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Abstract
Background 3D reconstruction of Wilms’ tumor provides several advantages but are not systematically performed 
because manual segmentation is extremely time-consuming. The objective of our study was to develop an artificial 
intelligence tool to automate the segmentation of tumors and kidneys in children.

Methods A manual segmentation was carried out by two experts on 14 CT scans. Then, the segmentation of Wilms’ 
tumor and neoplastic kidney was automatically performed using the CNN U-Net and the same CNN U-Net trained 
according to the OV2ASSION method. The time saving for the expert was estimated depending on the number of 
sections automatically segmented.

Results When segmentations were performed manually by two experts, the inter-individual variability resulted 
in a Dice index of 0.95 for tumor and 0.87 for kidney. Fully automatic segmentation with the CNN U-Net yielded a 
poor Dice index of 0.69 for Wilms’ tumor and 0.27 for kidney. With the OV2ASSION method, the Dice index varied 
depending on the number of manually segmented sections. For the segmentation of the Wilms’ tumor and neoplastic 
kidney, it varied respectively from 0.97 to 0.94 for a gap of 1 (2 out of 3 sections performed manually) to 0.94 and 0.86 
for a gap of 10 (1 section out of 6 performed manually).

Conclusion Fully automated segmentation remains a challenge in the field of medical image processing. Although 
it is possible to use already developed neural networks, such as U-Net, we found that the results obtained were not 
satisfactory for segmentation of neoplastic kidneys or Wilms’ tumors in children. We developed an innovative CNN 
U-Net training method that makes it possible to segment the kidney and its tumor with the same precision as an 
expert while reducing their intervention time by 80%.
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Backgroung
Wilms’ tumor, or nephroblastoma, is one of the most 
common malignant tumors in children, affecting 1 in 
10,000 children [1, 2]. Irrespective of the therapeutic pro-
tocol followed (International Society of Paediatric Oncol-
ogy or Children’s Oncology Group), surgery retains an 
essential role in the care of such children. 3D reconstruc-
tion of the neoplastic kidney, based on patient imaging 
data, provides several advantages: pre-operative surgical 
planning, anticipation of operative risks (especially vas-
cular), help in the selection of patients who can benefit 
from nephron-sparing surgery, and improvement of the 
information provided to families [3]. Currently, these 
3D reconstructions are not systematically performed in 
clinical practice. Indeed, the construction of 3D models 
requires a preliminary segmentation phase (assigning a 
label to each pixel of the image), which can be extremely 
time-consuming and a source of human error when per-
formed manually [3, 4].

Artificial intelligence (AI) encompasses a set of con-
cepts and technologies that enable machines to simulate 
human intelligence. It uses artificial neural networks, 
mathematical logic, and computer science. Thus, AI can 
be defined as a set of algorithms that gives machines the 
ability to reason or perform certain cognitive functions 
such as problem-solving, object or word recognition, and 
decision-making [5]. Deep Learning refers to a subset of 
machine learning techniques that involve training and 
using artificial neural networks with multiple layers to 
learn and extract complex patterns and representations 
from data. There are different kinds of deep learning 
architectures that can be used for medical image analy-
sis, and most of them are built from convolutional neu-
ral networks (CNN) [4]. Thus, CNN are a type of deep 
learning model specifically designed for processing and 
analyzing structured data, such as images or time-series 
data. They utilize convolutional layers to automatically 
extract hierarchical features from the input data, mak-
ing them highly effective for tasks like image recognition, 
classification or segmentation [6]. In the context of tumor 
pathology, these tools can be used for tumor segmenta-
tion, differential diagnosis, tumor staging and grading [4].

The objective of our study was to develop an artificial 
intelligence tool to, as much as possible, automate the 
segmentation of the neoplastic kidney in order to limit 
the need for intervention by a human expert and thus 
allow it to be performed in routine clinical practice.

Materials and methods
We built a database from 14 CT scans of 12 patients 
who had been treated for Wilms’ tumor in our depart-
ment at the University Hospital of Besançon, France. All 
scanners had an arterial contrast phase, and 5 scanners 
had a late acquisition time allowing the urinary tract to 

be assessed. For each CT scan, we performed manual or 
semi-automatic segmentation of healthy kidneys, neo-
plastic kidneys (preserved renal parenchyma around the 
tumor), Wilms’ tumors, arterial vascularization, venous 
vascularization, and urinary cavities, using 3D Slicer soft-
ware version 4.8.1 (https://www.slicer.org/). This manual 
segmentation was carried out by two different experts 
in order to calculate the inter-individual variability (one 
pediatric surgeon and one pediatric radiologist with 
more than 5 years’ experience in pediatric oncology). The 
patient demographics and segmentation method were 
described in a previous paper [3]. These established data 
were then available for the development and training of 
AI tools.

Convolutional neural networks (CNN)
Segmentation of the neoplastic kidney and the tumor 
was initially performed with U-Net [7], which is the 
most commonly used CNN for medical image segmen-
tation. U-Net has two stages: a down-sampling stage 
(an encoder process uses the max-pooling strategy to 
compress image features) and an up-sampling stage (a 
decoder process uses the unpooling strategy to out-
pout the results) [8]. For each patient p, the U-Net has 
been trained over all others the patients except p, during 
200 epochs (the number of epochs is a hyperparameter 
of CNN that controls the number of complete passes 
through the training dataset), with a batch size of 16 (the 
batch size is a hyperparameter of CNN that controls the 
number of training samples to work through before the 
model’s internal parameters are updated).

The segmentation was then performed with the same 
CNN U-Net trained according to the OV2ASSION (over-
learning vector for valid sparse segmentations) training 
method, described in a previous article [9, 10]. In this 
method, CNN training is performed with a variable num-
ber of patient CT scan sections that have been manually 
segmented by an expert. The objective of the CNN is then 
to automatically complete the segmentation of the miss-
ing sections. The results obtained are then used to define 
the minimum number of manually segmented sections so 
that the CNN completes the segmentation automatically 
with good accuracy. The notion of “gap”, therefore, defines 
the interval between two manually segmented sec-
tions (Fig. 1). The larger the gap, the greater the interval 
between two sections and, therefore, the more the need 
for intervention by an expert is restricted. The time sav-
ing for the human expert is estimated depending on the 
number of sections automatically segmented. Computa-
tions have been performed on the supercomputer facili-
ties of the Franche-Comté Computation Mesocenter.

https://www.slicer.org/
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Evaluation of the results
The segmentations obtained by AI were compared to the 
manual segmentations performed by an expert using the 
Dice similarity index according to the following formula:

 
Dice similarity index =

2 |X ∩ Y |
|X ∪ Y |

=
2A

2A + B + C

where:
X is the segmentation obtained by AI.
Y is the segmentation performed manually by an expert.
A is the number of common pixels, present in class X and 
in class Y.
B is the number of pixels present in class Y and absent in 
class X.
C is the number of pixels present in class X and absent in 
class Y.

Results
When segmentations were performed manually by two 
experts, the inter-individual variability resulted in an 
average Dice index of 0.95 [0.91–0.97] for Wilms’ tumor 
(Table  1) and 0.87 [0.69–0.96] for neoplastic kidney 

(Table  2). The Dice index was greater than 0.90 for all 
patients concerning the renal tumor and it was less than 
0.80 for two patients concerning the neoplastic kidney.

Of the 14 patients tested, automatic segmentation with 
the CNN U-Net yielded an average Dice index of 0.69 
[0.01–0.93] for Wilms’ tumor segmentation (Table  1) 
and 0.27 [0.02–0.56] for neoplastic kidney segmentation 
(Table 2). The Dice index was greater than 0.80 for 9 out 
of 14 patients regarding renal tumor segmentation. In 
contrast, the Dice index was less than 0.80 for all patients 
regarding neoplastic kidney segmentation, with a maxi-
mum Dice value of 0.56.

With the OV2ASSION drive method, the average 
Dice index varied depending on the number of manu-
ally segmented sections. Logically, the Dice index tends 
to decrease when the gap increases because it means that 
the CNN has less established data for training. For the 
segmentation of the Wilms’ tumors (Table  1), it varied 
from 0.97 for a gap of 1 (2 out of 3 sections performed 
manually) to 0.94 for a gap of 10 (1 section out of 6 per-
formed manually). The Dice index was greater than 0.80 
for all patients, regardless of the gap used. For neoplas-
tic kidney segmentation (Table 2), the average Dice index 

Fig. 1 Representation of manually segmented sections and the notion of a gap with the OV2ASSION method
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ranged from 0.94 for a gap of 1 to 0.86 for a gap of 10. 
Twelve patients had a Dice index greater than 0.80 for all 
gaps tested. On the other hand, two patients (patients 9 
and 10) had a Dice index below 0.80, with a poor result 
for patient 9 since the Dice index decreased to less than 
0.70 from gap 7 and fell below 0.50 from gap 9.

The Fig.  2 shows an example of renal and tumor seg-
mentations achieved by CNN U-Net with and without 
OV2ASSION method. Thus, the CNN driven by the 

OV2ASSION method obtained identical results to the 
inter-individual variability for a gap of 7 concerning the 
Wilms’ tumor and for a gap of 8 concerning the neoplas-
tic kidney. In other words, the segmentation with the 
AI tool was as precise as the segmentation by an expert 
when provided with 1 out of 5 manually segmented 
sections. The time saving for the human expert varied 
depending on the gap, from 33% for a gap of 1 (1 section 

Table 1 Dice indices and estimated time saving for the segmentation of Wilms’ tumors with manual segmentation (inter-individual 
variability), automatic segmentation (CNN U-Net) and semi-automatic segmentation (CNN U-Net trained with the OV2ASSION method)
Patient Inter-individual variability (manual segmentation) Automatic segmentation CNN U-Net Semi-automatic 

segmentation CNN 
U-Net + OV2ASSION

Gap 1 Gap 5 Gap 10
1 0.94 0.69 0.99 0.97 0.96
2 0.91 0.43 0.96 0.93 0.92
3 0.95 0.01 0.95 0.86 0.88
4 0.92 0.93 0.98 0.97 0.96
5 0.96 0.88 0.97 0.96 0.95
6 0.96 0.83 0.97 0.96 0.95
7 0.94 0.88 0.98 0.97 0.96
8 0.96 0.84 0.98 0.97 0.96
9 0.95 0.86 0.97 0.96 0.95
10 0.97 0.90 0.98 0.97 0.96
11 0.96 0.61 0.98 0.97 0.96
12 0.95 0.85 0.98 0.96 0.95
13 0.95 0.82 0.97 0.95 0.93
14 0.95 0.19 0.94 0.92 0.90
Average 0.95 0.69 0.97 0.95 0.94
Estimated time saving 0% 100% 33% 71% 83%

Table 2 Dice indices and estimated time saving for the segmentation of neoplastic kidneys with manual segmentation (inter-
individual variability), automatic segmentation (CNN U-Net) and semi-automatic segmentation (CNN U-Net trained with the 
OV2ASSION method)
Patient Inter-individual variability (manual segmentation) Automatic segmentation CNN U-Net Semi-automatic 

segmentation CNN 
U-Net + OV2ASSION

Gap 1 Gap 5 Gap 10
1 0.83 0.15 0.97 0.95 0.92
2 0.96 0.43 0.97 0.96 0.95
3 0.92 0.41 0.99 0.98 0.97
4 0.88 0.20 0.97 0.95 0.94
5 0.89 0.56 0.93 0.92 0.90
6 0.82 0.17 0.93 0.91 0.88
7 0.92 0.15 0.93 0.86 0.84
8 0.92 0.19 0.97 0.96 0.94
9 0.69 0.05 0.84 0.79 0.45
10 0.79 0.26 0.86 0.82 0.77
11 0.88 0.02 0.94 0.91 0.85
12 0.88 0.23 0.90 0.84 0.82
13 0.88 0.46 0.93 0.91 0.88
14 0.87 0.46 0.99 0.98 0.98
Average 0.87 0.27 0.94 0.91 0.86
Estimated time saving 0% 100% 33% 71% 83%
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out of 3 was automatically segmented) to 83% for a gap of 
10 (10 sections out of 12 were automatically segmented).

Discussion
AI tools are increasingly used for analysis and process-
ing of medical images, allowing different tasks to be 
performed such as classification, detection, and segmen-
tation [6]. In our study, we used convolutional neural 
networks for segmentation of Wilms’ tumors in children. 
Although it is possible to use already developed neural 
networks, such as U-Net [7] or FCN [11], we found that 
the results obtained were not satisfactory for segmenta-
tion of neoplastic kidneys or Wilms’ tumors in children. 
Indeed, use of the CNN U-Net on our sample yielded 
an average Dice index for Wilms’ tumor segmentation 
(0.69) and a poor index for neoplastic kidney segmenta-
tion (0.27). Performing a fully automated segmentation 
remains a challenge in the field of medical image process-
ing, especially when pathological situations in children 
are being investigated. Several authors have proposed 
AI tools to achieve good results with fully automated 
segmentation of healthy kidneys [12, 13]. However, the 
situation is complicated when pathological kidneys are 
examined, whether or not they are malformed [14] or 
neoplastic [15]. To overcome this problem, a competi-
tion was created in adults, called the 2019 Kidney and 
Kidney Tumor Segmentation Challenge (KiTS19) at the 
International Conference on Medical Image Computing 
and Computer Assisted Intervention [16]. This competi-
tion had two objectives: (1) to allow a fair and objective 

comparison of the various methods (since all teams had 
the same training set and were evaluated by the same 
metrics on the same test set) and (2) to stimulate research 
on the challenge of automatic segmentation by mak-
ing a quantity of established data available for the entire 
international research community. The results proved to 
be very good, as the winning team had developed an AI 
tool capable of automatically segmenting the pathologi-
cal kidney and the renal tumor with average Dice indices 
of 0.97 and 0.85, respectively [16]. Other studies have 
demonstrated good results in renal tumor segmentation 
in adults using deep learning methods [8, 17, 18]. How-
ever, these results are not transferable to Wilms’ tumors 
in children. Indeed, this tumor type is very different from 
kidney tumors in adults. They are often much larger, 
thus compressing the renal parenchyma, which can be 
very thinned or even fragmented and clearly modify the 
usual anatomical ratios. In addition, Wilms’ tumor can 
have a very heterogeneous appearance from one patient 
to another (regarding its location, size, spatial complex-
ity, intensity, contrast, or relationships with neighboring 
organs), thus complicating the learning of AI tools.

Another obstacle concerns the quality of medical 
images, especially CT scans, which is often worse in chil-
dren than in adults. This can be explained by the use of 
low-dose acquisition protocols to limit the irradiation 
of children, by greater movement artifacts during image 
acquisition, and by a lower amount of fat in children 
decreasing contrast within the image [3]. It is also pos-
sible to use magnetic resonance imaging (MRI). However, 

Fig. 2 Results of renal (first line) and tumor (second line) segmentations. Column A: CT cross-sections. Column B: manual segmentations performed 
by a human expert. Column C: automatic segmentations obtained with CNN U-Net. Column D: segmentations obtained with CNN U-Net + OV2ASSION 
training method
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the time taken to acquire such images is relatively long, 
so these examinations may need to be performed under 
general anesthesia. The progress made in this field with 
the emergence of more efficient MRI units has reduced 
the image acquisition time and may hence have reduced 
this constraint.

The amount of information available (i.e., images seg-
mented and labeled by an expert) is still very limited, as 
this pathology remains relatively rare. One of the main 
challenges in medical imaging-based deep learning in 
kidney diseases is the lack of large, diverse datasets [4]. 
This is undeniably a major obstacle to the training of 
AI tools, largely explaining the disappointing results 
obtained in our study by CNN U-Net.

This is why we have developed a special training 
method called OV2ASSION. This method allows the 
AI tool to perform learning from a few patient sections 
manually segmented by an expert. This method is cer-
tainly not completely automated, but it allows for a quite 
significant reduction in the duration of the expert’s inter-
vention. In our study, the CNN managed to automatically 
complete the segmentation of the neoplastic kidney and 
Wilms’ tumor with the same accuracy as an expert when 
it was trained based on one manually segmented section 
out of 5. If the segmentation time is assumed to be identi-
cal for each section, this reduces the intervention time of 
the expert by 80%.

The original objective has not been fully met as the 
method presented here is not entirely automated. How-
ever, several perspectives are worth further consider-
ation to achieve this. To improve the performance of AI 
tools, it is essential to increase the amount of informa-
tion (i.e., source images with their labeled segmentations) 
for the learning phase. One can then envision creating 
a database specific to Wilms’ tumor in children that can 
be used by the entire international scientific community 
(similar to what was done with the Kidney and Kidney 
Tumor Segmentation Challenge in adults). It is also pos-
sible to artificially increase this amount of information 
using only computer processes with data augmentation 
(where the number of images can be artificially increased 
using rotation, translation, or reversal techniques on the 
available images).

It would also be worthwhile to optimize the perfor-
mance of AI tools by providing them with anatomical 
knowledge [19] so they can reason like an expert when 
performing manual segmentation. This then raises the 
question of the organization and prioritization of this 
knowledge so that it can be read and exploited by com-
puter tools. Several ways can be envisioned to achieve 
this, such as the use of ontologies (for pathological anat-
omy) or atlases (for normal anatomy).

The development of a fully automated method remains 
a complex challenge, especially in regard to the tumor 

pathology of children. An alternative would, therefore, be 
to move towards the development of a semi-automated 
method during which intervention by the expert would 
be very limited (such as manually positioning the germi-
nating pixel on a section with a single click or marking 
the boundaries of the tumor by a few reference points on 
a limited number of sections). Although this method is 
not fully automated, it would still be readily usable by the 
operator in daily clinical practice.

Finally, it will be essential to extend these segmentation 
processes to the arterial vascularization, venous vascular-
ization, and urinary tract since it is paramount that these 
anatomical elements are also analyzed for decision-mak-
ing [20]. This will lead to a new challenge to be solved, 
that of registration, because these structures can only be 
segmented on images acquired at different times.

Conclusions
Fully automated segmentation remains a challenge in the 
field of medical image processing, especially when the 
tumor pathology in children is assessed. We developed 
a process for segmentation of Wilms’ tumors and neo-
plastic kidneys using the CNN U-Net trained according 
to the OV2ASSION method. This technique, which is not 
fully automated, makes it possible to carry out segmen-
tation of the kidney and its tumor with the same preci-
sion as an expert while reducing their intervention time 
by 80%.

Abbreviations
AI  Artificial Intelligence
CNN  Convolutional Neural Networks
CT  Computed Tomography
OV2ASSION  Overlearning vector for valid sparse segmentations
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