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Abstract
Background There is an urgent need to find a reliable and effective imaging method to evaluate the therapeutic 
efficacy of immunochemotherapy in advanced non-small cell lung cancer (NSCLC). This study aimed to investigate 
the capability of intravoxel incoherent motion (IVIM) and diffusion kurtosis imaging (DKI) histogram analysis based on 
different region of interest (ROI) selection methods for predicting treatment response to chemoimmunotherapy in 
advanced NSCLC.

Methods Seventy-two stage III or IV NSCLC patients who received chemoimmunotherapy were enrolled in this study. 
IVIM and DKI were performed before treatment. The patients were classified as responders group and non-responders 
group according to the Response Evaluation Criteria in Solid Tumors 1.1. The histogram parameters of ADC, Dslow, 
Dfast, f, Dk and K were measured using whole tumor volume ROI and single slice ROI analysis methods. Variables 
with statistical differences would be included in stepwise logistic regression analysis to determine independent 
parameters, by which the combined model was also established. And the receiver operating characteristic curve 
(ROC) were used to evaluate the prediction performance of histogram parameters and the combined model.

Results ADC, Dslow, Dk histogram metrics were significantly lower in the responders group than in the non-
responders group, while the histogram parameters of f were significantly higher in the responders group than in 
the non-responders group (all P < 0.05). The mean value of each parameter was better than or equivalent to other 
histogram metrics, where the mean value of f obtained from whole tumor and single slice both had the highest 
AUC (AUC = 0.886 and 0.812, respectively) compared to other single parameters. The combined model improved the 
diagnostic efficiency with an AUC of 0.968 (whole tumor) and 0.893 (single slice), respectively.

Conclusions Whole tumor volume ROI demonstrated better diagnostic ability than single slice ROI analysis, which 
indicated whole tumor histogram analysis of IVIM and DKI hold greater potential than single slice ROI analysis to be a 
promising tool of predicting therapeutic response to chemoimmunotherapy in advanced NSCLC at initial state.
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Background
Lung cancer is leading cause of cancer-related deaths 
worldwide, and the 5-year overall survival rate is approxi-
mately 20% [1]. Non-small cell lung cancer (NSCLC) 
accounts for approximately 85% of lung cancers [1], 
and most NSCLC is discovered at an advanced stage. 
Immune-checkpoint inhibitors (ICIs) improve the out-
comes of NSCLC patients, and a combination of immu-
notherapy and chemotherapy increases the efficacy over 
chemotherapy alone [2, 3]. Programmed death-ligand 1 
(PD-L1) protein expression has been considered as a pre-
dictive biomarker for immunotherapy in NSCLC patients 
[4]. However, PD-L1 expression cannot fully predict ben-
efit of therapy, and some patients can respond even with 
low or negative PD-L1 expression, particularly for those 
treated with immunotherapy-based combinations [5]. 
Thus, there is a pressing need to find new biomarkers to 
predict tumor response to chemotherapy combined with 
immunotherapy.

Diffusion-weighted imaging (DWI) is an effective 
means of reflecting tissue water molecular restriction, 
and has been widely used to assess treatment outcomes 
in lung cancer patients [6–9]. However, conventional 
monoexponential DWI does not give good account of 
non-Gaussian diffusion [10], and is influenced by micro-
circulation, thus does not accurately reflect true water 
diffusion [11]. The intravoxel incoherent motion (IVIM) 
technique proposed by Le Bihan et al. [12] can indepen-
dently assess the diffusion of water molecules and tissue 
microcirculation. Several studies have demonstrated that 
IVIM has been used to evaluate the efficacy of treatment 
for lung cancer [13–15]. Moreover, diffusion kurtosis 
imaging (DKI) is a model that reflects the non-Gaussian 
distribution of water molecules and the complexity of tis-
sue microstructures [16]. DKI is currently used to differ-
entiate lung cancer lesions, and evaluate EGFR mutations 
and histopathological features of lung cancer [11, 17, 18]. 
To our knowledge, there is currently only one study using 
DKI to predict the therapeutic efficacy of lung cancer 
[19] .

Furthermore, most previous studies measured param-
eters on a representative section of tumor tends to 
underestimate the heterogeneity of the tumor. Histogram 
analysis of the whole tumor is able to reflect the distribu-
tion and variation of all voxels within the whole lesion, 
and detect the heterogeneity of tumors, thereby elimi-
nating sampling bias and providing reproducible results 
[20]. In order to save time, single slice histogram analysis 
was often used. One study [21] found that whole-tumor 
volume is preferred over single-section region of interest 

(ROI) analysis when evaluating the treatment outcomes 
of rectal cancer. To our knowledge, no published studies 
using histogram analysis of IVIM and DKI for early pre-
diction of tumor response to chemoimmunotherapy in 
NSCLC, and there is also a lack of comparison between 
different measurement methods.

Thus, the aim of our study was to investigate the capa-
bility of conventional DWI, IVIM and DKI histogram 
parameters obtained by using whole tumor volume ROI 
and single slice ROI methods for predicting treatment 
response to chemoimmunotherapy in advanced NSCLC.

Methods
Patients
This prospective study was approved by the Ethics Review 
Board of our hospital, and written informed consent was 
obtained from each patient. Between December 2021 and 
June 2023, 83 consecutive patients pathologically diag-
nosed with advanced NSCLC underwent pretreatment 
MRI examination with IVIM and DKI sequences. The 
inclusion criteria were as follows: (1) histological diagno-
sis of NSCLC; (2) stage III or IV based on TNM staging 
system of American Joint Committee on Cancer (AJCC) 
8th ; (3) received chemoimmunotherapy; (4) Eastern 
Cooperative Oncology Group (ECOG) score of 0 to 1; (5) 
Without any anti-tumor treatment. The exclusion criteria 
were the following: (1) MRI contraindications; (2) incom-
pleted chemoimmunotherapy; (3) inferiorquality of IVIM 
or DKI images. Finally, 72 patients were enrolled in this 
study.

MRI acquisition
All patients underwent MR scanning within 1 week 
before biopsy and treatment. All the examinations were 
performed on a 3.0-T system (GE Signa Premier 3.0T 
MRI scanner, GE Healthcare, USA) using respiratory gat-
ing to reduce motion artifacts. Routine MRI sequences, 
IVIM and DKI were performed in sequence. Routine 
MRI sequences include coronal single shot fast spin-
echo T2-weighted (T2W) image (repetition time/echo 
time [TR/TE], 2608/80 ms; slice thickness, 6 mm; spac-
ing, 1  mm; field of view [FOV], 400 × 400  mm; matrix, 
320 × 256), transverse respiratory-triggered T2W with 
fat suppression (TR/TE, 10,000/85 ms; slice thickness, 
5  mm; spacing, 1  mm; FOV, 380 × 380  mm; matrix, 
288 × 288), and axial T1-weighted (T1W) breath-hold 
liver acquisition with volume acceleration (LAVA) image 
(TR/TE, 2.60/1.14 ms; slice thickness, 1.4  mm; FOV, 
380 × 380 mm; matrix, 272 × 224).

Keywords Intravoxel incoherent motion, Diffusion kurtosis imaging, Histogram analysis, Non-small cell lung cancer, 
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Axial IVIM was performed with a single-shot echo-
planar imaging pulse sequence (TR/TE, 7500/63 ms; slice 
thickness, 4  mm; spacing, 1  mm; FOV, 380 × 380  mm; 
matrix, 256 × 256; bandwidth, 250 kHz/pix; ASSET = 2; b 
values, 0, 20, 50, 80, 150, 200, 400, 600, 800,and 1000 s/
mm2). The acquisition time depended on the respiratory 
rhythm of the patient, ranging from 5 to 8 min. Axial DKI 
was acquired by using three b values that ranged from 0 
to 2000 s/mm2 (0, 1000, 2000 s/mm2) with the following 
parameters: TR/TE, 6923/65 ms; slice thickness, 4  mm; 
spacing, 1  mm; FOV, 380 × 380  mm; matrix, 256 × 256; 
bandwidth, 250 kHz/pix.

Image postprocessing and analysis
The apparent diffusion coefficient (ADC) was obtained 
by using a monoexponential model of DWI with the fol-
lowing equation [22] :

 S(b)/S(0) = exp(−b · ADC),

The IVIM parameters including the true diffusion coef-
ficient (Dslow), the pseudo-diffusion coefficient (Dfast), 
and the perfusion fraction (f ) were calculated with the 
following [12] :

 S(b)/S(0) = [(1 − f ) · exp(−b · Dslow)] + [f · exp(−b · (Dslow + Dfast))]

In the DKI model, the parameters including the corrected 
diffusion coefficient (Dk) and the diffusion kurtosis value 
(K) were derived using the following equation [16] :

 S(b)/S(0) = exp(−b · Dk + b2 · Dk2 · K/6),

where S(b) is the signal intensity in the b value and S(0) 
represents the signal intensity without diffusion gradient. 
All the original DWI data were post-processed using an 
in-house software (FireVoxel, https://firevoxel.org/).

Two methods (whole tumor and single slice) of ROI 
were used to measure DWI parameters. The largest 
tumor was selected for measurement. For whole tumor 
volume ROI analysis, Two radiologists (7 and 10 years 
of experience in throax imaging, respectively) who were 
blinded to the pathological results independently drew 
the ROI along the outer edge of the tumor solid compo-
nents section by section on DWI (b = 0 s/mm2) to obtain 
a three-dimensional ROI. For single slice ROI analysis, 
the same two radiologists independently drew ROI to 
include tumor solid part on maximum cross-sectional 
slice. Necrosis, visible vessels, and hemorrhage were 
avoided with reference to T1WI and T2WI. Histogram 
parameters of ADC, Dslow, Dfast, f, Dk and K maps were 
automatically extracted from the whole tumor volume 
and single slice, including the mean, median, 10th, 25th, 
75th, and 90th percentile values, skewness and kurtosis. 

The mean values of the two measurements were used for 
further quantitative statistical analysis.

Response evaluation
Treatment response was evaluated on the basis of the 
Response Evaluation Criteria in Solid Tumors (RECIST 
Version1.1) [23]. The criteria for judging the therapeu-
tic effect are as follows: complete response (CR), disap-
pearance of all targeted lesions; partial response (PR), 
the total diameters of target lesions decreased by at least 
30%; progressive disease (PD), the total diameters of 
target lesions increased by at least 20%; and stable dis-
ease (SD), neither sufficient shrinkage to qualify for PR 
nor sufficient increase to qualify for PD. All the patients 
received immunotherapy (tislelizumab or sintilimab 
or serplulimab) combined with platinum-based che-
motherapy for 4 cycles, with one cycle lasting 21 days. 
Twelve weeks after the end of chemoimmunotherapy, 
the patients were classified as responders group (CR and 
PR) and non-responders group (PD and SD) according to 
RECIST Version1.1.

Statistical analysis
Statistical analyses were performed using SPSS 22.0 (IBM 
SPSS Statistics, USA) and MedCalc 19.0.4 (MedCalc, 
Ostend, Belgium). Interobserver agreement was evalu-
ated by intraclass correlation coefficient (ICC). The crite-
ria are as follows: 0.00-0.20, poor correlation; 0.21–0.40, 
fair correlation; 0.41–0.60, moderate correlation; 0.61–
0.80, good correlation; and 0.81-1.00, excellent correla-
tion [21]. The Shapiro-Wilk test was used to evaluate the 
normality of data distribution. Unpaired Student’s t-test 
or Mann-Whitney U test were performed to evaluate the 
differences in continuous variables, as appropriate. Cat-
egorical variables were compared using chi-squared test. 
Variables with statistical differences will be included in 
stepwise logistic regression analysis to determine inde-
pendent parameters, by which the combined model was 
also established. Receiver operating characteristic curve 
(ROC) analyses were used to evaluate the diagnostic 
performances of significant parameters and models. The 
area under the curve (AUC) were calculated and com-
pared by using the method of DeLong. Moreover, cutoff 
value, sensitivity, specificity, accuracy, positive prediction 
value (PPV) and negative prediction value (NPV) were 
also computed. A P value less than 0.05 was considered 
statistical significance.

Results
Patients and tumors characteristics
The characteristics of patients and tumors are described 
in Table 1. A totally 72 patients (56 males and 16 females) 
were enrolled in this study, including 41 responders and 
31 non-responders, mean age was 60.08 ± 8.67 years 

https://firevoxel.org/
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(range from 30 to 79). Adenocarcinoma was the most 
common histological type in this study (n = 30, 41.67%). 
The average size of the largest dimension of the tumors 
was 5.62 ± 1.88 cm. The most patients were in stage IIIB 
(n = 25, 34.72%), followed by stage IIIA and IIIC (both 
n = 15, 20.83%), stage IVA (n = 10, 13.89%), and stage 
IVB (n = 7, 9.72%). Most tumors had a low degree of 
differentiation (n = 45, 62.50%). The mean Ki67 index 
is 56.81 ± 26.21%, and the Ki67 index of the respond-
ers group was significantly higher than that of the non-
responders group (63.66 ± 25.62% and 47.74 ± 24.52%, 
respectively) (p = 0.007). There were no statistical differ-
ences in age, sex, smoking history, histology, tumor size, 
clinical stage, differentiation degree and PD-1 inhibitors 
between the two groups (all P > 0.05).

Interobserver agreement evaluation
Given that the results of this study showed that the his-
togram parameters of Dfast and K were not helpful 
in predicting the efficacy of immunochemotherapy in 
advanced NSCLC, only the interobserver agreement of 
the histogram parameters of ADC, Dk, Dslow and f was 
evaluated. Those parameters showed good to excellent 
interobserver agreements in two different measurement 
methods, with ICC values range from 0.805 to 0.963. The 

detailed interobserver agreements for each histogram 
parameter are shown in Table 2.

Comparisons of whole tumor ADC, IVIM and DKI histogram 
metrics
A comparison of the ADC, IVIM and DKI histogram 
parameters obtained by whole tumor analysis between 
the responders and non-responders groups is shown in 
Tables 3 and 4. The histogram parameters of ADC (mean, 
median, 75th), Dk (mean, 75th, 90th), and Dslow (mean, 
median, 10th, 25th, 75th, 90th) in the responders group 
were significantly lower than those in the non-responders 
group, while the histogram metrics of f (mean, median, 
25th, 75th, 90th) were significantly higher in the respond-
ers group than those in the non-responders group (all 
P < 0.05). In terms of the Dfast and K values, none of the 
histogram parameters differed significantly (all P > 0.05). 
Representative cases are shown in Figs. 1 and 2.

Comparisons of single slice ADC, IVIM and DKI histogram 
metrics
Based on the results of whole tumor volumn histogram 
analysis, single slice ROI analysis was conducted on the 
histogram parameters of ADC, Dk, Dslow and f. The his-
togram parameters of ADC (mean, median, 75th), Dk 

Table 1 Patients and tumors characteristics
Characteristics All Responders

(n = 41)
Non-responders
(n = 31)

P

Age (year) 60.08 ± 8.67 58.78 ± 8.99 61.81 ± 8.04 0.144
Sex, n (%) 0.098
 Female 16 (22.22%) 12 (29.27%) 4 (12.90%)
 Male 56 (77.78%) 29 (70.73%) 27 (87.10%)
Smoking history, n (%) 0.463
 Yes 29 (40.28%) 15 (36.59%) 14 (45.16%)
 No 43 (59.72%) 26 (63.41%) 17 (54.84%)
Histology, n (%)
 Adenocarcinoma 30 (41.67%) 16 (39.02%) 14 (45.16%) 0.352
 Squamous cell carcinoma 27 (37.50%) 14 (34.15%) 13 (41.94%)
 Other 15 (20.83%) 11 (26.83%) 4 (12.90%)
Tumor size, cm 5.62 ± 1.88 5.66 ± 1.59 5.56 ± 2.24 0.826
Clinical stage, n (%) 0.810
 IIIA 15 (20.83%) 7 (17.07%) 8 (25.81%)
 IIIB 25 (34.72%) 15 (36.59%) 10 (32.26%)
 IIIC 15 (20.83%) 9 (21.95%) 6 (19.35%)
 IVA 10 (13.89%) 5 (12.20%) 5 (16.13%)
 IVB 7 (9.72%) 5 (12.20%) 2 (6.45%)
Ki67 (%) 56.81 ± 26.21 63.66 ± 25.62 47.74 ± 24.52 0.007
Differentiation degree, n (%) 0.243
 Low 45 (62.50%) 28 (68.29%) 17 (54.84%)
 Moderately and highly 27 (37.50%) 13 (31.71%) 14 (45.16%)
PD-1 inhibitors, n (%) 0.732
 Tislelizumab 22 (30.56%) 11 (26.83%) 11 (35.48%)
 Sintilimab 30 (41.67%) 18 (43.90%) 12 (38.71%)
 Serplulimab 20 (27.78%) 12 (29.27%) 8 (25.81%)
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(90th), and Dslow (mean, median, 10th, 25th, 75th) in the 
responders group were significantly lower than those in 
the non-responders group, while the histogram metrics 
of f (mean, median, 25th, 75th, 90th) were significantly 
higher in the responders group than those in the non-
responders group (all P < 0.05) (Supplementary Tables 1 
and 2).

The diagnostic performance of the two ROI selection 
methods
The diagnostic performance of signifcant parameters and 
the combined model obtained by using whole tumor and 
single slice ROI analysis is summarized in Table 5; Fig. 3 
and Supplementary Table 3, respectively. The mean value 
of f obtained from whole tumor and single slice both had 
the highest AUC (AUC = 0.886 and 0.812, respectively) 
compared to other parameters. The AUC of the mean f 
value from whole tumor volume was higher than the 
mean f value from single slice ROI (P = 0.044). Besides, for 
other variables, the AUC of the mean value was higher 
than or equivalent to that of other histogram metrics.

After stepwise logistic regression analysis, the com-
bined model of whole tumor volume was composed of 
three parameters (Dslowmean, fmean and f90th) with an AUC 
of 0.968, which had significantly better diagnostic abil-
ity than optimal single parameter. Moreover, the com-
bined model of single slice ROI was composed of another 
three parameters (Dslowmean, Dslow75th and f90th) with an 
AUC of 0.893, which was statistically significantly higher 
than any single parameter except fmean (AUC = 0.812, 
P = 0.0671), fmedium (AUC = 0.810, P = 0.0780), f75th 
(AUC = 0.811, P = 0.0728) and f90th (AUC = 0.806, 
P = 0.0513). The comibed model of whole tumor volume 
demonstrated a tendency toward higher AUC (0.968) 
than that of single slice ROI (0.893) for predicting treat-
ment response, but this difference did not reach statis-
tical significance (P = 0.0559). The results of stepwise 
logistic regression analysis are listed in Table 6.

Given that the diagnostic performance of the mean 
values of Dslow, f, Dk, and ADC was higher than that of 
other histogram parameters of these parameters, a model 
composed of Dslowmean, fmean, Dkmean, and ADCmean 
was also established, the AUCs of this model were 0.935 
(whole tumor analysis) and 0.858 (single slice analysis) 
respectively (Supplementary Table 4), which was lower 
than the AUC of the model established by stepwise logis-
tic regression analysis.

Table 2 Interobserver agreement (ICC) for each parameter 
measurement
Histogram parameter ICC (95% CI)

Whole tumor Single slice
ADC
 10th 0.867 (0.795–0.914) 0.843 (0.761–0.899)
 25th 0.851 (0.772–0.904) 0.837 (0.751–0.895)
 75th 0.922 (0.879–0.951) 0.832 (0.744–0.891)
 90th 0.832 (0.745–0.892) 0.823 (0.731–0.885)
 Mean 0.918 (0.872–0.948) 0.916 (0.869–0.946)
 Median 0.887 (0.825–0.928) 0.872(0.803–0.918)
Dslow
 10th 0.810 (0.713–0.877) 0.916 (0.869–0.946)
 25th 0.906 (0.853–0.940) 0.843 (0.760–0.899)
 75th 0.893 (0.835–0.932) 0.902 (0.848–0.938)
 90th 0.916 (0.870–0.947) 0.871 (0.802–0.917)
 Mean 0.911 (0.861–0.943) 0.844 (0.762-0.900)
 Median 0.931 (0.892–0.956) 0.901 (0.846–0.937)
Dk
 10th 0.903 (0.849–0.938) 0.846 (0.765–0.901)
 25th 0.923 (0.880–0.951) 0.881 (0.816–0.924)
 75th 0.858 (0.782–0.909) 0.873 (0.804–0.919)
 90th 0.805 (0.705–0.873) 0.891 (0.831–0.930)
 Mean 0.807 (0.708–0.875) 0.831 (0.743–0.891)
 Median 0.877 (0.811–0.921) 0.867 (0.795–0.914)
f
 10th 0.904 (0.851–0.939) 0.903 (0.850–0.938)
 25th 0.918 (0.872–0.948) 0.902 (0.848–0.938)
 75th 0.854 (0.776–0.906) 0.879 (0.813–0.922)
 90th 0.830 (0.741–0.890) 0.963 (0.941–0.976)
 Mean 0.902 (0.848–0.938) 0.921 (0.877–0.950)
 Median 0.811 (0.714–0.877) 0.896 (0.839–0.934)
CI: confidence interval

Table 3 Comparisons of ADC and DKI histogram metrics obtained by using whole tumor analysis
Parameters ADC P Dk P K P

Responders
(n = 41)

Non-responders
(n = 31)

Responders
(n = 41)

Non-responders
(n = 31)

Responders
(n = 41)

Non-responders
(n = 31)

10th 0.92 ± 0.12 0.96 ± 0.16 0.258 0.89 ± 0.15 0.93 ± 0.11 0.271 0.46 ± 0.14 0.42 ± 0.13 0.219
25th 1.12 ± 0.15 1.16 ± 0.20 0.299 1.11 ± 0.17 1.16 ± 0.14 0.195 0.72 ± 0.18 0.67 ± 0.18 0.200
75th 1.62 ± 0.22 1.75 ± 0.25 0.017 1.69 ± 0.18 1.77 ± 0.15 0.039 1.25 ± 0.29 1.14 ± 0.32 0.169
90th 1.89 ± 0.18 1.99 ± 0.24 0.053 1.93 ± 0.19 2.02 ± 0.15 0.038 1.45 ± 0.35 1.38 ± 0.41 0.446
Mean 1.40 ± 0.19 1.57 ± 0.25 0.001 1.45 ± 0.15 1.52 ± 0.13 0.032 0.98 ± 0.22 0.91 ± 0.24 0.216
Median 1.35 ± 0.22 1.47 ± 0.25 0.025 1.42 ± 0.17 1.49 ± 0.17 0.064 1.00 ± 0.24 0.91 ± 0.25 0.124
Skewness 1.55 ± 1.50 1.98 ± 2.14 0.258 0.41 ± 0.83 0.56 ± 0.96 0.484 -0.09 ± 0.68 0.24 ± 0.86 0.063
kurtosis 1.95 ± 2.23 3.01 ± 2.76 0.071 -0.05 ± 1.07 0.11 ± 1.26 0.838 0.51 ± 2.51 1.08 ± 2.10 0.055
Entropy 2.07 ± 1.06 2.30 ± 1.11 0.178 3.45 ± 0.23 3.54 ± 0.27 0.142 4.00 ± 0.25 3.92 ± 0.28 0.213
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Table 4 Comparisons of IVIM histogram metrics obtained by using whole tumor analysis
Parameters Dslow P Dfast P f P

Responders
(n = 41)

Non-responders
(n = 31)

Responders
(n = 41)

Non-responders
(n = 31)

Responders
(n = 41)

Non-responders
(n = 31)

10th 0.77 ± 0.11 0.85 ± 0.10 0.004 3.10 ± 1.70 2.55 ± 1.07 0.303 4.29 ± 3.05 3.23 ± 2.02 0.082
25th 0.99 ± 0.12 1.07 ± 0.15 0.021 5.70 ± 2.24 4.93 ± 1.30 0.069 11.11 ± 5.09 7.06 ± 2.75 0.000
75th 1.46 ± 0.22 1.66 ± 0.24 0.000 15.64 ± 5.29 14.36 ± 3.90 0.261 34.41 ± 11.40 20.73 ± 7.29 0.000
90th 1.75 ± 0.25 1.94 ± 0.29 0.005 25.39 ± 7.98 23.77 ± 6.34 0.357 45.66 ± 12.19 32.70 ± 11.34 0.000
Mean 1.21 ± 0.19 1.45 ± 0.41 0.000 12.32 ± 3.78 11.07 ± 2.78 0.127 26.07 ± 9.51 14.25 ± 4.93 0.000
Median 1.20 ± 0.19 1.41 ± 0.21 0.000 9.61 ± 3.35 8.47 ± 2.12 0.081 22.80 ± 9.67 12.62 ± 4.80 0.000
Skewness 0.99 ± 1.05 1.22 ± 0.80 0.324 1.76 ± 0.85 1.76 ± 0.73 0.547 0.89 ± 0.67 1.15 ± 0.53 0.087
kurtosis 2.10 ± 2.62 2.42 ± 2.69 0.838 3.36 ± 4.05 3.70 ± 4.51 0.735 1.12 ± 1.94 1.31 ± 1.08 0.083
Entropy 3.49 ± 0.43 3.28 ± 0.59 0.076 1.39 ± 0.97 1.49 ± 1.18 0.692 3.93 ± 0.40 3.80 ± 0.30 0.115

Fig. 1 A 60-year-old male with lung adenocarcinoma with partial response (PR). Pre-treatment apparent diffusion coefficient (ADC) (a), corrected diffu-
sion coefficient (Dk) (b), diffusion kurtosis value (K) (c), true diffusion coefficient (Dslow) (g), pseudo-diffusion coefficient (Dfast) (h), and perfusion fraction 
(f) (i) maps and their corresponding histograms (d-f, j-l) were obtained by whole tumor volume method
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Discussion
This study found that the histogram parameters of ADC, 
Dk, Dslow and fmay be used to predict the therapeutic 
efficacy of immunochemotherapy in advanced NSCLC, 
and the diagnostic ability of the mean value of each 
parameter was better than or equivalent to other histo-
gram metrics, where the mean value of f was suggested to 
be the most powerful predictive indicator. Moreover, the 
diagnostic efficiency of the combined model was better 
than that of optimal single parameter. For the two ROI 
selection methods, whole tumor volume analysis showed 
better diagnostic performance compared with single slice 
ROI analysis.

Previous studies have demonstrated that the pre-treat-
ment ADC values derived from conventional DWI are 
imaging biomarkers to evaluate the treatment outcomes 
of various tumors [24–26], including lung cancers [27]. 

And the results of these studies shown that lower base-
line ADC values implied better treatment efficacy, which 
was similar to our findings. Higher ADC values indi-
cate more necrotic areas within the tumor, where tumor 
cells become less sensitive to chemotherapeutic drugs 
due to being in a hypoxic and acidic environment. And 
necrotic areas are usually poorly perfused, resulting in 
relatively fewer chemotherapy drugs being delivered to 
these areas [26]. In addition, tumors are more vulnerable 
to therapeutic drugs when in a proliferation state [25]. 
Ki67 index is an indicator reflecting the proliferation sta-
tus of tumors, our study revealed that the proliferation 
index Ki67 was significantly higher in the responders 
groups, prior studies have confirmed a negative correla-
tion between Ki67 index and ADC values in lung cancer 
[28–30] .

Fig. 2 A 55-year-old male with lung squamous cell carcinoma with stable disease (SD). Pre-treatment apparent diffusion coefficient (ADC) (a), corrected 
diffusion coefficient (Dk) (b), diffusion kurtosis value (K) (c), true diffusion coefficient (Dslow) (g), pseudo-diffusion coefficient (Dfast) (h), and perfusion 
fraction (f ) (i) maps and their corresponding histograms (d-f, j-l) were obtained by whole tumor volume method
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In this study, similar to ADC values, lower Dslow values 
before treatment also indicated more sensitive treatment 
response of immunochemotherapy, and the diagnos-
tic performance of the Dslow value was superior to the 
ADC value, which was consistent with previous research 

results [31–33]. This result can be explained by the imag-
ing principles of IVIM, which can effectively separate 
the diffusion of pure water molecules and the microcir-
culation components of tissues using the bi-exponential 
model, therefore, IVIM-derived Dslow value can more 
truly reflect the diffusion of water molecules. Corre-
spondingly, the Dslow value is also significantly lower 
than the ADC value ascribed to the lack of the influence 
of the blood microcirculation in capillaries. Perucho et al. 
[34] and Zhang et al. [35] found high f value was asso-
ciated with the sensitivity to concurrent chemoradio-
therapy, our study results also show responders group 
had higher f value than non-responders group. f value 
measures the fractional blood volume in the capillary 
network, which reflects microscopic translational motion 
associated with microcirculation of the blood [12], the 
higher f value indicates higher proportion of microcir-
culation, richer blood supply, fewer hypoxic cells, more 
active proliferation and division, which can allow more 
drugs to be transported to tumor target [35]. However, 
our research results shown another perfusion-related 
parameter Dfast had limited value in the predition of 
treatment response, possibly due to the low stability and 
large standard deviation of Dfast [11] .

DKI-derived Dk parameter is the corrected diffusion 
coefficient accounting for non-Gaussian behavior, and 
K derived by DKI reflects the complexity of organiza-
tional microstructure. Some studies [24, 26, 36, 37] have 

Table 5 Diagnostic performance of signifcant parameters and the combined model obtained by using whole tumor analysis
Parameters AUC Cutoff

value
Youden
Index

Sensitivity Specificity PPV NPV Accuracy P

ADC
 75th 0.661 ≤ 1.845 0.2730 85.37 41.94 66.04 68.43 66.65 0.0149
 Mean 0.712 ≤ 1.55 0.3611 78.05 58.06 71.11 66.67 69.43 0.0009
 Median 0.649 ≤ 1.39 0.3761 63.41 74.19 76.46 60.53 68.06 0.0296
Dk
 75th 0.640 ≤ 1.65 0.3021 46.34 83.87 79.16 54.17 62.52 0.0315
 90th 0.662 ≤ 1.962 0.2880 70.73 58.06 69.04 60.00 65.27 0.0116
 Mean 0.672 ≤ 1.483 0.3525 70.73 64.52 72.50 62.50 68.05 0.0084
Dslow
 10th 0.730 ≤ 0.817 0.4823 80.49 67.74 76.74 72.41 74.99 0.0002
 25th 0.660 ≤ 1.013 0.3446 73.17 61.29 71.42 63.34 68.05 0.0194
 75th 0.759 ≤ 1.599 0.5224 78.05 74.19 79.99 71.87 76.39 < 0.0001
 90th 0.708 ≤ 1.896 0.3611 78.05 58.06 71.11 66.67 69.43 0.0013
 Mean 0.804 ≤ 1.299 0.5869 78.05 80.65 84.21 73.54 79.17 < 0.0001
 Median 0.779 ≤ 1.28 0.6357 82.93 80.65 85.00 78.13 81.94 < 0.0001
f
 25th 0.747 > 7.834 0.4579 78.05 67.74 76.19 70.00 73.61 < 0.0001
 75th 0.844 > 27.279 0.6593 75.61 90.32 91.17 73.69 81.95 < 0.0001
 90th 0.793 > 40.801 0.5382 73.17 80.65 83.33 69.45 76.39 < 0.0001
 Mean 0.886 > 17.958 0.6924 85.37 83.87 87.50 81.26 84.72 < 0.0001
 Median 0.856 > 13.992 0.6522 87.80 77.42 83.72 82.76 83.33 < 0.0001
Combined model 0.968 > 0.693 0.8458 87.80 96.77 97.29 85.71 91.67 < 0.0001
AUC: area under the curve; PPV: positive predictive value; NPV: negative predic-tive value

Fig. 3 Receiver operating characteristic curves of the combined model 
obtained by single slice analysis method and whole tumor volume meth-
od for predicting treatment response to chemoimmunotherapy
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confirmed that pre-treatment DKI parameters have good 
diagnostic performance for evaluating the efficacy of 
tumor treatment. In this study, the mean, 75th and 90th 
percentiles of Dk obtained from whole tumor and 90th 
percentile of Dk obtained from single slice could be used 
to predict chemoimmunotherapy response, but their 
diagnostic ability was not yet satisfactory with a maxi-
mum AUC of 0.672. None of the histogram parameters 
derived from K could be regarded as a promising tool 
for monitoring response to chemoimmunotherapy for 
patients with advanced NSCLC. The possible reasons for 
this result may be differences in tumor types and treat-
ment strategies, as well as differences in ROI selection. 
In addition, the selection of models and the use of b-val-
ues can also have an impact. Our study selected three 
b values with the maximum b value being 2000  s/mm2. 
Technically, the highest b value using in DKI needs to 
reach > 1500 s/mm2 [11] .

Previous studies have mostly selected a representa-
tive section to outline ROI and obtain DWI parameters 
for evaluating the treatment response of lung cancer [9, 
19, 27, 38]. Although this is a convenient and practical 
approach, the selection of ROI size and placement loca-
tion may cause inaccuracies in the measurement results, 
and this method also ignores the heterogeneity of the 
entire tumor. Several studies have found that the whole 
tumor analysis method had higher repeatability in DWI 
parameter measurement compared to single slice ROI 
analysis method [21, 39]. In the present study, the his-
togram parameter measurement repeatability of the two 
ROI selection methods( whole tumor and single slice) 
was good to excellent. Furthermore, the whole tumor 
method could obtain more statistically significant param-
eters for predicting treatment response. The diagnostic 
performance of the whole tumor method was superior to 
that of the single slice method, because the analysis based 
on the whole lesion involves all components within the 
lesion, thus better reflecting the inherent intratumoral 
heterogeneity. Therefore, we should choose the whole 
volume method for the measurement of the parameters 
in order to be able to assess the lesion more accurately. 

Interestingly, our results indicated that the mean value 
obtained by the entire volume method had better diag-
nostic efficacy than other histogram parameters, as 
described previously [36]. Thus, we can use the mean 
value obtained from the whole tumor volume to assess 
the tumor response to chemoimmunotherapy in lung 
cancer, thereby avoiding more parameter measurements 
and analysis. Additionally, due to the complementarity 
of clinical values among various parameters, the com-
bination model can significantly improve the diagnostic 
efficiency, which would have the potential to become an 
alternative diagnostic method.

This study has some limitations. First, this is a single 
center study and the sample size is not large. Second, 
due to respiratory motion artifacts causing poor image 
quality, some patients were excluded. We use breath gat-
ing and set appropriate acquisition windows to reduce 
motion interference. Third, the follow-up period is not 
long enough, future research needs to evaluate outcome 
and survival of NSCLC with chemoimmunotherapy. 
Fourth, there is no standard scanning parameters for 
the IVIM and DKI sequence. And there is no consensus 
on the quantity and size of b values either. Finally, volu-
metric analysis may include misregistration artifacts, 
therefore we did not record the extreme values of each 
parameter.

Conclusions
Our preliminary results indicate the histogram param-
eters of ADC, IVIM and DKI hold the potential to pre-
dict the response to chemoimmunotherapy in advanced 
NSCLC. The mean value yields better diagnostic effi-
ciency, which can avoid analyzing more histogram 
parameters in routine clinical practice, and the combined 
model improved the prediction performance. Whole 
tumor volume can better capture the intratumoral het-
erogeneity, and its diagnostic performance is superior to 
single slice analysis.

Abbreviations
NSCLC  Non-small cell lung cancer
DWI  Diffusion-weighted imaging

Table 6 The results of stepwise logistic regression analysis
Combined model β Coefficients Standard error Wald OR (95%CI) P Model fita

Whole tumor 0.789
 Dslowmean -0.567 0.238 5.678 0.567 (0.356–0.904) 0.017
 fmean 1.231 0.402 9.379 3.425 (1.558–7.530) 0.002
 f90th -0.519 0.194 7.137 0.595 (0.407–0.871) 0.008
Single slice 0.612
 Dslowmean -2.081 0.670 9.652 0.125 (0.034–0.464) 0.002
 Dslow75th 1.130 0.502 5.063 3.095 (1.157–8.280) 0.024
 f90th 0.087 0.027 10.564 1.091 (1.035–1.150) 0.001
aThe Hosmer–Lemeshow test was performed to explain the goodness-of-fit of the multivariate logistic model. A P > 0.05 was considered well fitted. OR: odds ratio; 
CI: confidence interval
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IVIM  Intravoxel incoherent motion
DKI  Diffusion kurtosis imaging
ROI  Region of interest
TR/TE  Repetition time/echo time
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ADC  Apparent diffusion coefficient
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ROC  Receiver operating characteristic curve
AUC  Area under the curve
PPV  Positive prediction value
NPV  Negative prediction value

Supplementary Information
The online version contains supplementary material available at https://doi.
org/10.1186/s40644-024-00713-8.

Supplementary Material 1

Acknowledgements
Not applicable.

Author contributions
Conceptualization, Y Z and J Z; methodology, Y Z.; software, L Z and Y Z; 
validation, Y Z, N H and WJ H; formal analysis, L Z and W J H.; investigation, 
W J H and N H; resources, N H; data curation, L Z and WJ H; writing—original 
draft preparation, Y Z; writing—review and editing, J Z; visualization, L Z; 
supervision, J Z; project administration, J Z; funding acquisition, J Z. All authors 
have read and d approved the final manuscript.

Funding
This study was funded by the National Natural Science Foundation of China 
(No. 81960309) and by the Science and Technology Project of Gansu (No. 
21JR7RA438).

Data availability
The datasets used and/or analysed during the current study are available from 
the corresponding author on reasonable request.

Declarations

Ethics approval and consent to participate
This study was approved by our institutional ethics committee (2022 A-316), 
with all patients providing written informed consent.

Consent for publication
Not applicable.

Competing interests
The authors declare that they have no competing interests.

Author details
1Department of Magnetic Resonance, The Second Hospital & Clinical 
Medical School, Lanzhou University, Lanzhou 730030, China
2Gansu Province Clinical Research Center for Functional and Molecular 
Imaging, Lanzhou 730030, China

Received: 2 January 2024 / Accepted: 28 May 2024

References
1. Guo H, Zhao L, Zhu J, Chen P, Wang H, Jiang M, et al. Microbes in lung 

cancer initiation, treatment, and outcome: Boon or bane? Semin Cancer Biol. 
2022;86(Pt 2):1190–206.

2. Di Federico A, De Giglio A, Gelsomino F, Sperandi F, Melotti B, Ardizzoni A. 
Predictors of survival to immunotherapy and chemoimmunotherapy in non-
small cell lung cancer: a meta-analysis. J Natl Cancer Inst. 2023;115(1):29–42.

3. Cella E, Zullo L, Marconi S, Rossi G, Coco S, Dellepiane C, et al. Immunother-
apy-chemotherapy combinations for non-small cell lung cancer: current 
trends and future perspectives. Expert Opin Biol Ther. 2022;22(10):1259–73.

4. Lantuejoul S, Sound-Tsao M, Cooper WA, Girard N, Hirsch FR, Roden AC, et al. 
PD-L1 testing for Lung Cancer in 2019: perspective from the IASLC Pathology 
Committee. J Thorac Oncol. 2020;15(4):499–519.

5. Borghaei H, Langer CJ, Paz-Ares L, Rodríguez-Abreu D, Halmos B, Garassino 
MC, et al. Pembrolizumab plus chemotherapy versus chemotherapy alone 
in patients with advanced non-small cell lung cancer without tumor PD-L1 
expression: a pooled analysis of 3 randomized controlled trials. Cancer. 
2020;126(22):4867–77.

6. Munoz-Schuffenegger P, Kandel S, Alibhai Z, Hope A, Bezjak A, Sun A, et 
al. A Prospective Study of Magnetic Resonance Imaging Assessment of 
post-radiation changes following stereotactic body Radiation Therapy for 
Non-small Cell Lung Cancer. Clin Oncol (R Coll Radiol). 2019;31(10):720–7.

7. Vogl TJ, Hoppe AT, Gruber-Rouh T, Basten L, Dewes P, Hammerstingl RM, et 
al. Diffusion-weighted MR imaging of primary and secondary Lung Cancer: 
predictive value for response to Transpulmonary Chemoembolization and 
Transarterial Chemoperfusion. J Vasc Interv Radiol. 2020;31(2):301–10.

8. Jagoda P, Fleckenstein J, Sonnhoff M, Schneider G, Ruebe C, Buecker A, et 
al. Diffusion-weighted MRI improves response assessment after definitive 
radiotherapy in patients with NSCLC. Cancer Imaging. 2021;21(1):15.

9. Vogl TJ, Emara EH, Elhawash E, Naguib NNN, Aboelezz MO, Abdelrahman 
HM, et al. Feasibility of diffusion-weighted magnetic resonance imaging in 
evaluation of early therapeutic response after CT-guided microwave ablation 
of inoperable lung neoplasms. Eur Radiol. 2022;32(5):3288–96.

10. Iima M, Kataoka M, Kanao S, Onishi N, Kawai M, Ohashi A, et al. Intravoxel 
Incoherent Motion and quantitative non-gaussian diffusion MR Imaging: 
evaluation of the Diagnostic and Prognostic Value of several markers of 
malignant and benign breast lesions. Radiology. 2018;287(2):432–41.

11. Wan Q, Deng YS, Lei Q, Bao YY, Wang YZ, Zhou JX, et al. Differentiating 
between malignant and benign solid solitary pulmonary lesions: are 
intravoxel incoherent motion and diffusion kurtosis imaging superior to 
conventional diffusion-weighted imaging? Eur Radiol. 2019;29(3):1607–15.

12. Le Bihan D, Breton E, Lallemand D, Aubin ML, Vignaud J, Laval-Jeantet M. 
Separation of diffusion and perfusion in intravoxel incoherent motion MR 
imaging. Radiology. 1988;168(2):497–505.

13. Wan Q, Bao Y, Xia X, Liu J, Wang P, Peng Y, et al. Intravoxel Incoherent Motion 
Diffusion-Weighted Imaging for Predicting and Monitoring the response of 
anti-angiogenic treatment in the Orthotopic Nude Mouse Model of Lung 
Adenocarcinoma. J Magn Reson Imaging. 2022;55(4):1202–10.

14. Karayama M, Yoshizawa N, Sugiyama M, Mori K, Yasui H, Hozumi H, et al. 
Intravoxel incoherent motion magnetic resonance imaging for predicting 
the long-term efficacy of immune checkpoint inhibitors in patients with non-
small-cell lung cancer. Lung Cancer. 2020;143:47–54.

15. Huang C, Liang J, Ma M, Cheng Q, Xu X, Zhang D, et al. Evaluating the 
treatment efficacy of Nano-Drug in a Lung Cancer Model using Advanced 
Functional magnetic resonance imaging. Front Oncol. 2020;10:563932.

16. Rosenkrantz AB, Padhani AR, Chenevert TL, Koh DM, De Keyzer F, Taouli B, et 
al. Body diffusion kurtosis imaging: basic principles, applications, and consid-
erations for clinical practice. J Magn Reson Imaging. 2015;42(5):1190–202.

17. Yuan M, Pu XH, Xu XQ, Zhang YD, Zhong Y, Li H, et al. Lung adenocarcinoma: 
Assessment of epidermal growth factor receptor mutation status based 
on extended models of diffusion-weighted image. J Magn Reson Imaging. 
2017;46(1):281–9.

18. Feng P, Shao Z, Dong B, Fang T, Huang Z, Li Z, et al. Application of dif-
fusion kurtosis imaging and (18)F-FDG PET in evaluating the subtype, 
stage and proliferation status of non-small cell lung cancer. Front Oncol. 
2022;12:989131.

19. Bao X, Bian D, Yang X, Wang Z, Shang M, Jiang G, et al. Multiparametric 
MRI for evaluation of pathological response to the neoadjuvant chemo-
immunotherapy in resectable non-small-cell lung cancer. Eur Radiol. 
2023;33(12):9182–93.

https://doi.org/10.1186/s40644-024-00713-8
https://doi.org/10.1186/s40644-024-00713-8


Page 11 of 11Zheng et al. Cancer Imaging           (2024) 24:71 

20. Ma X, Ren X, Shen M, Ma F, Chen X, Zhang G, et al. Volumetric ADC histogram 
analysis for preoperative evaluation of LVSI status in stage I endometrioid 
adenocarcinoma. Eur Radiol. 2022;32(1):460–9.

21. Nougaret S, Vargas HA, Lakhman Y, Sudre R, Do RK, Bibeau F, et al. Intravoxel 
Incoherent Motion-derived Histogram Metrics for Assessment of Response 
after Combined Chemotherapy and Radiation Therapy in rectal Cancer: initial 
experience and comparison between single-section and volumetric analyses. 
Radiology. 2016;280(2):446–54.

22. Le Bihan D. Molecular diffusion, tissue microdynamics and microstructure. 
NMR Biomed. 1995;8(7–8):375–86.

23. Eisenhauer EA, Therasse P, Bogaerts J, Schwartz LH, Sargent D, Ford R, et al. 
New response evaluation criteria in solid tumours: revised RECIST guideline 
(version 1.1). Eur J Cancer. 2009;45(2):228–47.

24. Zhao DW, Fan WJ, Meng LL, Luo YR, Wei J, Liu K, et al. Comparison of the 
pre-treatment functional MRI metrics’ efficacy in predicting Locoregionally 
advanced nasopharyngeal carcinoma response to induction chemotherapy. 
Cancer Imaging. 2021;21(1):59.

25. Surov A, Pech M, Meyer HJ, Bitencourt AGV, Fujimoto H, Baxter GC, et al. 
Evaluation of pretreatment ADC values as predictors of treatment response 
to neoadjuvant chemotherapy in patients with breast cancer - a multicenter 
study. Cancer Imaging. 2022;22(1):68.

26. Zhang H, Li W, Fu C, Grimm R, Chen Z, Zhang W, et al. Comparison of 
intravoxel incoherent motion imaging, diffusion kurtosis imaging, and 
conventional DWI in predicting the chemotherapeutic response of colorectal 
liver metastases. Eur J Radiol. 2020;130:109149.

27. Yuan Z, Niu XM, Liu XM, Fu HC, Xue TJ, Koo CW, et al. Use of diffusion-
weighted magnetic resonance imaging (DW-MRI) to predict early response 
to anti-tumor therapy in advanced non-small cell lung cancer (NSCLC): a 
comparison of intravoxel incoherent motion-derived parameters and appar-
ent diffusion coefficient. Transl Lung Cancer Res. 2021;10(8):3671–81.

28. Li G, Huang R, Zhu M, Du M, Zhu J, Sun Z, et al. Native T1-mapping and 
diffusion-weighted imaging (DWI) can be used to identify lung cancer 
pathological types and their correlation with Ki-67 expression. J Thorac Dis. 
2022;14(2):443–54.

29. Ren H, Ma J, Wang J. Correlation between apparent diffusion coefficient 
and Ki-67 in different pathological types of lung cancer. Transl Cancer Res. 
2021;10(12):5364–71.

30. Zheng Y, Huang W, Zhang X, Lu C, Fu C, Li S, et al. A Noninvasive Assessment 
of Tumor Proliferation in Lung cancer patients using Intravoxel Incoherent 
Motion magnetic resonance imaging. J Cancer. 2021;12(1):190–7.

31. Zhu Y, Jiang Z, Wang B, Li Y, Jiang J, Zhong Y, et al. Quantitative dynamic-
enhanced MRI and Intravoxel Incoherent Motion Diffusion-Weighted 

Imaging for Prediction of the pathological response to Neoadjuvant Chemo-
therapy and the prognosis in locally advanced gastric Cancer. Front Oncol. 
2022;12:841460.

32. Xiao-ping Y, Jing H, Fei-ping L, Yin H, Qiang L, Lanlan W, et al. Intravoxel inco-
herent motion MRI for predicting early response to induction chemotherapy 
and chemoradiotherapy in patients with nasopharyngeal carcinoma. J Magn 
Reson Imaging. 2016;43(5):1179–90.

33. Zhang H, Zhou Y, Li J, Zhang P, Li Z, Guo J. The value of DWI in predicting 
the response to synchronous radiochemotherapy for advanced cervical 
carcinoma: comparison among three mathematical models. Cancer Imaging. 
2020;20(1):8.

34. Perucho JAU, Wang M, Vardhanabhuti V, Tse KY, Chan KKL, Lee EYP. Associa-
tion between IVIM parameters and treatment response in locally advanced 
squamous cell cervical cancer treated by chemoradiotherapy. Eur Radiol. 
2021;31(10):7845–54.

35. Zhang Y, Zhang K, Jia H, Xia B, Zang C, Liu Y, et al. IVIM-DWI and MRI-based 
radiomics in cervical cancer: prediction of concurrent chemoradiotherapy 
sensitivity in combination with clinical prognostic factors. Magn Reson Imag-
ing. 2022;91:37–44.

36. Li D, Cui Y, Hou L, Bian Z, Yang Z, Xu R, et al. Diffusion kurtosis imaging-
derived histogram metrics for prediction of resistance to neoadjuvant 
chemoradiotherapy in rectal adenocarcinoma: preliminary findings. Eur J 
Radiol. 2021;144:109963.

37. Hu F, Tang W, Sun Y, Wan D, Cai S, Zhang Z, et al. The value of diffusion kur-
tosis imaging in assessing pathological complete response to neoadjuvant 
chemoradiation therapy in rectal cancer: a comparison with conventional 
diffusion-weighted imaging. Oncotarget. 2017;8(43):75597–606.

38. Usuda K, Iwai S, Funasaki A, Sekimura A, Motono N, Matoba M, et al. Diffusion-
weighted magnetic resonance imaging is useful for the response evaluation 
of chemotherapy and/or radiotherapy to recurrent lesions of lung cancer. 
Transl Oncol. 2019;12(5):699–704.

39. Song M, Yue Y, Jin Y, Guo J, Zuo L, Peng H, et al. Intravoxel incoherent motion 
and ADC measurements for differentiating benign from malignant thyroid 
nodules: utilizing the most repeatable region of interest delineation at 3.0 T. 
Cancer Imaging. 2020;20(1):9.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in 
published maps and institutional affiliations.


	Histogram analysis of multiple diffusion models for predicting advanced non-small cell lung cancer response to chemoimmunotherapy
	Abstract
	Background
	Methods
	Patients
	MRI acquisition
	Image postprocessing and analysis
	Response evaluation
	Statistical analysis

	Results
	Patients and tumors characteristics
	Interobserver agreement evaluation
	Comparisons of whole tumor ADC, IVIM and DKI histogram metrics
	Comparisons of single slice ADC, IVIM and DKI histogram metrics
	The diagnostic performance of the two ROI selection methods

	Discussion
	Conclusions
	References


