PI-RADS scores and 
adverse pathology, as well as the more accurate pathol-
ogy obtained through MRI-targeted biopsy. Previous 
studies have shown that  [68Ga]Ga-PSMA PET/CT is a 
more accurate predictor of adverse pathological out-
comes compared to mpMRI [15, 34]. In addition, pre-
vious literatures have proved that PSMA PET-targeted 
biopsy, combined with the technique of intraoperative 
quantification of PSMA PET uptake in core biopsies, 
could improve the detection rate of csPCa compared 
with systematic biopsy and reduce the need for satura-
tion biopsy [35]. In our study, we developed a clinical 
model based on patients’ clinical characteristics and 
conventional PSMA PET/CT features (FPSA/TPSA and 
PSMA-TV), which demonstrated improved diagnostic 
performance. However, it is undeniable that the lesion 

Table 2 Univariate and multivariate Logistic analysis of clinical 
factors for predicting patients with adverse pathology

OR odds ratio, CI confidence interval, PSA prostate-specific antigen, FPSA free 
prostate-specific antigen, PV prostate volume, PSAD prostate-specific antigen 
density, TPSA total prostate-specific antigen, GGG  Gleason Grade Group, SUVmax 
maximum standardized uptake values, SUVmean mean standardized uptake 
values, PSMA-TL prostate-specific membrane antigen total lesion, PSMA-TV 
prostate-specific membrane antigen tumour volume

*P < 0.05

Univariate analysis Multivariate analysis

OR (95% CI) P value OR (95% CI) P value

Age (years) 0.96 (0.90–1.03) 0.270 - -

PSA (ng/ml) 1.04 (0.99–1.09) 0.060 - -

FPSA (ng/ml) 0.98 (0.85–1.14) 0.803 - -

PV (ml) 1.01 (0.99–1.02) 0.337 - -

PSAD (ng/ml2) 2.84 (0.88–9.16) 0.081 - -

FPSA/TPSA 0.00 (0.00–0.27) 0.024* 0.00 (0.00–0.57) 0.037*

Biopsy GGG 1.79 (0.70–4.55) 0.220 - -

% of positive 
cores

1.05 (0.36–3.08) 0.104 - -

SUVmax 1.13 (1.03–1.24) 0.008* 1.70 (0.68–4.25) 0.064

SUVmean 1.22 (1.04–1.42) 0.015* 0.50 (0.10–2.47) 0.084

PSMA-TL 1.04 (1.01–1.08) 0.010* 0.98 (0.93–1.04) 0.444

PSMA-TV 1.32 (1.08–1.62) 0.007* 1.29 (1.06–1.58) 0.013*

Table 3 Diagnostic performance of three models in training and testing cohorts

AUC  area under curve, PPV positive predictive value, NPV negative predictive value

Training cohort Testing cohort

Clinical Model Radiomics Model Combined Model Clinical Model Radiomics Model Combined Model

AUC 0.821
(0.695–0.947)

0.830 (0.720–0.941) 0.875 (0.780–0.970) 0.795 (0.603–0.987) 0.829 (0.624–1.000) 0.872 (0.678–1.000)

Sensitivity 76.2% (58.0%-94.4%) 90.5% (77.9%-100%) 90.5% (71.9%-100%) 77.8% (50.6%-100%) 77.8% (50.6%-100%) 88.9% (56.5%-99.4%)

Specificity 81.2% (67.7%-94.8%) 68.8% (52.7%-84.8%) 78.1% (61.3%-89.0%) 69.2% (42.4%-87.3%) 92.3% (77.8%-100%) 84.6% (57.8%-97.3%)

PPV 72.7% (54.1%-91.3%) 65.5% (48.2%-82.8%) 73.1% (53.9%-86.3%) 63.6% (35.4%-84.8%) 87.5% (64.6%-100%) 91.7% (68.6%-100%)

NPV 83.9% (70.9%-96.8%) 92.0% (75.0%-98.6%) 92.6% (76.6%-98.9%) 81.8% (62.3%-96.8%) 85.7% (67.4%-100%) 80.0% (61.0%-96.0%)
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features provided by visual assessment of PSMA PET/
CT are limited, and the acquisition of some features is 
subjective.

Radiomics can extract features in a high-through-
put and quantitative manner that cannot be obtained 
through visual evaluation by clinicians. This can 
improve the accuracy of diagnosis, prognosis, and 
prediction [36, 37]. Currently, research on utilizing 
radiomics data to select patients for AS is limited and 
predominantly based on MRI imaging [38–40]. Com-
pared to models using clinical and imaging visual evalu-
ation features, radiomics models based on MRI imaging 
often exhibit similar or slightly lower diagnostic per-
formance [38, 39]. This discrepancy may stem from 
the inherent challenge of MRI images in differentiating 

various PCa pathologies. Considering the potential of 
PET-derived radiomics as biomarkers for predicting 
treatment outcomes and characterizing tumor biol-
ogy in a non-invasive manner is noteworthy [41]. 
Specifically, radiomic features derived from  [68Ga]Ga-
PSMA-11 PET/CT images have shown remarkable pro-
ficiency in discerning Gleason scores [24]. Our study 
presents the pioneering application of  [68Ga]Ga-PSMA 
PET radiomics in selecting patients for AS. Encour-
agingly, our results demonstrate that the radiomics 
model based on PSMA PET imaging outperforms clini-
cal models in terms of diagnostic performance in both 
the training and testing sets, confirming the ability of 
 [68Ga]Ga-PSMA PET to identify adverse postoperative 
pathology in patients with AS.

Fig. 1 Bar diagrams of Radscore for each patient in the training cohort (a) and testing cohort (b). The red bars are Radscore values for patients 
with adverse pathology at final pathology, and the green bars are Radscore values for patients with favorable disease at final pathology. Radscore, 
radiomics score
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Advances in technology have revolutionized the 
management of PCa, with mounting evidence sup-
porting the adoption of sophisticated tests and com-
prehensive features to individualize patient assessment 
and ensure optimal treatment [42]. The proposed radi-
omics-based analysis incorporating the clinical-radio-
graphic feature could provide a noninvasive biomarker 
for the individualized and precise medical treatment of 
patients [40]. In our study, we developed a predictive 
model incorporating PSMA PET imaging, histology 
features, and FPSA/TPSA, which exhibited superior 
diagnostic performance compared to both clinical 
and imaging histology models, with consistent results 
in the test set. This underscores the complementary 
nature of clinical and imaging histology features and 
the increased robustness achieved through their com-
bination. Current major clinical guidelines, including 
the European Association of Urology (EAU) guide-
line, recommend active surveillance as the treatment 
of choice for patients with low-risk prostate cancer. 
In our internal validation queue, the use of our com-
bined model to select AS candidates would allow for 
an 83.3% increase in the number of patients eligible 
for AS without increasing the risk of adverse patho-
logical characteristics compared to the EAU criteria. 

Our combined model also showed excellent calibration 
characteristics at internal validation. Notably, among 
patients with a predicted risk of AP greater than 40%, 
the model would underestimate the actual risk of AP. 
Some individuals with AP might receive an AS regi-
men. Among patients with a predicted risk of AP less 
than 40%, the model would overestimate the actual risk 
of AP. Some individuals without AP might excluded 
from an AS regimen. Furthermore, we employed nom-
ogram plots to enhance the visualization and clinical 
utility of the model, providing a clear representation 
of the impact of each factor on the target event for 
individual patients. In clinical practice, these nomo-
gram plots can facilitate the scoring of patients based 
on their clinical and imaging histology features, ena-
bling the assessment of their probability of harboring 
adverse pathology. As a result, they provide guidance 
to clinicians in selecting appropriate AS patients. 
Radiomics features are arguably more dependent on 
the underlying image data. A recent meta-analysis sug-
gests that  [68Ga]Ga-PSMA and  [18F]F-DCFPyL PET 
have comparable diagnostic performance in patients 
with suspected prostate cancer [43]. A study includ-
ing 160 men found that the SUVmax of  [18F]F-PSMA 
and  [68Ga]Ga-PSMA did not differ (P > 0.05) in local 

Fig. 2 Nomogram based on the combined model predicting AP at RP, among patients with biopsy GGG 1–2 PCa. AP adverse pathology, 
RP radical prostatectomy, GGG  Gleason Grade Group, PCa prostate cancer, Radscore radiomics score, FPSA free prostate-specific antigen, TPSA total 
prostate-specific antigen
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recurrence or primary prostate cancer [44]. These 
results seem to indicate that there is no difference in 
the uptake of  [18F]- and  [68Ga]-labeled PSMA ligands in 
prostate cancer PET scans. However, the  [68Ga]-labeled 
PSMA ligand used in these studies is  [68Ga]Ga PSMA-
11, and there is limited data on  [68Ga]Ga-PSMA-617. 
In addition, there are no studies that have investigated 
whether the value of PET-based radiomics features is 
valid for different PSMA ligands. Further multicentre, 
large-scale studies will be required to establish with 
certainty the accuracy and wider applicability of the 
radiomic signature proposed here.

Several limitations are evident in this study. Firstly, 
the sample size was relatively small due to strict 

inclusion criteria. And external validation is lacking in 
the present study, which may restrict the generalizabil-
ity of our results. Future validation would benefit from 
additional multicenter, large-scale studies. Secondly, 
the study’s endpoint of AP at RP is a surrogate outcome 
for cancer-specific survival in AS patients. However, 
this limitation is common in most studies as interme-
diate-risk patients are usually offered active treatment. 
Finally, this study did not incorporate MRI-related 
visual assessments and imaging histology features 
because the MRI examinations for most patients were 
conducted at external hospitals, which could result in 
substantial differences between MRI image acquisition 
and interpretation.

Fig. 3 The calibration curves of the three models in the training cohort (a) and testing cohort (b). The P-values of the clinical model, radiomics 
model, combined model were 0.303, 0.593, 0.445 in the training group, and 0.465, 0.598, 0.685 in the testing group
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Conclusions
In conclusion, we have developed the first model based 
on the PSMA PET-derived radiomics and clinical fea-
tures in identifying candidates for AS, which has the 
potential to aid in the safe selection of Gleason Grade 
Group 1–2 patients for AS to increase the absolute pro-
portion of men eligible for AS and decrease their risk of 
overtreatment.
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