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Abstract 

Background  The Response Evaluation Criteria in Solid Tumors (RECIST) are often inadequate for the early assess‑
ment of the response to cancer therapy, particularly bevacizumab-based chemotherapy. In a first cohort of patients 
with colorectal cancer liver metastases (CRLM), we showed that variations of the tumor-to-liver density (TTLD) ratio 
and modified size-based criteria determined using computed tomography (CT) data at the first restaging were better 
prognostic criteria than the RECIST. The aims of this study were to confirm the relevance of these radiological bio‑
markers as early predictors of the long-term clinical outcome and to assess their correlation with contrast-enhanced 
ultrasound (CEUS) parameters in a new patient cohort.

Methods  In this post-hoc study of the multicenter STIC-AVASTIN trial, we retrospectively reviewed CT data of patients 
with CRLM treated with bevacizumab-based regimens. We determined the size, density and TTLD ratio of target 
liver lesions at baseline and at the first restaging and also performed a morphologic evaluation according to the MD 
Anderson criteria. We assessed the correlation of these parameters with progression-free survival (PFS) and over‑
all survival (OS) using the log-rank test and a Cox proportional hazard model. We also examined the association 
between TTLD ratio and quantitative CEUS parameters.

Results  This analysis concerned 79 of the 137 patients included in the STIC-AVASTIN trial. PFS and OS were signifi‑
cantly longer in patients with tumor size reduction > 15% at first restaging, but were not correlated with TTLD ratio 
variations. However, PFS was longer in patients with TTLD ratio > 0.6 at baseline and first restaging than in those who 
did not reach this threshold. In the multivariate analysis, only baseline TTLD ratio > 0.6 was a significant survival predic‑
tor. TTLD ratio > 0.6 was associated with improved perfusion parameters.
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Conclusions  Although TTLD ratio variations did not correlate with the long-term clinical outcomes, TTLD absolute 
values remained a good predictor of survival at baseline and first restaging, and may reflect tumor microvascular 
features that might influence bevacizumab-based treatment efficiency.

Trial registration  NCT00489697, registration number of the STIC-AVASTIN trial.

Introduction
Colorectal cancer remains one of the most common and 
aggressive cancers in Europe, with approximately 500,000 
new cases in 2018 [1]. Most patients will develop metas-
tases that are often disseminated and unresectable [2]. 
The current guidelines recommend upfront systemic 
combination treatments with cytotoxic chemotherapy 
and biologic agents that inhibit mechanisms associated 
with cancer progression (e.g. angiogenesis inhibitors) 
[3–5]. Bevacizumab, the first approved antiangiogenic 
drug, is a monoclonal antibody that binds to and antag-
onizes vascular endothelial growth factor (VEGF) A, a 
key tumor angiogenesis factor. The combination of fluo-
ropyrimidine-based chemotherapy plus oxaliplatin and/
or irinotecan with bevacizumab as first- or second-line 
treatment for metastatic disease significantly improves 
patient outcomes in bevacizumab-naive patients [6–8]. 
The combination of bevacizumab and fluoropyrimidine 
also provides a survival benefit as maintenance therapy 
in patients with good response to a more intensive ini-
tial treatment, as demonstrated by the phase III CAIRO3 
trial [9]. Furthermore, Bennouna et al. showed that beva-
cizumab continuation with a second-line chemotherapy 
regimen after the first progression prolonged overall 
survival (OS) compared to chemotherapy alone. This 
validated the concept of the “continuous anti-angiogenic 
blocking” approach [10]. However, although bevaci-
zumab is now routinely used, there is no robust predic-
tive marker to identify the patients who are more likely 
to benefit from angiogenesis inhibitors [11]. Moreover, 
bevacizumab efficacy is not always associated with tumor 
shrinkage [12]. The standard Response Evaluation Cri-
teria in Solid Tumors (RECIST), based on tumor long 
axis measurements in axial computed tomography (CT) 
images, may be inadequate for the early assessment of 
bevacizumab efficacy. Therefore, alternative radiologic 
biomarkers have been investigated. Several studies using 
functional imaging modalities, such as contrast-enhanced 
ultrasound (CEUS), found a correlation between patient 
outcomes and early changes in liver tumor perfusion 
parameters in response to anti-VEGF pathway agents 
[13, 14]. Similarly, in patients with colorectal cancer liver 
metastases (CRLM) treated with bevacizumab before 
surgical resection, optimal morphologic response (i.e. the 
transformation into lesions with a homogeneous over-
all attenuation and a sharp tumor-liver interface), but 

not the RECIST, was associated with a better pathologic 
response and better outcomes [15]. The on-treatment 
early prognostic value of the morphologic response was 
subsequently confirmed in patients with unresectable 
CRLM [16–18].

Recently, we developed an alternative method based 
on tumor lesion size and attenuation assessment that can 
be easily performed using standard portal venous phase 
CT images. We showed that in CRLM, progression-free 
survival (PFS) and OS are significantly longer in patients 
with tumor size reduction > 15% and/or a tumor-to-liver 
density (TTLD) ratio variation not lower than -10% at the 
first restaging CT after the initiation of first-line combi-
nation therapy with XELIRI or FOLFIRI [19].

The aim of this post-hoc study was to confirm our first 
results in an independent population with CRLM treated 
with chemotherapy plus bevacizumab. We also evaluated 
the correlation between TTLD and CEUS parameters 
to better understand how bevacizumab provides its real 
benefit.

Material and methods
Study design
We performed a post-hoc analysis of contrast-enhanced 
CT (CECT) images from a prospectively accrued cohort 
of 137 patients with unresectable CRLM treated with 
bi-weekly bevacizumab-based chemotherapy as first-
line therapy in a French multicenter noncomparative 
trial (NCT00489697, ID number INCA06-FT/STIC-
AVASTIN) from January 2007 to November 2010. The 
objective of the main study was to assess the correla-
tion between liver CEUS parameters and radiologi-
cal response and outcome [14]. Patients underwent CT 
imaging with multidetector row helicoidal acquisitions 
before treatment and at day 60 after treatment start, then 
every 8 or 12 weeks at the investigator’s discretion.

Patient selection
Patients with at least one liver metastasis larger than 
1.5 cm, with baseline and restaging CT data of sufficient 
quality to allow assessing the density response, and with 
images acquired during the portal venous phase follow-
ing intravenous contrast injection with a slice thick-
ness < 3  mm were included in this post-hoc study. The 
contrast enhancement quality was assessed by analyzing 
portal and hepatic vein attenuation. All CECT images 
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with a vascular density < 100 Hounsfield Units (HU) were 
excluded from the analysis.

Image analysis
All CT images used in this study were anonymized. 
Target liver lesions on the pretreatment (baseline) CT 
were measured manually as well as the long axis diam-
eters according to the RECIST 1.1. A maximum of two 
metastases were selected in patients with multiple tumor 
lesions. Then, volumetric segmentation of the tumor was 
performed using a semi-automated edge detection soft-
ware (Myrian®, Intrasense, Montpellier, France). Tumor 
edges were adjusted until a satisfactory three-dimen-
sional selection of a target lesion was obtained, and then 
the mean tumor volumetric attenuations were measured. 
The software also automatically segmented the healthy 
liver, excluding metastases and hepatic vessels, to calcu-
late the mean density. To compensate for intra- and inter-
individual heterogeneity in liver contrast enhancement, 
the TTLD ratio was determined, i.e. the mean tumor 
density divided by the mean healthy liver density. The 
same analysis was performed using CT images obtained 
at the first restaging. To minimize inter-observer vari-
ability, target liver lesion selection, size measurement 
and segmentation were performed by a single operator 
(T.M., GI oncologist) trained in the use of the software 
and involved in a previous study using this approach 
[19]. Whenever possible, the radiologist (E.L.) who con-
tributed to develop the MD Anderson criteria [15] also 
assessed the morphologic response.

CEUS parameters
When available, the relative values (i.e. compared to 
healthy liver, expressed in percentage) of 11 CEUS 
parameters determined at day 0 (D0) and day 60 (D60) 
were obtained from the main study: peak enhancement 
(PE), area under the curve during wash-in (WiAUC) 
and wash-out (WoAUC), total area under the curve 
(AUC = WiAUC + WoAUC), time-to-peak (TTP), rise 
time (RT), fall time (FT), wash-in (WiR) and wash-out 
(WoR) rates, wash-in perfusion index (WiPI), and mean 
transit time (mTT).

Statistical analysis
Categorical variables were reported as numbers and fre-
quencies. Continuous variables were reported as median 
and range and compared with the Wilcoxon rank-sum 
test.

The mean tumor density was evaluated using a thresh-
old of 63 HU to stratify patients in accordance with the 
results by Dohan et  al. [20]. The TTLD ratio variations 
were analyzed using a -10% cut-off, as established in our 
previous work [19]. Moreover, the median TTLD ratio 

at baseline was used as a categorizer. Modified RECIST 
(RECIST-15) were used for size reduction at the first 
restaging, with response defined as a > 15% reduction in 
the sum of target liver lesions.

PFS was the primary endpoint, defined as the time 
from the baseline CT exam to the date of the first disease 
progression or death from any cause. Patients alive with-
out disease progression were censored at the date of the 
last visit. OS was the secondary endpoint, defined as the 
time from the baseline CT exam to death from any cause. 
The median follow-up was calculated using the Schemper 
method. PFS and OS were estimated using the Kaplan–
Meier method and reported as median or rate at specific 
time points with their 95% confidence intervals (CI).

A Cox proportional hazard model was used to estimate 
the hazard ratios (HR) with their 95%CI for the prognos-
tic factors associated with PFS and OS. Variables with 
p-values < 0.15 in the univariate analysis were retained for 
the multivariate analysis and a backward covariate selec-
tion was performed.

Results
Population
In total, 79 of the 137 patients enrolled in the main trial 
were eligible for this post-hoc analysis. The reasons for 
exclusion are listed in Fig. 1. Their clinical characteristics 
and outcomes were similar to those of the whole popula-
tion (data not shown). Table 1 shows the characteristics 
of the 79 patients.

Radiological parameters
The median (range) time from baseline CT to the first 
restaging CT was 2.3 (1.6–3.4) months. The median PFS 
and OS were 11 (95% CI: 9.4, 12.2) and 25.1 months (95% 
CI: 21.2, 31.8), respectively, and the median follow-up 
was 50 months (1.9–64.2). The baseline mean tumor den-
sity ranged from 23.9 to 117.3 HU and the median value 
was 62.8 HU. At the first restaging, the mean tumor den-
sity ranged from 6.9 to 179.5 HU and the median value 
was 53.5 HU. The median TTLD ratio was 0.62 at base-
line and 0.54 at the first restaging (Table 2).

At the first restaging, according to the RECIST-15, 63%, 
34%, and 3% of patients were classified as having a com-
plete/partial response, stable disease, or progressive dis-
ease, respectively. Moreover, 31 (47%) patients achieved 
an optimal morphologic response, according to the MD 
Anderson morphologic criteria.

Associations between quantitative CT parameters 
and survival
Four variables were identified as significant (p < 0.05) 
prognostic parameters of PFS in the univariate analy-
sis: time of metastasis diagnosis (synchronous vs. 
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metachronous; HR = 0.57, 95% CI: 0.32- 1.00), RECIST-15 
value at the first restaging (≥ -15% vs. < -15%; HR = 1.77, 
95% CI: 1.09–2.88), and TTLD ratio at baseline (> 0.6 
vs. ≤ 0.6; HR = 0.53, 95% CI: 0.33–0.86) and first restaging 
(> 0.6 vs. ≤ 0.6; HR = 0.58, 95% CI: 0.35–0.96). Moreover, 
PFS tended to be shorter in patients with non-optimal 
morphologic response (2–3 vs. 1; HR = 1.44, 95% CI: 
0.88–2.37). Therefore, this parameter was kept for the 
multivariate analysis. In the multivariate analysis, only 
baseline TTLD ratio (> 0.6 vs. ≤ 0.6; HR = 0.51, 95% CI: 
0.29–0.88) and morphologic response according to the 
MD Anderson criteria (1 vs. 2–3; HR = 1.79, 95% CI: 
1.05–3.05) remained significant (Table 3).

In the univariate analysis, OS was correlated with 
baseline TTLD ratio (> 0.6 vs. ≤ 0.6; HR = 0.55, 95% 
CI: 0.33, 0.92), RECIST-15 value at the first restaging 
(≥ -15% vs. < -15%; HR = 1.79, 95% CI: 1.06, 3.00), and 
date of metastasis diagnosis (synchronous vs. metachro-
nous; HR = 0.52, 95% CI: 0.28–0.99), but not with TTLD 
ratio at the first restaging and morphologic response. 
In the multivariate analysis, only the RECIST-15 value 
(≥ -15% vs. < -15%; HR = 1.75, 95% CI: 1.05–2.94) and 
time of metastasis diagnosis (synchronous vs. metachro-
nous; HR = 0.53, 95% CI: 0.28–1) remained significant 
(Table 4).

Correlation between CT and quantitative CEUS parameters
When patients were divided in two groups based on the 
median TTLD ratio at baseline (i.e. 0.6), survival (par-
ticularly PFS) was correlated with the TTLD ratio at 
baseline and at the first restaging. Therefore, quantita-
tive CEUS parameters at D0 and D60 were compared in 
these two patient groups. At both time points, almost 
all blood volume parameters were significantly higher 
in patients with TTLD ratio > 0.6. Among the blood flow 
parameters, only WiAUC, WiPI and WoR rates (both 
time points) and mTT (D60) were significantly higher in 
the TTLD ratio > 0.6 group (Table  5). Fig.  2 illustrates a 
liver metastasis with a high TTLD ratio before and after 
treatment on the CT scan and a high peak enhancement 
measured by CEUS at D0.

Discussion
Our study demonstrates that alternative radiological 
parameters may provide useful prognostic information 
in patients with CRLM receiving bevacizumab-based 
first-line therapy. High TTLD ratio was independently 
associated with better outcome and may reflect a tumor 
vasculature that is more likely to benefit from anti-angio-
genic therapies, as suggested by its correlation with per-
fusion parameters quantified by CEUS.

Fig. 1  Study flowchart
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More than 15  years after bevacizumab implementa-
tion for the routine management of metastatic colorec-
tal cancer, biomarkers are still missing to improve patient 
selection before treatment and to assess its specific effi-
cacy during treatment. Several circulating and tissue 
components implicated in angiogenesis have been evalu-
ated, including VEGF. However, to date, they have only 
shown a prognostic impact and have not been integrated 
into the “clinical decision making” [11, 21–24]. This can 
be explained by different reasons. First, angiogenesis 
mechanisms are very complex and involve a large num-
ber of factors that are difficult to address holistically. In 
addition, bevacizumab is systematically associated with 
cytotoxic chemotherapy, thus preventing the study of 
its specific effect. Moreover, the methods used to meas-
ure these markers are often not reproducible and several 
ancillary studies lacked a control group to assess the pre-
dictive value [25]. Therefore, an alternative approach has 
been to assess directly bevacizumab effect on the tumor 
neo-vasculature using static imaging, mainly by exploit-
ing additional features from the cross-sectional images 
obtained during routine CT, or dynamic imaging, mainly 
using functional imaging methods. Based on this alterna-
tive approach, here, we assessed the prognostic value of 
the TTLD ratio, which can be easily measured on portal 

phase CECT images with a dedicated software, and of 
a modified, size-based RECIST criterion [19]. We con-
firmed that PFS and OS were longer in patients with 
a decrease in the total sum of target liver lesions > 15%. 
This is consistent with previous studies showing that an 
early size shrinkage with a less stringent threshold (15 
or 20%) than the one used in the RECIST 1.1 may be a 
surrogate marker of clinical outcome in patients with 
metastatic colorectal cancer, including those receiving 
antiangiogenic chemotherapy [20, 26, 27].

Unlike in our previous study [19], the TTLD ratio 
change between baseline and the first restaging using a 
threshold of -10% did not predict patient outcome. How-
ever, the TTLD ratio at specific time points was still 
correlated with survival. Specifically, in patients with a 
TTLD ratio > 0.6 at baseline and at the first restaging, the 
risk of progression was significantly reduced at both time 
points. This correlation remained significant in the mul-
tivariate analysis only for the baseline TTLD ratio. We 
observed the same trend for OS, although it was not sig-
nificant in the multivariate analysis. We also found differ-
ences in quantitative CEUS parameters between patients 
with TTLD ratio > 0.6 and ≤ 0.6. This may provide a more 

Table 1  Patients’ characteristics

ECOG-PS Eastern Cooperative Oncology Group—Performance Status, LDH 
Lactate dehydrogenase, CEA Carcinoembryonic antigen
a Except for age, LDH and CEA that are reported as medians [SD]

Patients’ characteristics (n = 79) n (%)a

Age (years) 64 [38–82]

Sex
  Male 48 (61)

  Female 31 (39)

ECOG-PS score
  0 37 (47)

  1 40 (49)

Primary tumor site
  Colon 61 (71)

  Rectum 25 (29)

Metastases
  Synchronous 61 (77)

  Metachronous 18 (23)

Chemotherapy regimen
  FOLFIRI 56 (71)

  FOLFOX 5 (6)

  LV5FU2 7 (9)

  Other 11 (14)

LDH (UI/L) 750 [111–3510]

CEA (ng/mL) 625 [1–6013]

Table 2  Radiological parameters

TTLD Tumor-to-liver density ratio, RECIST-15 Response Evaluation Criteria in Solid 
Tumors using a modified cut-off value of -15%, CR Complete response, PR Partial 
response, SD Stable disease, PD Progressive disease
a Except for the RECIST-15 response and MD Anderson response that are reported 
as n (%)
b Recorded at the first restaging

Radiological parameters (n = 79) Median [range]a

Total diameter of the target lesions (mm)
  At baseline 78.2 [14.7–199.3]

  At the first restaging 62 [6.9–179.5]

Mean tumor density (HU)
  At baseline 62.8 [23.9–117.3]

  At the first restaging 53.5 [6.9–179.5]

Mean healthy liver density (HU)
  At baseline 99.2 [27.6–134.8]

  At the first restaging 99.8 [39.2–143.9]

TTLD ratio
  At baseline 0.62 [0.34–2.06]

  At the first restaging 0.54 [0.28–1.14]

RECIST-15
b

  CR/PR 50 (63)

  SD 27 (34)

  PD 2 (3)

MD Anderson morphologic responseb

  Optimal 31 (47)

  Suboptimal or no response 35 (53)

  Missing 13
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comprehensive understanding of this candidate surro-
gate marker. Indeed, blood volume parameters and some 
of the blood flow parameters were higher in patients 
with TTLD ratio > 0.6 than with TTLD ≤ 0.6 at base-
line and the first restaging. Liver CEUS was developed 
to better detect and characterize focal lesions through 
the qualitative assessment of the vascular architecture 

and phase-specific contrast enhancement relative to 
the adjacent healthy liver parenchyma. It also allows 
the quantitative assessment of the solid tumor perfu-
sion using a time-intensity curve that represents the 
transition of the contrast agent in the region of interest. 
Moreover, the ultrasound contrast agents used in CEUS 
remain purely intravascular, unlike those used in CECT 

Table 3  Univariate and multivariate Cox models to identify associations between clinical/ radiological factors and PFS

Evaluation Criteria in Solid Tumors using a modified cut-off value of -15%

TTLD Tumor-to-liver density, ECOG-PS Eastern Cooperative Oncology Group – Performance Status, RECIST-15 Response
a Recorded at the first restaging

Univariate analysis (n = 79) Multivariate analysis (n = 66)

HR [95% CI] p HR [95% CI] p

Age 0.167

< 60 years 1

[60 years; 70 years] 0.72 [0.41–1.23]

≥ 70 years 1.25 [0.69–2.27]

ECOG-PS score 0.728

0 1

1 0.92 [0.58–1.47]

Primary tumor site 0.188

Colon 1

Rectum 1.41 [0.86–2.33]

Time of metastasis diagnosis 0.046
Synchronous 1

Metachronous 0.57 [0.32–1.00]

Mean tumor density
  At baseline 0.144

  ≤ 63 HU 1

  > 63 HU 0.70 [0.45–1.13]

  At the first restaging 0.238

  ≤ 63 HU 1

  > 63 HU 0.74 [0.45–1.23]

TTLD ratio
  At baseline 0.010 0.016
  ≤ 0.6 1 1

  > 0.6 0.53 [0.33–0.86] 0.51 [0.29–0.88]

  At the first restaging 0.029
  ≤ 0.6 1

  > 0.6 0.58 [0.35–0.96]

  Morphologic responsea 0.150 0.033
  1 1 1

  2 or 3 1.44 [0.88–2.37] 1.79 [1.05–3.05]

  RECIST-15
a 0.023

  < -15% 1

  ≥ -15% 1.77 [1.09–2.88]

  TTLD ratio changea 0.511

  < -10% 1

  ≥ -10% 1.17 [0.74–1.85]
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and contrast-enhanced MRI. Thus, the data obtained 
with this technique only model the flow of the contrast 
microbubbles in the micro- and macro-vasculature of 
the selected region of interest [28, 29]. Several studies 
evaluated CEUS parameters in patients with metastatic 
colorectal cancer treated with bevacizumab-based chem-
otherapy. Overall, they showed a decrease in the perfu-
sion parameters during the first weeks of therapy, besides 
some blood flow characteristics. This suggests a beva-
cizumab anti-angiogenic mechanism of vascular prun-
ing to starve the tumor. These studies also reported that 
variations in CEUS parameters could sometimes predict 
survival; however, the optimal cut-offs were inconsistent 
among studies and pre-treatment parameters were not 
prognostic [13, 14, 30–34]. Conversely, our study sug-
gests that the patients with tumors that displayed higher 
perfusion parameters at baseline and that retained a suffi-
cient degree of perfusion, albeit reduced, after treatment 
have the best prognosis. These results are consistent with 
the hypothesis made by Jain et al. on the vascular normal-
izing effect of anti-angiogenic drugs and its prerequisites 
to alleviate hypoxia [35, 36]. First, a “minimal” tumor vas-
culature is needed before treatment initiation because 
the increase of functional vessels cannot overcome the 
paucity of vessels. Previous studies suggested that tumors 
with higher baseline microvascular density or higher sur-
rogate markers of tumor microvascular density (such 
as CT attenuation) are most likely to benefit from anti-
cancer treatments, including bevacizumab [20, 37, 38]. 
Second, excessive pruning should be avoided during 
treatment to preserve the benefit of the improved func-
tion of normalized vessels, as suggested by the results of 
an exploratory correlative study of serial biopsies from 
patients with localized breast cancer receiving bevaci-
zumab-based neoadjuvant chemotherapy [35]. Pre-clin-
ical and clinical studies by Jain’s group confirmed the 
vasculature-normalizing effect of anti-angiogenic thera-
pies in solid tumors and in non-malignant diseases [39–
42]. In a rabbit model of tuberculosis, they repurposed 
bevacizumab as a host-directed therapy that resulted in 
the reduction in vessel number and the increase in vessel 
pericyte coverage and lumen area. This led to improved 
drug delivery and oxygenation in lung granulomas, which 
are characteristic of this infection and share abnormal 
microenvironment features with solid tumors [43].

This study also provided the opportunity to re-evaluate 
in an independent cohort of patients with CRLM the 
performance of the morphological response according 
to the MD Anderson criteria, another recently proposed 
CT imaging marker to predict the early clinical response 
to bevacizumab-based treatment. Similarly to previous 
studies in cohorts of patients with unresectable meta-
static colorectal cancer, this marker was independently 

Table 4  Univariate and multivariate Cox models to identify 
associations between clinical/ radiological factors and OS

TTLD Tumor-to-liver density, ECOG-PS Eastern Cooperative Oncology Group 
– Performance, RECIST-15 Response Evaluation Criteria in Solid Tumors using a 
modified cut-off value of -15%
1 Recorded at the first restaging

Univariate analysis 
(n = 79)

Multivariate analysis 
(n = 66)

HR [95%CI] p HR [95%CI] p

Age 0.349

< 60 years 1

[60 years; 70 years[ 0.98 [0.55–1.77]

≥ 70 years 1.53 [0.80–2.90]

ECOG-PS 0.195

0 1

1 1.40 [0.84–2.35]

Primary tumor site 0.125

Colon 1

Rectum 1.57 [0.90–2.74]

Metastases 0.034 0.041
Synchronous 1 1

Metachronous 0.52 [0.28–0.99] 0.53 [0.28–1.00]

Mean tumor density
  At baseline 0.065

  ≤ 63 HU 1

  > 63 HU 0.62 [0.37–1.03]

  At the first restag-
ing

0.167

  ≤ 63 HU 1

  > 63 HU 0.68 [0.39–1.19]

TTLD ratio
  At baseline 0.024
  ≤ 0.6 1

  > 0.6 0.55 [0.33–0.92]

  At the first restag-
ing

0.064

  ≤ 0.6 1

  > 0.6 0.61 [0.36–1.04]

  Morphologic 
response1

0.334

  1 1

  2 or 3 1.32 [0.75–2.29]

  RECIST-15
1 0.031 0.037

  < -15% 1 1

  ≥ -15% 1.79 [1.06–3.00] 1.75 [1.05–2.94]

  TTLD ratio 
change1

0.663

  < -10% 1

  ≥ -10% 1.12 [0.67–1.85]
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associated with longer PFS [16–18] but not with OS, as 
confirmed by Dohan et  al. in a large cohort of patients 
treated with first-line FOLFIRI plus bevacizumab [20]. 
Morphologic criteria are simple to measure, require a 
short learning curve and show a strong interobserver 
agreement, especially to accurately identify optimal 
responders and non-responders [15, 20, 44, 45]. How-
ever, they are underused, possibly because of the reluc-
tance to use a subjective method and the limitations of 
suboptimal CT techniques.

The TTLD ratio is more objective, but has several limi-
tations. First, it provides only a rough and global assess-
ment of the metastases. For example, it does not take into 
account the heterogeneity of the intra-tumoral vessel dis-
tribution and of the inter-tumoral response. Moreover, 
as the microvascular volume represents only 10% of the 
whole tumor volume, this ratio also takes into account 
characteristics of the non-vascular compartment [46]. 
However, this could be an advantage because it could 
be used as a surrogate marker for other components of 
the tumor microenvironment that may positively or 
negatively influence the treatment efficacy. Future stud-
ies should assess the correlation with histological tissue 

features. In addition, part of the target lesions selected 
for the CT analysis were not necessarily the same as those 
selected for the ultrasound analysis. Eventually, currently, 
the TTLD ratio seems to correlate mainly with microvas-
cular density but it is not indicative of their functionality, 
unlike dynamic contrast-enhanced MRI and perfusion 
CT that can assess the capillary permeability.

This study has some limitations, particularly the small 
sample size that restricted the statistical analysis. How-
ever, this is the first study that assessed the correlation of 
different radiologic biomarkers to better understand bev-
acizumab activity. Two other limitations are the absence 
of a control group to assess their predictive value of the 
bevacizumab activity, and the inclusion of patients who 
received different chemotherapy regimens, although iri-
notecan-based chemotherapy was the most frequent.

The identification of predictive biomarkers of anti-
angiogenic drug efficacy should remain a priority in the 
next years. These agents are expected to play a significant 
role especially in the management of patients with meta-
static colorectal cancer. For instance, following the results 
of the randomized trial SUNLIGHT, bevacizumab is 
now indicated, in combination with trifluridine-tipiracil 

Table 5  Correlations between TTLD ratio and quantitative CEUS parameters

All values are relative to the healthy liver values (in percentage, determined as the lesion/reference value ratio *100), except1 for missing data reported as numbers

PE Peak enhancement, WiAUC​ Wash-in area under the curve, WoAUC​ Wash-out area under the curve, AUC​ total area under the curve (= WiAUC + WoAUC), TTP Time to 
peak, RT Rising time, FT Fall time, mTT mean transit time, WiR Wash-in rate, WoR Wash-out rate, WiPI Wash-in Perfusion Index

Day 0 Day 60

TTLD ≤ 0.6 TTLD > 0.6 p TTLD ≤ 0.6 TTLD > 0.6 p

Blood volume parameters

  PE
Missing1

36.5 [7.9–217.2]
3

63 [13.6–189.9]
7

0.007 30.5 [6.4–238.7]
12

53.9 [14.4–242.0]
10

0.004

  WiAUC​
Missing1

23.8 [3.7–53.0]
3

31.5 [8.1–151.7]
7

0.034 21.7 [5.6–56.7]
12

32.1 [11.5–103.2]
10

0.007

  WoAUC​
Missing1

23.7 [3.0–63.3]
10

32.9 [8.1–196.5]
22

0.053 16 [5.9–51.2]
22

30.8 [15.0–168.9]
12

0.009

  AUC​
Missing1

27.3 [3.1–56.7]
10

33.8 [9.3–184.2]
22

0.05 17.7 [5.8–50.3]
22

31.2 [14.0–146.8]
12

0.008

Blood flow parameters

  TTP
Missing1

65.8 [32.2–127.0]
3

59.8 [27.9–100]
7

0.65 72.9 [32.0–126.8]
12

63.1 [34.6–96.6]
10

0.22

  RT
Missing1

61.1 [26.4–130.6]
3

55.2 [25.3–109.2]
7

0.377 66.5 [25.5–120.4]
12

69.5 [31.1–103.3]
10

0.445

  FT
Missing1

61.9 [20.2–249.9]
10

56.8 [12.8–156.5]
22

0.815 70.2 [23.3–166.9]
22

53.2 [26.6–121.1]
12

0.556

  mTT
Missing1

78.8 [3.3–288.1]
3

62.1 [14.7–152.5]
7

0.521 88.2[14.2–425.5]
12

45.4 [7.0–425.5]
10

0.036

  WiR
Missing1

55.5 [9.8–642.6]
3

122.4 [19.3533.7]
7

0.018 41.1 [6.5–746.6]
12

105 [19.5–736.2]
10

0.009

  WoR
Missing1

55.3 [5.8–399.7]
10

112.4 [24.6–478.0]
22

0.053 36.9 [5.7–265.7]
22

109.8 [18.1–919.9]
12

0.019

  WiPI
Missing1

36.8 [8.3–200.3]
3

61.8 [13.1–170. 4]
7

0.008 32.6 [6.3–222.6]
12

54.6 [15.6–237.4]
10

0.005
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(FTD-TPI), in patients with refractory metastatic colo-
rectal cancer. Indeed, Prager et  al. demonstrated that 
bevacizumab addition to FTD-TPI improves OS com-
pared to FTD-TPI alone [47]. Moreover, fruquintinib, a 
highly selective oral inhibitor of the VEGF receptors 1, 
2, and 3, is now introduced in daily practice as it showed 
significant benefits compared with placebo in heavily 
pretreated patients in the FRESCO 2 phase III study [48]. 
However, although the effectiveness of prolonged angio-
genic inhibition is confirmed, the therapeutic benefit is 
limited to only few months and tumor shrinkage is rare. 
In addition, there are ongoing studies to repurpose beva-
cizumab and other anti-angiogenic molecules in combi-
nation with immunotherapy since combining immune 
and vascular modulation is a promising way to improve 
cancer therapy. Indeed, the abnormal tumor angiogenesis 
also promotes immunosuppressive functions [49]. On the 

other hand, different immune cells, such as CD8 + and 
CD4 + T cells and eosinophils, can contribute to vascular 
normalization [50]. However, so far, this combination has 
given very contrasting results in gastrointestinal malig-
nancies. For instance, the combination of the immune 
checkpoint inhibitor (ICI) atezolizumab with bevaci-
zumab has become the standard first-line treatment in 
advanced hepatocellular carcinoma [51]. Conversely, 
a recent study showed that the combination of the ICI 
pembrolizumab with lenvatinib, another VEGF receptor 
inhibitor, did not improve OS compared to the standard 
of care in 480 patients with previously treated metastatic 
colorectal cancer who were unselected for microsatellite 
instability high/mismatch repair deficiency [52].

We think that imaging approaches have undeniable 
advantages to identify the best responders to these dif-
ferent strategies. They are non-invasive, repeatable and 

Fig. 2  Liver metastasis with a high TTLD ratio with correlative CEUS images and data. Example of CT images acquired during the portal venous 
phase showing a metastasis with a TTLD ratio > 0.6 at baseline (A) and at first restaging (B). Late phase correlative CEUS image of the same lesion 
captured at baseline after SonoVue® injection with ROI drawing around the metastatic lesion delineated in green and the reference normal liver 
tissue in yellow (C). Time-intensity curve of both ROIs with absolute values of peak enhancement and value relative to the healthy liver (in percent, 
determined by the ratio lesion/reference values *100) (D)
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provide a more comprehensive view of the tumor and 
its microenvironment compared with blood biomark-
ers, which are always affected by systemic dilution due to 
the influence of normal tissues or the need for a multi-
analytic approach given the complexity of the studied 
phenomena. Although our approach may be considered 
simple, it lays the groundwork for the future develop-
ment of an optimized radiological marker for vascular or 
microenvironment normalization. For example, it would 
be interesting to determine whether the TTLD ratio cor-
relates with the ICI lack of efficacy frequently observed in 
patients with CRLM [53, 54]. Lastly, significant advances 
could also come from the development of more sophis-
ticated image analysis systems based on radiomics and 
artificial intelligence. These systems have recently shown 
very promising results in patients with gastrointestinal 
cancer [55, 56].

Conclusions
In this study, we showed that in patients with CRLM, 
clinical outcome correlated with early tumor shrinkage, 
but not with TTLD ratio variations. Nevertheless, the 
TTLD ratio absolute value, especially at baseline, may 
predict the efficacy of bevacizumab-based treatment by 
reflecting tumor microenvironment features that may 
influence its effect.
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