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Abstract
Background Accurate segmentation of gastric tumors from CT scans provides useful image information for guiding 
the diagnosis and treatment of gastric cancer. However, automated gastric tumor segmentation from 3D CT images 
faces several challenges. The large variation of anisotropic spatial resolution limits the ability of 3D convolutional 
neural networks (CNNs) to learn features from different views. The background texture of gastric tumor is complex, 
and its size, shape and intensity distribution are highly variable, which makes it more difficult for deep learning 
methods to capture the boundary. In particular, while multi-center datasets increase sample size and representation 
ability, they suffer from inter-center heterogeneity.

Methods In this study, we propose a new cross-center 3D tumor segmentation method named Hierarchical Class-
Aware Domain Adaptive Network (HCA-DAN), which includes a new 3D neural network that efficiently bridges an 
Anisotropic neural network and a Transformer (AsTr) for extracting multi-scale context features from the CT images 
with anisotropic resolution, and a hierarchical class-aware domain alignment (HCADA) module for adaptively aligning 
multi-scale context features across two domains by integrating a class attention map with class-specific information. 
We evaluate the proposed method on an in-house CT image dataset collected from four medical centers and validate 
its segmentation performance in both in-center and cross-center test scenarios.

Results Our baseline segmentation network (i.e., AsTr) achieves best results compared to other 3D segmentation 
models, with a mean dice similarity coefficient (DSC) of 59.26%, 55.97%, 48.83% and 67.28% in four in-center test 
tasks, and with a DSC of 56.42%, 55.94%, 46.54% and 60.62% in four cross-center test tasks. In addition, the proposed 
cross-center segmentation network (i.e., HCA-DAN) obtains excellent results compared to other unsupervised domain 
adaptation methods, with a DSC of 58.36%, 56.72%, 49.25%, and 62.20% in four cross-center test tasks.

Conclusions Comprehensive experimental results demonstrate that the proposed method outperforms compared 
methods on this multi-center database and is promising for routine clinical workflows.

Index terms Gastric tumor segmentation, Anisotropic network, Domain adaptation, Hierarchical class-aware domain 
alignment, CT images
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Introduction
Image-guided disease diagnosis and treatment is an 
important part of routine clinical workflow, particularly 
for gastric cancer, which is the third leading cause of can-
cer-related death worldwide [1]. Computed tomography 
(CT) is the most commonly used imaging modality for 
preoperative assessment of tumor status, because it has 
the advantages of high imaging density resolution, con-
venient inspection, fast acquisition speed, and non-inva-
siveness [2]. In clinical practice, imaging examination is 
usually performed manually by radiologists slice by slice 
[3], which is an expensive and time-consuming process 
and also relies heavily on the experience of radiologists. 
Automated segmentation of gastric tumors not only 
reduces the burden of radiologists, but also is expected 
to supplement the conventional imaging tools. However, 
this segmentation task is challenging due to the follow-
ing reasons: (a) there exist anisotropic spatial resolution 
in 3D CT images, (b) low contrast between tumor and 
adjacent structures, (c) the large samples needed to train 
robust models are often difficult to obtain from a single 
medical center.

Previous studies using CT images to characterize gas-
tric cancer were mainly oriented to some diagnostic 
tasks (e.g., estimate tumor invasion depth, predict lymph 
node metastasis, and identify occult peritoneal metasta-
sis, etc.) [4–7], and these works usually performed task-
specific predictions based on the region of interest (ROI) 
of the primary tumor. In previous work, computer-aided 
diagnosis (CAD) methods are mainly based on radiomics 
to study gastric cancer in CT images. For example, 
Wang et al. [8] explored the potential performance of 
radiomics-based method for predicting the depth of 
tumor invasion in gastric cancer by performing tumor 
segmentation using dedicated post-processing software 
from enhanced CT images. Meng et al. [9]. extracted 2D 
and 3D CT radiomic features from multi-center dataset 
and comprehensively compared 2D and 3D radiomic 
features for gastric cancer characterization and discrimi-
nation in three diagnostic tasks. Dong et al. [10]. identi-
fied occult peritoneal metastasis in 554 gastric cancer 
patients from four centers. They first build radiomic sig-
natures of the primary tumor and peritoneum based on 
266 imaging features, and then combined the primary 
tumor, peritoneum and the Lauren types to predict the 
occult peritoneal metastasis. The above studies are all 
based on radiomics, which usually includes two stages: 
extracting ROI-based hand-crafted features and building 
traditional machine learning classifiers. The extraction of 
radiomic features is a very time-consuming feature engi-
neering that usually requires domain-specific expertise. 
Furthermore, the methods proposed in the above works 
are not fully automatic and are not suitable for studying 

multi-center data due to complex data distribution and 
huge feature engineering.

With the rapid development of deep learning tech-
nology, CAD algorithms based on deep learning have 
achieved convincing performance in medical image 
analysis [11–13], particularly in some abdominal CT 
image analysis [14–17]. Previous CNN-based deep 
learning methods were inevitably limited in modeling 
long-term dependencies by ignoring non-local correla-
tions of images. Inspired by the success of Transform-
ers in natural language processing (NLP) and computer 
vision (CV), Transformers is being widely used in medi-
cal image processing [18–20] as an alternative backbone 
for CNNs due to its ability to capture long-term depen-
dencies. However, only a few deep learning-based CAD 
algorithms [21–23] have been proposed for automatic 
segmentation of gastric tumors from CT images, and 
these works are from us. In [21–23], we collected data 
from three medical centers to increase the sample size, 
but ignored the heterogeneity/shift of data from different 
sources. In medical image analysis, domain heterogene-
ity/shift is more prominent than conventional common 
data due to the changes of scanning instruments and 
the diversity of hospital population. Domain adapta-
tion techniques are designed to reduce the domain shift 
and make the model go towards better generalization in 
the test phase. When the data distribution gap between 
source and target domains is narrowed, an improved 
generality can be obtained. For unsupervised domain 
adaptation (UDA), a specific scenario is when we have 
data from two or more medical centers/sites, it is usually 
assumed that the unlabeled data of one of the medical 
centers is the target domain, and the labeled data of the 
remaining one or more medical centers is source domain 
[24]. UDA algorithms narrow domain discrepancy by 
strengthening information alignment from the perspec-
tives of feature-level or image-level, and then improve 
the models performance with unlabeled target domain. 
Feature-level alignment-based methods transform source 
and target data into latent spaces, aiming to discover 
domain-invariant features by performing distributional 
alignment. Most of the methods adopt a Siamese archi-
tecture similar to the domain adversarial neural network 
(DANN) structure [25], which helps to obtain domain-
invariant features. Image-level alignment-based meth-
ods are often used on paired data, which convert source 
images into target-like images and vice versa, facilitating 
segmentation models to learn specific information in 
the target domain. For example, Zhang et al. [26]. pro-
posed a DANN-based domain-symmetric networks to 
achieve feature distribution invariance at a finer category 
level. The proposed network is a symmetric design for 
source task and target task classifiers, and on this basis, 
the authors also build an additional classifier that shares 
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neurons with the task classifiers. Hoffman et al. [27]. 
proposed a model named Cycle-Consistent Adversarial 
Domain Adaptation (CyCADA), which adapts between 
domains using both generative image space alignment 
and latent representation space alignment. Inspired by 
the above work, some studies have investigated domain 
adaptation of deep neural networks and applied them to 
medical image analysis tasks. For example, Kamnitsas et 
al. [28]. developed an unsupervised domain adaptation 
method for brain lesion segmentation by investigating 
adaptation between databases acquired using two differ-
ent scanners with difference MR imaging sequences. Yan 
et al. [29]. proposed an adversarial learning based UDA 
method for cross-vendor medical image segmentation. 
A domain discriminator is co-trained with the segmen-
tor to learn domain-invariant features for the task of 
segmentation. Panfilov et al. [30]. developed an unsu-
pervised domain adaptive segmentation model based on 
adversarial learning for cross-device knee tissue segmen-
tation. A U-Net-based segmentor and a domain discrimi-
nator with adversarial learning are co-trained for UDA. 
However, these above methods ignore class information 
in feature alignment, which results in misalignment.

In this paper, we propose a new hierarchical class-aware 
domain adaptive network (HCA-DAN) for gastric tumor 
segmentation in cross-center scenario. To simultane-
ously deal with anisotropy in 3D data and the long-range 
dependency on the extracted feature maps, we design a 
feature extraction backbone that efficiently bridges an 
Anisotropic neural network and a Transformer (AsTr) 
for extracting multi-scale features from the CT images. 
In particular, we also design a pyramid boundary-aware 
(PBA) block that is placed at multiple levels in the decod-
ing path. Furthermore, we propose a hierarchical class-
aware domain alignment (HCADA) module, which not 
only considers tumor size in feature alignment, but also 
incorporates a class attention map into the domain dis-
criminator to make the feature alignment process pay 
more attention to the class-specific information. In sum-
mary, our work has three main contributions:

  • We develop a new unsupervised domain adaptive 
framework, which can not only learn discriminative 
multi-scale features, but also narrow domain 
heterogeneity/shift between cross-center datasets.

  • A new feature extraction backbone AsTr, is 
designed, which not only considers the anisotropy 
of 3D volume, but also alleviates the shortcomings 
of CNNs in modeling long-term dependence. 
Furthermore, the PBA block is aggregated into the 
decoding path to enhance the ability of AsTr to 
capture the boundaries of tumors.

  • A new domain adaptive module HCADA, is 
proposed, which guides the network to capture class-

specific rather than class-agnostic knowledge for 
multi-scale feature distribution alignment.

Materials and methods
Datasets and data pre-processing
This is a retrospective multi-center study with data 
from the four medical centers (Taiyuan People Hospital, 
China; Xian People Hospital, China; Department of Radi-
ology, China-Japan Friendship Hospital, Beijing, China; 
Heping Hospital, Changzhi Medical College, China) by 
four kinds of medical instruments (Toshiba320-slice 
CT, SOMATOM 64-slice CT, Philips 128-slice CT and 
SOMATOM force dual source CT), with a largely vary-
ing in-plane resolution from 0.5  mm to 1.0  mm and 
slice spacing from 5.0  mm to 8.0  mm. For simplicity, 
we represent the above four datasets as D1, D2, D3 and 
D4, respectively. Our dataset was collected from 2015 
to 2018, which contains 211 CT image samples (211 
ordinary CT volumes and 63 enhanced CT volumes), 
of which D1 included 74 cases, D2 included 39 cases, 
D3 included 47 cases (47 ordinary CT volumes and 63 
enhanced CT volumes), and D4 included 51 cases. The 
ground truth of segmentation is annotated by four expe-
rienced radiologists using the ITK-SNAP software based 
on surgical pathology. The four experienced radiologists 
all specialize in abdominal radiology, two of them have 8 
years of clinical experience and the other two have more 
than 10 years of clinical experience. Note that the used 
dataset has passed the ethical review of the relevant hos-
pitals and obtained the informed consent of the patients.

To cope with the limitation of 3D data on computer 
memory consumption, and considering that the tumor 
area is smaller than the background area, we cut and 
resample each volume to patches including voxels with a 
voxel size of 5.0 × 0.741 × 0.741mm3 or 8.0 × 0.741 × 0.741 
mm3. To compensate for the lack of training data, we 
not only use the online data augmentation [12] (e.g., flip-
ping, rotation, translation), but also perform CT image 
normalization (automatic clipping operation from 0.5 to 
99.5% intensity value of all foreground voxels) and voxel 
space resampling (with third order spline interpolation).

Network overview
Figure 1 shows the overview of the proposed HCA-DAN, 
which includes two collaborative components, i.e., AsTr 
and HCADA. The proposed 3D domain adaptation net-
work takes an abdominal CT volume as input and starts 
with AsTr as backbone to extract multi-scale context 
features from the CT images with anisotropic resolu-
tion. Then the extracted features from source and target 
domains are passed to HCADA module, which can effec-
tively distinguish the features of the source and target 
domains by taking into account class information.



Page 4 of 13Yuan et al. Cancer Imaging           (2024) 24:63 

Architecture of AsTr
Inspired by CoTr [18], AsTr is proposed to learn more 
discriminative multi-scale features for gastric tumor 
segmentation via jointing CNN and Transformer. AsTr 
consists of an anisotropic convolutional encoder (As-
encoder) for feature extraction from the CT images 
with anisotropic resolution, a deformable Transformer-
encoder (i.e., DeTrans-encoder) for long-range depen-
dency modeling, an anisotropic convolutional decoder 
(As-decoder) for accurate tumor segmentation.

To address the issue of anisotropic voxel resolution, 
we construct the As-encoder by combining anisotropic 
convolution with isotropic convolution, rather than sim-
ply using isotropic convolution. The As-encoder mainly 
contains a Conv-GN-PReLU block, two average pool-
ing layers, two stages of anisotropic convolution block 
(AsBlock), and two stages of 3D squeeze-and-excitation 
residual (SE-Res) block. The Conv-GN-PReLU block 
represents a 3D convolutional layer followed by a group 
normalization (GN) and a parametric rectified linear unit 
(PReLU). The number of AsBlock in two stages are two 
and three, respectively. The number of SE-Res block in 
two stages are three and two, respectively. As shown in 
Fig. 2a, the input of AsBlock is delivered to 1 × 3 × 3 and 
3 × 1 × 1 anisotropic convolutions, respectively. Then the 
outcomes are then concatenated with the input as the 
output. Moreover, the 1 × 1 × 1 convolution are employed 
to both input and output to adjust the channel numbers 

of features. Through this design, the As-encoder can 
independently extract features on the x-y plane and along 
the z direction from 3D volume, which reduces the influ-
ence of anisotropic spatial resolution. Considering that 
3D data contains a wealth of information, we add two 
stages of SE-Res block in the back end of the As-encoder. 
As shown in Fig. 2b, the SE-Res block consists of residual 
and SE blocks, which not only improves the representa-
tion capability of the encoder, but also alleviates the over-
fitting problem caused by the deep network.

To compensate for the inherent locality of convolution 
operation, the DeTrans layer is proposed [18] to capture 
the long-term dependence of pixels in multi-scale fea-
tures generated by the encoder. In general, the DeTrans 
layer is composed of a multi-scale deformable self-atten-
tion (MS-DMSA) layer and a feedforward network, each 
being followed by the layer normalization.

To capture more accurate tumor boundaries, in addi-
tion to AsBlock and SE-Res blocks, we also design the 
PBA block in As-decoder. Therefore, the As-decoder 
mainly contains two stages of AsBlock, two stages of 3D 
SE-Res block, four PBA blocks, four transpose convolu-
tion layers, and a Conv-GN-PReLU block. Inspired by 2D 
pyramid edge extraction module [31], we design the 3D 
PBA block (as shown in Fig. 2c) to refine the boundaries 
of the lesion. The PBA block is a simple and effective pyr-
amid boundary information extraction strategy, which 
can obtain robust boundary information by capturing 

Fig. 1 The overview of the proposed HCA-DAN. AsBlock: anisotropic convolutional block; SE-Res: squeeze-and-excitation residual block; PBA: pyramid 
boundary-aware block; HCADA: hierarchical class-aware domain alignment module, which includes four CADA blocks. Note that to demonstrate an 
elegant framework, we omit the display of the positional encoding when the multi-scale features generated from the As-encoder are passed to the 
DeTrans layer
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different representations of pixels around the diseased 
area. Specifically, the PBA block takes the features F gen-
erated by the previous layer as input and passes it into a 
multi-branch pooling layer with different kernel sizes to 
obtain the features 

{
F 1, · · · , F n} with lesion edge infor-

mation. Then, the feature −
F  is generated by a series of 

operations, which can be defined as:

 F = conv
{
C

[
σ

(
F − F 1) ⊗ F ; · · · ; σ (F − F n) ⊗ F

]}
 (1)

where 
{
F 1, · · · , F n} is obtained by average pooling 

layers with different kernel sizes; conv means a 1 × 1 × 1 
convolutional layer; C represents channel concatena-
tion operation; σ  denotes a Sigmoid function; ⊗  indi-
cates element-by-element multiplication. In this way, we 
obtain multiple granularities responses near the edge by 
subtracting the value of average pooling with different 
sizes from its local convolutional feature maps and con-
figuring soft attention operation in each branch.

Fig. 2 The architectures of three blocks
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It is worth noting that during decoding, the output 
sequence of the DeTrans layers is reshaped into fea-
ture maps according to the size at each scale. Then, the 
reshaped multi-scale features are added element-by-ele-
ment in the decoding path for better tumor segmentation.

Hierarchical class-aware domain alignment
In this section, we consider how to use the class-specific 
information to guide multi-scale feature distribution 
alignment in our feature extractor AsTr. On the one hand, 
tumors of different cases have different sizes and posi-
tions in CT images, and multi-scale feature extraction 
has been proved to be very effective in many scenarios, 
especially in the task of lesion segmentation. Technically, 
low resolution feature maps tend to predict large objects, 
while high resolution feature maps tend to predict small 
objects. Therefore, we introduce the hierarchical domain 
alignment mechanism, which takes object scales roughly 
into account when performing domain distribution align-
ment. In short, we configure a domain discriminator for 
each scale feature, which can effectively guide the feature 
alignment of tumors of different sizes. On the other hand, 
many efforts ignore class-specific knowledge during fea-
ture alignment, which leads to misalignment. To encour-
age a more discriminative distribution alignment, we 
produce an attention map for each class separately, which 
is calculated based on the probability of class occurrence. 
The attention map is defined as:

 F att = Softmax (F out) (2)

,where F out  denotes the output of the segmentation net-
work AsTr. In other words, we use the Softmax function 
to calculate the class attention map for all output spatial 
positions. This class attention map is aggregated into the 
domain discriminator to capture class-specific informa-
tion in domain adaptation, rather than class-agnostic 
information, which encourages more discriminative dis-
tribution alignment in the CADA block. Specifically, 
we employ the U-Net [32] architecture as a domain dis-
criminator D in the CADA block. First, we upsample the 
feature generated by the PBA block with triple interpola-
tion to the same resolution as the input image. The newly 
generated feature is then fed into the domain discrimina-
tor D and a probability map is generated to distinguish 
whether the feature is from the source or target domains. 
Finally, this probability map is multiplied by the class 
attention map element by element to obtain the final 
probability map.

Data partitioning and network implementation
We validate the proposed method in both in-center and 
cross-center test scenarios. In order to obtain reliable 
segmentation results, we employed a five-fold group 

cross-validation strategy in the in-center test scenario. 
In the cross-center test scenario, we use three datasets 
as the source domain and the remaining one as the tar-
get domain, which is a common validation strategy for 
domain adaptive methods.

The proposed cross-center 3D tumor segmentation 
method is implemented on the PyTorch platform and 
is trained with 1x NVIDIA GeForce RTX 3090 GPU 
(24GB). We train all 3D networks by using the SGD opti-
mizer with a momentum of 0.99 and an initial learning 
rate of 1 × 10− 3. We set batch size as 2, and the network 
was trained for 500 epochs and each epoch contains 
250 iterations. In four PBA blcoks, we use the 3 × 3 × 3 
and 5 × 5 × 5 average pooling operation for the first two 
blocks, and 5 × 5 × 5 and 7 × 7 × 7 pooling kernels in the 
last two blocks.

We employ four performance metrics to quantita-
tively evaluate the obtained segmentation results, which 
include the Dice similarity coefficient (DSC), Jaccard 
index (JI), Average surface distance (ASD, in mm) and 
95% Hausdorff distance (95HD, in mm). The first two 
are more sensitive to the inner filling of the mask, and 
the second two are more sensitive to the segmentation 
boundary. These metrics are calculated by the following 
formulas:

 
DSC =

2 |prediction
⋂

groundtruth|
|prediction| + |groundtruth|  (3)

 
JI =

|prediction
⋂

groundtruth|
|prediction| + |groundtruth| − |prediction

⋂
groundtruth|  (4)

 ASD =
1
2

{meanx∈Xminy∈Y d (x, y) , meany∈Y minx∈Xd (x, y)}  (5)

 HD = max {maxx∈Xminy∈Y d (x, y) , maxy∈Y minx∈Xd (x, y)}  (6)

where |∗|  and ∩  denote the size and the intersection 
operation in the set, respectively. x and y are the coor-
dinates of the midpoint of the image, meanx∈Xminy∈Y  
is average of the closest distance between two points, 
maxx∈Xminy∈Y  is the shortest distance from a point in a 
point set to another point set. 95% HD is similar to maxi-
mum HD, which is based on the 95th percentile of the 
distance between the boundary points in X and Y.

Loss function
We employ adversarial strategies to implement network 
training. Therefore, the proposed network consists of 
three losses, including segmentation loss Lseg , discrimi-
nation loss Lh

dis  and adversarial domain adaptation loss 
Lh

da . The segmentation loss is the sum of Dice loss Ldice  
and binary cross-entropy loss Lbce , which defined as:

 Lseg = Ldice + Lbce  (7)
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Ldice = 1 − 2

∑N
i=1pigi∑N

i=1pi
2 +

∑N
i=1gi

2
 (8)

 
Lbce =

N∑

i=1

gilogpi +
N∑

i=1

(1 − gi)log(1 − pi) (9)

where N is the voxel number of the input CT volume; 
pi ∈ [0.0,1.0]represents the voxel value of the predicted 
probabilities; gi ∈ {0,1}  denotes the voxel value of the 
binary ground truth volume.

Following [33], we calculate the single-level discrimina-
tion and adversarial domain adaptation losses with the 
least squares loss function as follows:

 L
l
dis =

[
D

(
f l

PBA

(
F l

s
))

− 1
]2

+
[
D

(
f l

PBA

(
F l

t
))

+ 1
]2

 (10)

 Ll
da = F att ⊗

[
D

(
f l

PBA

(
F l

t

))
− 1

]2 (11)

where f l
PBA  denotes l-th PBA block; l ∈ {1, 2, 3, 4} ; F l

s  
and F l

t  represent the source domain and target domain 
features obtained in the layer before the l-th PBA block, 
respectively. Therefore, the hierarchical discrimination 
and adversarial domain adaptation losses are defined as:

 
Lh

dis =
∑l=4

l=1
λl · Ll

dis  (12)

 
Lh

da =
∑l=4

l=1
λl · Ll

da  (13)

where λl  denotes the weight of l-th discrimination and 
adversarial domain adaptation losses, which decreases 
exponentially with the decrease of feature resolution.

Results
Comparison with the state-of-the-art segmentation 
methods
To confirm the efficacy of the proposed AsTr, we com-
pared it with six baseline/state-of-the-art (SOTA) medi-
cal image segmentation methods, including V-Net [34], 
3D FPN [35], nnU-Net [12], CoTr [18], UNETR [19], 
and Swin-Unet [20]. V-Net is designed to solve the 3D 
volume segmentation and is widely used in the segmen-
tation task based on 3D medical image data. 3D FPN is 
an effective method to extract multi-scale features, and 
it is used as a backbone for feature extraction in many 
works. nnU-Net is a robust segmentation method, 
which has achieved good results in many medical image 
segmentation tasks. CoTr is an efficient and effective 
method to bridge CNN and Transformer for 3D medi-
cal image segmentation. UNETR consists of a trans-
former encoder that directly utilizes 3D patches and is 
connected to a CNN-based decoder via skip connec-
tion. Swin-Unet is a pure Transformer-based U-shaped 
Encoder-Decoder network. We compare the first four 
methods in the in-center test scenario, and compare all 
methods in the cross-center test scenario. Tables  1 and 
2 list the segmentation results of the above methods and 
the proposed method in in-center test and cross-center 
test scenarios, respectively. Compared with other seg-
mentation networks, the proposed AsTr achieves the 

Table 1 Segmentation results of different methods in the in-center test scenario
Test Method DSC (%) ↑ JI (%) ↑ ASD↓ 95HD↓
D1 V-Net 50.58 ± 4.53 37.12 ± 3.65 12.94 ± 1.76 24.87 ± 5.58

3D FPN 49.46 ± 2.30 36.76 ± 2.17 13.29 ± 2.25 26.19 ± 5.57
nnU-Net 58.48 ± 4.50 44.13 ± 3.70 4.52 ± 2.18 16.01 ± 1.33
CoTr 51.53 ± 7.81 37.36 ± 6.96 12.55 ± 7.77 26.08 ± 6.42
AsTr (Ours) 59.26 ± 4.01 45.16 ± 3.56 4.84 ± 2.52 17.04 ± 1.81

D2 V-Net 47.02 ± 2.87 33.31 ± 2.47 12.72 ± 2.49 27.82 ± 2.45
3D FPN 48.60 ± 3.49 34.92 ± 2.57 14.34 ± 3.11 29.49 ± 6.62
nnU-Net 50.00 ± 6.72 35.77 ± 5.18 14.36 ± 11.89 32.43 ± 12.36
CoTr 50.52 ± 3.79 36.13 ± 3.64 8.69 ± 5.63 27.20 ± 8.33
AsTr (Ours) 55.97 ± 3.67 41.13 ± 2.52 8.24 ± 5.55 22.50 ± 6.55

D3 V-Net 39.31 ± 8.38 27.27 ± 7.73 16.61 ± 4.05 38.40 ± 8.43
3D FPN 41.92 ± 6.73 30.07 ± 5.84 20.84 ± 5.13 33.81 ± 9.21
nnU-Net 47.68 ± 4.80 34.52 ± 4.52 14.58 ± 6.80 30.40 ± 5.50
CoTr 43.13 ± 6.79 30.06 ± 5.81 14.21 ± 5.24 35.48 ± 8.69
AsTr (Ours) 48.83 ± 4.50 35.15 ± 4.10 10.52 ± 4.56 27.06 ± 3.92

D4 V-Net 59.66 ± 7.30 44.44 ± 6.52 7.35 ± 6.20 26.32 ± 11.50
3D FPN 61.51 ± 6.73 47.54 ± 6.21 7.69 ± 5.87 24.42 ± 9.42
nnU-Net 66.69 ± 6.75 51.91 ± 6.67 3.92 ± 1.84 18.10 ± 3.23
CoTr 61.26 ± 4.46 46.66 ± 3.43 7.01 ± 7.88 26.58 ± 9.99
AsTr (Ours) 67.28 ± 7.63 52.81 ± 8.41 3.19 ± 0.98 17.02 ± 6.03
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best segmentation performance and proves that it is an 
effective method for medical image segmentation by con-
sidering data anisotropy in the encoder and decoder. Spe-
cifically, our AsTr yields the mean DSC value of 59.26%, 
55.97, 48.83%, and 67.28% in four in-center test sce-
narios, respectively. Compared with other segmentation 
methods (i.e., V-Net, 3D FPN, nnUNet, and CoTr), our 
method increases DSC by (17.16%/19.81%/1.33%/15.00%, 
1 9 . 0 3 % / 1 5 . 1 6 % / 1 1 . 9 4 % / 1 0 . 7 9 % , 
2 4 . 2 2 % / 1 6 . 4 8 % / 2 . 4 1 % / 1 3 . 2 2 % , 
12.77%/9.38%/0.88%/9.83%) in four in-center test sce-
narios, respectively. In addition, our AsTr yields the 
DSC value of 60.62%, 46.54%, 55.94%, and 56.42% in 
four cross-center test scenarios, respectively. Compared 

with other segmentation methods (i.e., V-Net, 3D FPN, 
nnUNet, UNETR, Swin-Unet and CoTr), our method 
increases DSC by (18.82%/15.55%/9.24%/10.86%/7.44%/
7.71%, 31.21%/16.76%/6.69%/5.49%/2.67%/6.62%, 28.16
%/30.85%/15.77%/19.40%/18.39%/14.42%, 7.77%/5.12%/
1.66%/5.70%/1.31%/2.62%) in four cross-center test sce-
narios, respectively. To quantitatively analyze the gain 
significance of the proposed method compared to other 
methods, we employ the paired t-test to calculate p-value 
representing comparative significance. As shown in 
Table 3, our method is well ahead of these baseline meth-
ods in four in-center test scenarios (p<0.05), where sig-
nificantly outperforming nnUNet in internal validation 
for D2 and D3, and rivaling nnUNet in internal validation 
for D1 and D4.

To confirm the efficacy of the proposed HCA-DAN, 
we compared it with three feature-level domain align-
ment methods, including Kamnitsas et al. [32], Yan et al. 
[33]. and Panfilov et al. [34]. For simplicity, we named the 
above methods UDA1, UDA2, and UDA3, respectively. 
These methods are similar to the proposed HCA-DAN 
in that they train a segmenter and one/more domain 
discriminators in an end-to-end manner. Table 4 list the 

Table 2 The p-values of the paired t-test between the proposed 
AsTr and other methods in terms of DSC.
Test V-Net vs. 

AsTr
3D FPN vs. 
AsTr

nnUNet vs. 
AsTr

CoTr vs. 
AsTr

D1 0.006 0.005 0.588 0.039
D2 0.007 0.017 0.016 0.010
D3 0.016 0.014 0.045 0.026
D4 0.019 0.027 0.698 0.039

Table 3 Segmentation results of different methods in the cross-center test scenario
Training Test Method DSC JI ASD 95HD
{D1, D2, D3} D4 V-Net 51.02 36.64 12.03 35.21

3D FPN 52.46 38.05 13.27 30.60
nnU-Net 55.49 40.28 9.42 29.58
UNETR 54.68 39.52 12.35 33.71
Swin-Unet 56.42 41.76 9.26 27.28
CoTr 56.28 41.54 8.71 26.17
AsTr (Ours) 60.62 46.88 8.13 25.80

{D1, D2, D4} D3 V-Net 35.47 24.34 15.47 40.04
3D FPN 39.86 28.75 14.62 40.19
nnU-Net 43.62 31.18 13.71 39.41
UNETR 44.12 31.71 13.92 38.75
Swin-Unet 45.33 33.06 11.78 35.62
CoTr 43.65 31.19 13.33 39.57
AsTr (Ours) 46.54 33.61 10.97 30.92

{D1, D3, D4} D2 V-Net 43.65 30.82 18.95 38.67
3D FPN 42.75 29.78 20.32 39.41
nnU-Net 48.32 34.79 15.31 33.01
UNETR 46.85 33.12 18.34 36.98
Swin-Unet 47.25 33.60 16.54 36.52
CoTr 48.89 35.35 14.89 31.60
AsTr (Ours) 55.94 42.15 10.50 24.52

{D2, D3, D4} D1 V-Net 52.35 38.96 12.81 28.69
3D FPN 53.67 40.22 10.60 25.96
nnU-Net 55.50 42.30 9.52 24.20
UNETR 53.58 40.15 11.62 27.38
Swin-Unet 55.69 42.51 10.98 24.5
CoTr 54.98 41.16 7.41 20.76
AsTr (Ours) 56.42 43.14 8.68 23.29
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segmentation results of different UDA methods and the 
proposed method in the cross-center test scenario. The 
proposed HCA-DAN achieves the best segmentation 
results, indicating that the segmentation performance of 
AsTr could be improved by considering both tumor size 
and class-specific information in the feature alignment 
process. Compared with AsTr, the DSC values increased 
by 2.61%, 5.82%, 1.39% and 3.44% in the four cross-center 
test tasks, respectively.

Ablation study
To demonstrate the effectiveness of the proposed method 
for gastric tumor segmentation, we conducted two 
groups of ablation experiments.

Effectiveness of the PBA block
In medical image segmentation task, it is very important 
to accurately draw the lesion/object boundary. As shown 
in Fig. 3, we use the bar graph to plot the segmentation 
results of AsTr with or without the PBA block. We can 
intuitively see that adding PBA blocks to the decoding 
path can further improve segmentation performance. 
Although the PBA module demonstrated weak per-
formance gains, it was able to steadily refine prediction 
boundaries in the four cross-center test scenarios. In 
Fig. 4, we also visualized 2D axial views of some segmen-
tation results, which not only showed that the prediction 
of lesion boundaries by the proposed method was closer 
to the ground-truth, but also confirmed that PBA blocks 
were helpful for boundary refinement.

Effectiveness of the HCADA module
The core of the module is to consider tumor size and 
class-specific information during feature alignment to 
improve segmentation performance of segmentation 
network AsTr in the cross-center test scenario. There-
fore, we can consider only one of the above two factors 
to conduct the comparative experiment. Table 5 lists the 
segmentation results of these comparison methods. M1 
means that only the last CADA block is used to complete 
the feature alignment, and M2 represents class-agnostic 
during feature alignment. According to the quantitative 
results, we believe that considering only one of the above 
two factors can also improve the segmentation perfor-
mance, and considering both factors at the same time has 
the best performance.

Discussion
With the development of medical imaging equipment 
and deep learning algorithms, more and more deep learn-
ing-based methods are proposed for automated analysis 
of various cancers in various imaging modes. However, 
fully deep learning-based algorithms are still blank in the 
characterization and analysis of gastric cancer. In addi-
tion, there is heterogeneity among the multi-center data, 
which limits the deployment of the model in the clinic. 
To this end, we developed an intelligent analysis method 
for gastric cancer characterization and analysis in this 
paper, which not only achieves better segmentation per-
formance by effectively bridging CNN and Transformer, 
but also realizes the cross-center test scenario via a new 
domain adaptive technology.

Table 4 Segmentation results of different UDA methods in the cross-center test scenario
Training Test Method DSC JI ASD 95HD
{D1, D2, D3} D4 AsTr (Ours) 60.62 46.88 8.13 25.80

UDA1 59.17 45.36 8.65 26.31
UDA2 59.80 46.01 8.42 24.95
UDA3 61.45 47.32 8.97 25.46
HCA-DAN (Ours) 62.20 47.98 7.55 22.63

{D1, D2, D4} D3 AsTr (Ours) 46.54 33.61 10.97 30.92
UDA1 44.95 32.06 13.17 35.60
UDA2 45.52 32.75 12.50 33.26
UDA3 47.96 35.58 11.42 34.67
HCA-DAN (Ours) 49.25 36.86 10.87 31.68

{D1, D3, D4} D2 AsTr (Ours) 55.94 42.15 10.50 24.52
UDA1 54.63 40.91 12.88 29.50
UDA2 53.86 39.99 15.80 32.49
UDA3 55.38 41.97 12.42 28.72
HCA-DAN (Ours) 56.72 43.39 11.05 26.39

{D2, D3, D4} D1 AsTr (Ours) 56.42 43.14 8.68 23.29
UDA1 55.95 42.61 9.15 26.33
UDA2 56.87 43.63 7.32 21.75
UDA3 56.24 42.97 8.20 25.41
HCA-DAN (Ours) 58.36 45.18 6.91 20.64
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Our approach can automatically characterize gas-
tric cancer and provide a whole tumor segmentation, 
which helps determine appropriate surgical approaches 
and predict prognosis. Although our approach outper-
forms other segmentation methods, there is still room 
for improvement in the tumor segmentation task. We 
believe that there may be two reasons. On the one hand, 
the voxel space distance of the data limits the segmenta-
tion performance. On the other hand, the small objective 
segmentation task is interfered by the background area. 
Therefore, our future research should not only focus 

on the heterogeneity between multi-center data, but 
also achieve higher tumor segmentation performance 
through two-stage modeling. The two-stage modeling 
strategy is more consistent with the clinical workflow, 
that is, the clinician first roughly determines the ROI and 
subsequently performs detailed lesion delineation.

In order to fully explore the performance of different 
models, we present number of FLOPs, parameters and 
averaged inference time of the models in Table 6. Num-
ber of FLOPs and inference time are calculated based 
on an input size of 28 × 256 × 256. The proposed AsTr is 
a relatively small model with 18.67  M parameters and 
388.09G FLOPs. For comparison, other transformer-
based methods such as CoTr, UNETR, and Swin-Unet 
have 41.27  M, 145.85  M and 102.81  M parameters and 
670.62G, 2201.41G and 1582.56G FLOPs, respectively. 
AsTr shows comparable model complexity and is signifi-
cantly better than similar models. CNN-based segmenta-
tion models of VNet, 3D FPN and nnUNet have 45.60 M, 
7.83 M and 44.80 M parameters and 676.23G, 56.71G and 
691.17G FLOPs, respectively. Compared to these meth-
ods, AsTr has the second lowest parameters and FLOPs. 
Similarly, AsTr has the second lowest averaged inference 
time after 3D FPN and is significantly faster than other 
models.

In addition, dataset D3 is particularly special in our 
four datasets. The voxel spacing between slices is 8 mm, 
which is different from the other three datasets. To 

Fig. 4 The DSC values obtained by the proposed AsTr in four cross-center 
test scenarios with or without the help of PBA block

 

Fig. 3 2D visual segmentation boundary comparison of different segmentation networks. The lines represent the true lesion boundaries or predicted 
boundaries. Ground truth (red) and corresponding tumor boundaries using V-Net (yellow), 3D FPN (cyan), nnU-Net (lime), CoTr (blue), AsTr with (fuchsia) 
or without (orange) PBA block
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explore this effect, we also set up a cross-center experi-
ment without the participation of dataset D3. Table  7 
lists the segmentation results of different segmentation 
methods. Comparing the segmentation results in Table 2, 
we found that the results decreased in all three cross-
center test scenarios, indicating that the amount of data 
was more important than data quality in our cross-center 
gastric tumor segmentation scenarios. Therefore, we will 
collect and study more centers and data in the future.

Conclusions
In this paper, we propose a new HCA-DAN for cross-
center 3D gastric tumor segmentation, which can not 
only learn discriminative multi-scale features from the 
CT images with anisotropic resolution, but also mitigate 
domain shift between cross-center datasets. In HCA-
DAN, we first extract multi-scale features by combining 
anisotropic and isotropic convolution layers, and then 
employ DeTrans layers to model long-distance depen-
dence in multi-scale features. Finally, we introduce the 
HCADA module to solve the problem of data distribu-
tion migration for better domain adaptation, in which 

Table 5 Segmentation results of different UDA methods in the cross-center test scenario
Training Test Method DSC JI ASD 95HD
{D1, D2, D3} D4 AsTr (Ours) 60.62 46.88 8.13 25.80

M1 61.06 47.39 9.21 27.63
M2 61.35 47.71 7.28 21.06
HCA-DAN (Ours) 62.20 47.98 7.55 22.63

{D1, D2, D4} D3 AsTr (Ours) 46.54 33.61 10.97 30.92
M1 47.72 33.99 11.01 29.46
M2 48.21 35.57 10.15 28.80
HCA-DAN (Ours) 49.25 36.86 10.87 31.68

{D1, D3, D4} D2 AsTr (Ours) 55.94 42.15 10.50 4.52
M1 55.86 42.02 12.56 28.43
M2 56.11 42.58 11.90 27.36
HCA-DAN (Ours) 56.72 43.39 11.05 26.39

{D2, D3, D4} D1 AsTr (Ours) 56.42 43.14 8.68 23.29
M1 56.98 43.70 8.44 23.56
M2 57.28 44.15 7.69 21.85
HCA-DAN (Ours) 58.36 45.18 6.91 20.64

Table 6 Segmentation results of different segmentation methods in the cross-center test scenario
Training Test Method DSC (%) JI (%) ASD 95HD
{D1, D2} D4 V-Net 51.89 37.84 12.22 33.01

3D FPN 52.05 38.02 10.98 32.20
nnU-Net 53.96 40.15 9.48 27.15
CoTr 52.54 38.09 6.39 27.29
AsTr (Ours) 57.80 43.86 4.32 27.16

{D1, D4} D2 V-Net 45.09 32.01 15.35 35.83
3D FPN 44.95 31.86 15.62 36.03
nnU-Net 46.48 33.20 10.84 35.80
CoTr 46.34 33.00 14.42 42.05
AsTr (Ours) 53.10 39.28 8.51 24.28

{D2, D4} D1 V-Net 49.52 36.98 12.33 30.28
3D FPN 50.68 37.79 10.95 29.33
nnU-Net 51.01 38.25 9.89 27.02
CoTr 51.93 38.80 10.03 28.34
AsTr (Ours) 53.44 40.67 13.43 28.39

Table 7 Comparison of number of parameters, FLOPs and averaged inference time for different models
Indicator V-Net 3D FPN nnUNet CoTr UNETR Swin-Unet AsTr
Param (M) 45.60 7.83 44.80 41.27 145.85 102.81 18.67
FLOPs (G) 676.23 56.71 691.17 670.62 2201.41 1582.56 388.09
Inference Time (s) 5.98 3.69 6.25 5.76 19.87 14.69 4.52
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we use the different size and class-specific information of 
the lesion in the 3D representation. The extensive experi-
ments under four test scenarios together with compre-
hensive ablation study and analysis demonstrate the 
effectiveness of our approach for cross-center 3D gastric 
tumor segmentation.

Although domain adaptation technology can effectively 
handle domain shift, domain adaptation-based methods 
require images from the target domain (labeled or unla-
beled) for real-time model training or retraining. In real-
world scenarios, it is time-consuming or even impractical 
to collect data from each new target domain to fine-tune 
the model before deploying it. In future work, we will 
employ domain generalization technology to address the 
domain shift problem in multi-center study. The goal of 
domain generalization technology is to learn a model 
from a single or multiple source domains so that it can 
be directly generalized to unseen target domains, which 
facilitates the widespread use and effective deployment of 
intelligent analysis models in the clinic.
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