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Abstract
Background To explore the potential of different quantitative dynamic contrast-enhanced (qDCE)-MRI tracer kinetic 
(TK) models and qDCE parameters in discriminating benign from malignant soft tissue tumors (STTs).

Methods This research included 92 patients (41females, 51 males; age range 16–86 years, mean age 51.24 years) with 
STTs. The qDCE parameters (Ktrans, Kep, Ve, Vp, F, PS, MTT and E) for regions of interest of STTs were estimated by using 
the following TK models: Tofts (TOFTS), Extended Tofts (EXTOFTS), adiabatic tissue homogeneity (ATH), conventional 
compartmental (CC), and distributed parameter (DP). We established a comprehensive model combining the 
morphologic features, time-signal intensity curve shape, and optimal qDCE parameters. The capacities to identify 
benign and malignant STTs was evaluated using the area under the curve (AUC), degree of accuracy, and the analysis 
of the decision curve.

Results TOFTS-Ktrans, EXTOFTS-Ktrans, EXTOFTS-Vp, CC-Vp and DP-Vp demonstrated good diagnostic performance 
among the qDCE parameters. Compared with the other TK models, the DP model has a higher AUC and a greater 
level of accuracy. The comprehensive model (AUC, 0.936, 0.884–0.988) demonstrated superiority in discriminating 
benign and malignant STTs, outperforming the qDCE models (AUC, 0.899–0.915) and the traditional imaging model 
(AUC, 0.802, 0.712–0.891) alone.

Conclusions Various TK models successfully distinguish benign from malignant STTs. The comprehensive model is 
a noninvasive approach incorporating morphological imaging aspects and qDCE parameters, and shows significant 
potential for further development.
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Introduction
Soft tissue tumors (STTs) form an extraordinarily hetero-
geneous group [1]. The distinction between benign and 
malignant tumors is crucial because malignant lesions 
frequently necessitate wide-margin therapy and adjuvant 
cytotoxic therapy, whereas benign lesions require only 
serial imaging and monitoring [2–7]. However, the rarity 
of STTs as well as their overlapping histologic and radio-
logic characteristics impedes accurate classification [1].

Dynamic contrast-enhanced MRI (DCE-MRI) is 
a well-established technology for evaluating tumor 
blood microcirculation and vessel permeability [8]. In 
the majority of tissues, the MR tracer distributes over 
an intra- and extravascular extracellular space (EES), 
with a bi-directional exchange of tracer across the bar-
rier between the spaces [9]. Several tracer kinetic (TK) 
models have been developed to obtain quantitative DCE 
(qDCE) parameters characterizing the tumor micro-
circulation state. Compartmental and spatially distrib-
uted models are the two primary types of models used 
in dynamic perfusion data analysis [10, 11]. Compart-
mental models include Tofts (TOFTS), extended Tofts 
(EXTOFTS), and conventional compartmental (CC) 
models. Spatially distributed models comprise the adia-
batic approximated tissue homogeneity model (ATH) 
and the distributed parameter (DP) model [10]. TOFTS, 
the most widely used model for analyzing DCE - MRI 
data, assumes a negligible contribution of intravascu-
lar contrast agents to the total tissue concentration [11, 
12]. EXTOFTS attempts to account for a vascular plasma 
space [11]. Classical TK models such as EXTOFTS have 
been used to distinguish between benign and malignant 
STTs [13–15]. However, these two models are limited by 
using only a single constant transfer parameter (Ktrans) to 
model transport, and thereby cannot distinguish between 
the transport of tracer molecules in blood vessels and the 
exchange process of tracer molecules between blood ves-
sels and tissues [16].

Advanced pharmacokinetic models, such as CC, ATH, 
and DP, have been proposed, providing a more accurate 
explanation of tracer transport in the tissue microenvi-
ronment, and rendering derived parameters that better 
describe the tumor tissue microenvironment [9, 11, 16, 
17]. These three models are concerned with two trans-
port processes: intravascular perfusion of tracer mole-
cules, and osmotic exchange inside and outside the vessel 
through the vessel wall. By using individual parameters 
for blood flow (F) and permeability-surface area prod-
uct (PS), they successfully describe these processes [16]. 
There are differences in the three models: CC posits that 
tracer concentrations are evenly distributed between the 
inner and outer vascular spaces, whereas the ATH sug-
gests that tracer concentrations fluctuate over time and 
space within the intravascular space [10, 11, 17]. DP 

contends that tracer concentrations vary temporally 
and spatially in both the intravascular and extravascu-
lar extracellular spaces [10, 11]. These advanced tech-
nologies were already applied to cervical cancer [18, 19], 
endometrial cancer [20], and glioma [16]. They achieved 
adequate performance in assessing the microcirculation 
pattern in cervix cancer tissue, evaluating preoperative 
risk for endometrial cancer, and assessing glioma IDH 
mutation status, respectively. However, advanced TK 
models have not been researched for STTs classification.

The effectiveness of different TK models in distinguish-
ing benign from malignant STTs differs, and it is yet to be 
explored if a comprehensive model combining traditional 
imaging features and qDCE parameters can enhance the 
diagnosis performance. In this study, we aimed to com-
pare the performance of different TK models in differen-
tiating benign and malignant STTs. We also assessed if 
the comprehensive model enhanced diagnostic capability 
and enabled treatment plan optimization.

Methods
Patients
This research was authorized by our institution’s ethi-
cal committee. Written informed consent was obtained 
from each patient before the MRI examination. We selec-
tively recruited ninety-two patients who were patho-
logically diagnosed with STTs between January 2017 
and September 2022 (51 males and 41 females, 16 to 86 
years old with mean age 51.24 years). Inclusion criteria 
include: (1) all patients had undergone a 3.0T DCE MRI 
scan; (2) no chemotherapy or radiotherapy before sur-
gery; (3) patients with histopathologically proven STTs. 
Exclusion criteria include: (1) poorly vascularized tumors 
like lipoma and well-differentiated liposarcoma; (2) inad-
equate image quality due to motion artifacts; (3) interme-
diate tumors such as myoepithelioma. All lesions were 
divided into groups of benign or malignant tumors based 
on the pathological categorization of soft-tissue tumors 
by the World Health Organization (2020) [21].

MRI acquisition
The MRI examinations were obtained using a 3.0 T MRI 
scanner (MAGNETOM Skyra; Siemens Healthcare, 
Erlangen, Germany). To identify lesions and assess mor-
phological traits, we first administered conventional MRI 
series such as spin-echo T1-weighted imaging (T1WI), 
T2-weighted imaging (T2WI), and fat-suppressed T2WI. 
We used multi-flip angle T1-weighted imaging technol-
ogy to obtain T1 relaxation times (TRs) at three differ-
ent flip angles (5°, 10°, and 15°) before contrast injection. 
Table S1 displays the MRI sequence parameters. T1WI 
three-dimensional volumetric interpolated breath-hold 
examination sequence was employed for DCE - MRI 
scans. The DCE images were taken on axial plane. The 
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total acquisition time of VIBE sequence is 320 s, and the 
time resolution of each scan is 8 s; a total of 40 scans are 
obtained. In order to maintain a stable injection rate, 
we used an auto-injector for intravenous injection of 
gadoteridol (ProHance; Eisai, Tokyo, Japan) at a dose 
of 0.1mmol/kg at a rate of 2mL/s. Following that, at the 
same pace, we administered 20mL of physiological saline.

MRI morphologic characteristics
MR images on the picture archiving and communication 
system (PACS) (m-view v5.4.10.71, INFINITT Health-
care) were independently evaluated by two experienced 
radiologists (with 5 and 8 years of diagnostic practice) 
who were blinded to clinical information and histopath-
ological reports. Consensus was reached on the MRI 
morphological data. The following was recorded: (1) 
size(maximum diameter of tumor); (2) location(head and 
neck, trunk, upper limb, lower limb); (3) shape (non-mul-
tilobulated or multilobulated); (4) margin (well-defined 
or ill-defined); (5) lesion internal enhancement pattern 
(homogeneous or heterogeneous); (6) tumor necrosis; 
(7) peri-tumoral edema. The margin of a mass that was 
clearly separated from surrounding structures, regardless 
of neighboring peritumoral edema, was called a “well-
defined” tumor. Heterogeneous, defined as the presence 
of areas of low, intermediate, and high signal intensity in 
≥ 50% of the tumor volume. High signal on T2-weighted 
imaging without enhancement was considered evidence 
of tumor necrosis. Peritumoral edema is characterized 
as a fluid-like, high signal in the peritumoral region on 
T2WI that can be distinguished from the tumor entity. 
Labels 6 and 7 were classified as ‘yes’ or ‘no’.

DCE-MR image analysis
We included time-signal intensity curve (TIC) types and 
quantitative evaluations in the DCE-MRI data analysis. 
Based on the previously described approach, the TIC 
types were characterized as having no evident upward 
trend or consistently increasing (type I), rapidly increas-
ing then flattening (type II), or rapidly increasing and 
dropping (type III) [22]. The region of interest (ROI) of 
the DCE-MRI image was positioned in the solid portion 
of the lesion based on regular MRI findings and enhanc-
ing features of the lesion. According to the size of the 
solid portions of the lesion, the ROIs spanned areas of 
change ranging from 1 to 5 cm2. Necrotic, cystic, and 
hemorrhagic areas were avoided when drawing the ROIs. 
For each patient, two experienced radiologists manually 
chose ROIs in four typical slices, and the average value 
was determined as the parameter value. Image process-
ing was conducted using commercially accessible soft-
ware (MItalytics, FITPU Healthcare, Singapore). The 
software allows for the selection of a unique arterial input 
function for each patient case and employs a constrained 

nonlinear optimization approach to match the different 
models. In total, we obtained 25 independent and derived 
qDCE parameters. The TOFTS model was used to derive 
the following parameters: Ktrans (min− 1), reverse reflux 
rate constant (Kep; min− 1), and extravascular extracellu-
lar volume (Ve; mL/mL). Similarly, the EXTOFTS model 
was used to calculate Ktrans, Kep, Ve, and volume fraction 
of plasma (Vp; mL/mL). The ATH, CC, and DP model 
were used to obtain the parameters of Ve, Vp, F (mL/min/
mL), PS (mL/min/mL), mean transit time (MTT; s), and 
extraction fraction (E; %). Supplementary Material A1 
mathematically describes the parameter fitting with the 
equations of the tissue concentration-time curve Ctiss(t) 
used to fit pharmacokinetic models.

Statistical analysis
All statistical analyses were conducted using R4.2.1 
(www.r-project.org) and SPSS (version 25.0; SPSS, Chi-
cago, III, USA).

MR morphologic characteristics and TIC types: The 
Shapiro-Wilk test was used to assess the normal distri-
bution. The variables relating to benign and malignant 
lesions were assessed using the Mann-Whitney U test, 
χ2 test and univariate logistic regression analysis. Subse-
quently, we introduced the MRI morphological features 
and TIC with P < 0.05 into a multivariate logistic regres-
sion. The results of P < 0.05 were regarded as significant, 
and the findings were incorporated in the construction of 
traditional imaging model and subsequent studies.

Construction of qDCE models: We constructed the 
TOFTS, EXTOFTS, ATH, CC, and DP models using mul-
tivariate logistic regression based on the qDCE param-
eters derived from each TK model.

Development of top-parameter model: The Mann-
Whitney U test, t test, and univariate logistic regression 
analysis were used to evaluate the qDCE parameters 
related to benign and malignant STTs. To filter the opti-
mal parameters, we firstly attempted to incorporate all 
qDCE parameters of TK models into multifactor logistic 
regression. The variance inflation factor(VIF) was used to 
analyze multicollinearity. Some TK models have the same 
parameters or different TK model parameters interact 
with each other, multicollinearity is high, and some VIF 
values exceed 10. Therefore, the qDCE parameters with 
univariate logistic regression P < 0.05 were included in 
multiple logistic regression analysis with each TK model 
as the unit. The qDCE parameters with P < 0.05 were 
considered the top-parameters associated with the dif-
ferentiation of benign and malignant STTs. There is no 
multicollinearity between top-parameters, and VIF < 10. 
Finally, we used the top-parameters to create a top-
parameter model.

Construction and evaluation of the DP + Traditional 
imaging model and the comprehensive model: (1) The 

http://www.r-project.org
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DP + Traditional imaging model was constructed using 
all parameters of the DP model and statistically signifi-
cant traditional imaging features. (2) For the purpose of 
building the comprehensive model, we employed the top-
parameters and statistically significant morphological 
features as input components. The area under the curve 
(AUC) was used to evaluate diagnostic performance. We 
also evaluated the accuracy, sensitivity, and specificity of 
each TK model and qDCE parameter.

Results
The final diagnoses were based on histopathology, which 
showed 31 benign and 61 malignant lesions. Table  1 
describes the detailed histopathological information 
regarding the two groups. Figure S1 shows pseudo-color 
images of an undifferentiated pleomorphic sarcoma. Fig-
ure S2 shows pseudo-color images of a schwannoma.

Table  2 lists the relevant MRI morphological param-
eters and TIC. There were remarkable differences in 
shape, margin, tumor necrosis, peri-tumoral edema and 

TIC between the two groups. Univariate and multivariate 
analysis demonstrated that tumor necrosis (AUC 0.707), 
and TIC types (AUC 0.732) were independent predictors 
of benign and malignant STTs differentiation. Table S2 
shows the results of univariate and multivariate analy-
sis of morphological, TIC and qDCE parameters. Table 
S3 displays the diagnostic values of these parameters for 
separating malignant from benign STTs. Figure 1a shows 
the ROCs for MRI morphological parameters.

Table  3 provides the statistical analysis of the qDCE 
parameters for benign and malignant STTs. There was 
no statistically significant difference in Ve values of all TK 
models between malignant and benign STTs (P > 0.05), 
while the differences in the other parameters were statis-
tically significant (P < 0.05). Figure 1b-f shows the ROCs 
for qDCE parameters. Table S3 displays the optimal cut-
off values and diagnostic performance for each param-
eter. TOFTS-Ktrans achieved the greatest accuracy (0.859) 
and highest AUC (0.893) in predicting STTs.

Table  4 provides an illustration of the diagnostic per-
formance of the nine models. The AUCs (0.899–0.915) 
of TOFTS, EXTOFTS, ATH, CC and DP models were 
all high, and the AUC(0.915) and accuracy (0.902) of the 

Table 1 Summary of classification of soft tissue tumors as per 
revised 2020 WHO criteria
Tumor classification Benign tumors Malignant tumors
Adipocytic -- Myxoid liposarcoma (n = 6)

Dedifferentiated liposar-
coma (n = 2)

Fibroblastic/
myofibroblastic

Nodular fasciitis 
(n = 1)
Proliferative 
myositis (n = 1)
Fibroma of 
tendon sheath 
(n = 1)
Elastofibroma 
(n = 2)
Angiofibroma 
(n = 1)

Fibrosarcoma (n = 14)
Myxofibrosarcoma (n = 9)
Malignant solitary fibrous 
tumor (n = 2)

Peripheral nerve 
sheath

Schwannoma 
(n = 17)
Neurofibroma 
(n = 2)

--

Vascular Hemangioma 
(n = 5)

--

So-called 
fibrohistiocytic

Tenosynovial 
giant cell (n = 1)

--

Skeletal muscle -- Rhabdomyosarcoma 
(n = 1)

Chondro-osseous -- Extraskeletal 
osteosarcoma
(n = 4)

Uncertain 
differentiation

-- Synovial sarcoma (n = 5)
Epithelioid sarcoma (n = 1)
Alveolar soft part sarcoma 
(n = 1)
Undifferentiated pleomor-
phic sarcoma (n = 12)

Smooth muscle -- Leiomyosarcoma (n = 4)

Table 2 MR Morphological features and TIC types
Variables Benign(n = 31) Malignant(n = 61) P value
Size(mm) a 57.0(32.4, 81.3)

(range7.6-165.7)
70.3(43.2, 111.0)
(range14.7-308.7)

0.09#

Location
 Head and neckb 6( 19.4%) 4( 6.6%) 0.19*
 Trunkb 6( 19.4%) 8( 13.1%)
 Upper limbb 6( 19.4%) 13( 21.3%)
 Lower limbb 13( 41.9%) 36( 59.0%)
Shape 0.011*
 Non-multilobulated 
b

26(83.9%) 35(57.4%)

 Multilobulated b 5(16.1%) 26(42.6%)
Margin 0.008*
 Well-defined b 25(80.6%) 32(52.5%)
 Ill-defined b 6(19.4%) 29(47.5%)
Enhancement pattern 0.70*
 Homogeneous b 5(16.1%) 8(13.1%)
 Heterogeneous b 26(83.9%) 53(86.9%)
Tumor necrosis < 0.001*
 Yes b 8(25.8%) 41(67.2%)
 No b 23(74.2%) 20(32.8%)
Peri-tumoral edema 0.004*
 Yes b 18(58.1%) 52(85.2%)
 No b 13(41.9%) 9(14.8%)
TIC types < 0.001*
 Type I b 20(64.5%) 15(24.6%)
 Type II b 11(35.5%) 35(57.4%)
 Type III b - 11(18.0%)
#Mann-Whitney U-test; * χ2 test. a Data are median (confidence interval); b Data 
are number of lesions, with percentage in parentheses. TIC time-signal intensity 
curve
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Fig. 1 AUC of traditional imaging model (a), Tofts model (b), Extended Tofts model (c), ATH model (d), CC model (e), DP model (f), a comparison of five 
TK models and top-parameter model (g), a comparison of traditional imaging model, DP model, top-parameter model, DP model + traditional imaging 
model and comprehensive model (h)
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DP model was the highest. TOFTS-Ktrans (AUC 0.893), 
EXTOFTS-Ktrans (AUC 0.873), EXTOFTS-Vp (AUC 
0.822), CC-Vp (AUC 0.870), and DP-Vp (AUC 0.875) were 
independent predictors of malignancy. The top-parame-
ter model was constructed by TOFTS-Ktrans, EXTOFTS-
Ktrans, EXTOFTS-Vp, CC-Vp and DP-Vp. The AUC value 
of the top-parameter model (0.914) is similar to DP 
model (0.915), but the AUC value of the comprehensive 
model, which is the optimal parameter model plus imag-
ing features, is higher than that of the DP plus imag-
ing features. The comprehensive model had the highest 
AUC (0.936, 95% CI, 0.884–0.988) among all the models. 
The ROCs of the five TK models and the top-parameter 
model are displayed in Fig. 1g.

Figure  2 illustrates the decision curve analysis (DCA) 
plot for the comprehensive model. It demonstrates that 
for a treatment threshold probability between 0.1 and 1, 
the comprehensive model outperformed the traditional 
imaging model including “treat none” versus “treat all” 
strategies.

Discussion
This research assessed the efficacy of various TK mod-
els for categorizing of benign and malignant STTs. We 
demonstrate that they all accurately distinguish between 
such lesions (AUC 0.899–0.915). The multivariate binary 
logistic regression study revealed that TOFTS-Ktrans, 
EXTOFTS-Ktrans, EXTOFTS-Vp, CC-Vp, and DP-Vp are 
independent predictors of malignancy. We thus created a 
comprehensive model including these five qDCE param-
eters combined with tumor necrosis and TIC. This pro-
posed comprehensive model is superior in differentiating 
between benign and malignant STTs. The comprehensive 
model’s AUC of 0.936 demonstrates that it outperforms 
the traditional imaging model (AUC 0.802) and the phar-
macokinetic models (AUC 0.899–0.915). The DCA of 
the comprehensive model was likewise found to be more 
clinically beneficial than the traditional imaging and 
pharmacokinetic models.

DCE-MRI, a functional MRI technique, obtains 
T1-weighted magnetic resonance images dynamically 
after the injection of a considerable amount of contrast 
agent [23]. QDCE-MRI analysis fits different TK models 

Table 3 QDCE parameters derived with the TOFTS, EXTOFTS, ATH, CC and DP models
Parameters Benign(n = 31) Malignant(n = 61) P value
TOFTS
 Ktrans (min− 1) a

 Kep (min− 1) a

 Ve
b

0.072(0.045,0.095)
0.258(0.193,0.365)
0.315 ± 0.146

0.168(0.126,0.244)
0.533(0.331,0.974)
0.365 ± 0.142

< 0.001*
< 0.001*
0.117#

EXTOFTS
 Ktrans (min− 1) a

 Kep (min− 1) a

 Ve
a

 Vp
a

0.067(0.040,0.090)
0.259(0.184,0.348)
0.248(0.202,0.396)
0.008(0.004,0.014)

0.142(0.100,0.214)
0.419(0.278,0.641)
0.345(0.234,0.459)
0.028(0.012,0.039)

< 0.001*
< 0.001*
0.052*
< 0.001*

ATH
 F a

 PS a

 Ve
a

 VP
a

 MTTa

 E a

0.381(0.261,0.438)
0.061(0.041,0.076)
0.333(0.219,0.538)
0.007(0.004,0.016)
1.329(0.843,2.234)
15.095(12.267,18.466)

0.530(0.457,0.641)
0.153(0.102,0.222)
0.339(0.214,0.477)
0.032(0.008,0.061)
3.666(1.811,7.578)
25.361(20.442,30.462)

< 0.001*
< 0.001*
0.98*
< 0.001*
< 0.001*
< 0.001*

CC
 F a

 PS a

 Ve
a

 VP
a

 MTTa

 E a

0.096(0.067,0.178)
0.080(0.059,0.162)
0.476(0.288,0.774)
0.008(0.005,0.023)
5.500(4.362,7.957)
58.154(34.785,80.590)

0.408(0.223,0.741)
0.149(0.101,0.272)
0.324(0.205,0.534)
0.065(0.028,0.096)
7.866(6.323,11.086)
37.230(20.710,69.214)

< 0.001*
0.001*
0.079*
< 0.001*
0.001*
0.006*

DP
 F a

 PS a

 Ve
a

 VP
a

 MTTa

 E a

0.147(0.096,0.236)
0.054(0.042,0.074)
0.402(0.256,0.591)
0.014(0.006,0.022)
3.907(3.000,7.591)
27.058(20.955,36.227)

0.344(0.238,0.476)
0.148(0.108,0.214)
0.318(0.216,0.492)
0.060(0.034,0.074)
10.000(8.270,12.096)
37.927(26.640,53.713)

< 0.001*
< 0.001*
0.182*
< 0.001*
< 0.001*
0.002*

#t test; * Mann-Whitney U test. a Data are median (confidence interval); b Data are mean ± SD. Ktrans transfer constant, Kep reverse reflux rate constant, Ve extravascular 
extracellular volume, Vp volume fraction of plasma, F blood flow, PS permeability surface area product, MTT mean transit time, E extraction fraction. Ktrans and Kep are 
in units of min− 1, Ve and Vp are in units of mL/mL, F and PS are in units of mL/min/mL, MTT is in unit of seconds, E is in unit of %
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to dynamically-acquired tissue concentration curves 
to enable the estimation of quantitative tissue param-
eters related to vascularity [10]. QDCE-MRI is promis-
ing in its ability to fundamentally describe the tumor’s 
vascularity and permeability. In our study, we individu-
ally evaluated the qDCE parameters obtained from the 
TOFTS, EXTOFTS, ATH, CC, and DP models. Among 
the parameters in all TK models, Ktrans demonstrated the 
best diagnostic performance. The Ktrans value represents 
the rate at which the contrast medium moves from the 
intravascular to the extravascular extracellular area. An 
elevated angiogenesis rate in malignant tumors causes 
a rise in blood flow and microvascular permeability, 
thus producing a greater Ktrans value [14]. Vp is another 

suitable parameter to distinguish benign from malignant 
STTs, characterizing the degree of tissue microvascular-
ity [16, 19]. Angiogenesis provides the necessary oxygen 
and nutrients for tumor growth and is closely associated 
to the malignant tumor growth [14, 24, 25]. Early stud-
ies revealed that the microvascular density of malig-
nant STTs was significantly greater than that of benign 
STTs [26]. Our findings indicated that the Vp values 
of EXTOFTS, ATH, CC, and DP models in malignant 
lesions were substantially larger than those in benign 
lesions, consistent with previous findings. The parameter 
Ktrans describes the combined processes of vascular per-
meability and tumor blood flow, but it is not clear which 
process is primarily responsible for Ktrans. In recent years, 
blood flow (F) and permeability-surface area product 
(PS) were used to describe intravascular perfusion and 
exchange between the intravascular and extravascular 
spaces respectively [10, 16, 20]. Unlike Ktrans in the clas-
sical TK model, F and PS in the CC, ATH, DP models 
allow the permeability, PS, and the plasma blood flow, Fp 
to be estimated separately. Our results indicate that F and 
PS values — estimated by the CC, ATH, and DP models 
— are higher in malignant STTs. This may be because F 
and PS are related to the supply of nutrients necessary 
for cell growth, and these parameters are usually elevated 
because of the excessive proliferation of tumor cells [19].

Applying DCE-MRI for a combined measurement of 
perfusion and permeability necessitates using a suit-
able TK model to distinguish the contribution of both 
spaces [23]. Many compartmental and spatially distrib-
uted models have been proposed in the last two decades. 
The distinction between them is rooted in their assump-
tion of lumped or distributed parameter compartments 
[10, 27]. The EXTOFTS model, a compartmental model, 
is the most common model for STTs [13–15, 26, 28]. In 
recent years, new TK models, such as ATH, CC, and DP, 
have been applied for a variety of diseases [16, 18, 20, 
27]. These models consider both the spatial and tempo-
ral variations of an administered contrast agent, which is 
more realistic and likely to achieve greater accuracy and 
additional information than classical models .

Previous studies have demonstrated that ATH, CC, and 
DP models are effective in diagnosing cervical cancer tis-
sue and providing additional information on glioma ves-
sel permeability [16, 18, 19]. Our study analyzed all five 
TK models and found that the diagnostic performance 
of these models was similar. The DP model achieves the 
highest AUC and the best accuracy among all TK models. 
This may be because the DP model can describe blood 
flow and vascular permeability separately, avoiding the 
problem of confusing the two due to changes in the tissue 
microenvironment in the classical TK models. Compared 
with the TOFTS model, DP model introduced the param-
eters Vp and mean transit time(MTT) to characterize the 

Table 4 ROC analyses of the nine models established by logistic 
multiunivariate binary logistic analysis
Model AUROC

(95%CI)
Sensitiv-
ity
(95%CI)

Specificity
(95%CI)

Accu-
racy
(95%CI)

Traditional imaging 0.802
(0.712–
0.891)

0.590
(0.467–
0.714)

0.903
(0.799-1.000)

0.696
(0.691-
0.700)

TOFTS 0.899
(0.835–
0.963)

0.852
(0.763–
0.941)

0.871
(0.753–0.989)

0.859
(0.856–
0.861)

EXTOFTS 0.904
(0.843–
0.965)

0.787
(0.684–
0.890)

0.935
(0.849-1.000)

0.837
(0.834–
0.840)

ATH 0.909
(0.851–
0.967)

0.820
(0.723–
0.916)

0.903
(0.799-1.000)

0.848
(0.845–
0.851)

CC 0.903
(0.841–
0.964)

0.738
(0.627–
0.848)

1.000
(1.000–1.000)

0.826
(0.823–
0.829)

DP 0.915
(0.850–
0.980)

0.885
(0.805–
0.965)

0.935
(0.849-1.000)

0.902
(0.900-
0.904)

Top-parameter 0.914
(0.856–
0.971)

0.836
(0.743–
0.929)

0.968
(0.906-1.000)

0.880
(0.878–
0.883)

DP + Traditional 
imaging

0.925
(0.865–
0.984)

0.902
(0.827–
0.976)

0.935
(0.849-1.000)

0.913
(0.911–
0.915)

Comprehensive 0.936
(0.884–
0.988)

0.902
(0.827–
0.976)

0.935
(0.849-1.000)

0.913
(0.911–
0.915)

Traditional imaging model, morphological parameters and TIC types were 
chosen; TOFTS model, TOFTS transfer constant (Ktrans), TOFTS reverse reflux 
rate constant (Kep), TOFTS extravascular extracellular volume (Ve) were chosen; 
EXTOFTS model, EXTOFTS-Ktrans, EXTOFTS-Kep, EXTOFTS-Ve, EXTOFTS volume 
fraction of plasma (Vp) were chosen; ATH, CC and DP model, blood flow 
(F), permeability surface area product (PS), Ve, Vp, mean transit time (MTT) 
and extraction fraction (E) were chosen; DP + Traditional imaging model, 
qDCE parameters (DP-F, DP-PS, DP-Ve, DP-Vp, DP-MTT, DP-E), morphological 
parameters, TIC types were chosen; Top-parameter model, the optimal 
quantitative dynamic contrast-enhanced MRI parameters (TOFTS-Ktrans, 
EXTOFTS-Ktrans, EXTOFTS-Vp, CC-Vp, DP-Vp) were chosen; Comprehensive 
model, the optimal quantitative dynamic contrast-enhanced MRI parameters, 
morphological parameters and TIC types were combined together. AUROC area 
under the receiver operating characteristic curve; CI confidence interval
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degree of tissue microvessels. The description of more 
dimensions of tumor blood supply and complex calcula-
tions may make the results more accurate. In addition, 
we produced a comprehensive model combining the tra-
ditional imaging model and optimal parameter model to 
differentiate between benign and malignant STTs. The 
results show that the comprehensive model achieves the 
best differential diagnosis ability among all the models. 
Thus, our comprehensive model incorporating a vast 
array of multi-scale information more accurately reflects 
the blood circulation characteristics of tumors, allow-
ing for a more reliable distinction between benign and 
malignant lesions. The promising outcome of this study 
encourages further research to formalize TK modelling 
and DCE-MRI as a possible imaging technique for preop-
erative risk assessment in patients with STTs.

There are several limitations to improve in future work. 
Firstly, this was a prospective study on a limited number 
of patients, and the findings should be confirmed for a 
larger sample. Secondly, given the low incidence of STTs 
and the diversity of their histopathological types, this 
study included STTs with different histological diagno-
ses. Thirdly, while the delineation of the ROI in this study 
avoided tumor necrosis and peritumoral edema, includ-
ing only the solid part of the lesion, it could still be influ-
enced by potential human error.

Conclusion
ATH, CC, and DP have shown promise for STT 
DCE-MRI data and microcirculation pattern circula-
tion analysis, and suitably supplement TOFTS and 
EXTOFTS-TOFTS. QDCE-MRI parameters effectively 
distinguish between malignant and benign STTs, par-
ticularly TOFTS-Ktrans, EXTOFTS-Ktrans, EXTOFTS-Vp, 
CC-Vp, and DP-Vp. Combining qDCE-MRI data, mor-
phological features, and kinetic curve types may result in 
superior diagnostic accuracy.

Supplementary Information
The online version contains supplementary material available at https://doi.
org/10.1186/s40644-024-00710-x.

Supplementary Material 1

Acknowledgements
We thank Irina Entin, M. Eng., from Liwen Bianji (Edanz) (www.liwenbianji.cn) 
for editing the English text of a draft of this manuscript.
We thank Dr. Zujun Hou for advice in proofreading of this manuscript and 
Mr.Liuyang Chen for software customization.

Author contributions
AG wrote the manuscript. AG, HW, XZ, TW and JH was responsible for 
collecting of the data. HW, DP and BY conceived and designed this study. 
RZ and ZY performed the imaging examination of soft tissue tumors. AG, LC, 
TW, JH and XZ processed and analyzed the data for this study. HW revised 

Fig. 2 Decision curve analysis (DCA) of the nine models. The DCA indicated that the comprehensive model was more beneficial than the traditional 
imaging model and all individual quantitative dynamic contrast-enhanced MRI models when the threshold probability is between 0.1 and 1

 

https://doi.org/10.1186/s40644-024-00710-x
https://doi.org/10.1186/s40644-024-00710-x
http://www.liwenbianji.cn


Page 9 of 9Gao et al. Cancer Imaging           (2024) 24:64 

and confirmed the manuscript. All authors read and approved the final 
manuscript.

Funding
This work was supported by the National Natural Science Foundation of 
China (Grant No. 82172035). This study was funded by the Project Grant No. 
ZR2020MH286 and No. ZR2021MH159 supported by the Shandong Provincial 
Natural Science Foundation.

Data availability
The datasets used and/or analysed during the current study are available from 
the corresponding author on reasonable request.

Declarations

Ethical approval
This study was approved by the ethics review board of the Affiliated Hospital 
of Qingdao University and the need for informed patient consent for inclusion 
was waived.

Consent for publication
Publication was approved by all authors and by the responsible authorities 
where the work was carried.

Competing interests
The author(s) declare no competing interests out.

Received: 10 October 2023 / Accepted: 11 May 2024

References
1. Marzi S, Stefanetti L, Sperati F, Anelli V. Relationship between diffusion 

parameters derived from intravoxel incoherent motion MRI and perfusion 
measured by dynamic contrast-enhanced MRI of soft tissue tumors. NMR 
Biomed. 2016;29:6–14.

2. Zhao F, Ahlawat S, Farahani SJ, Weber KL, Montgomery EA, Carrino JA, et al. 
Can MR imaging be used to predict tumor grade in soft-tissue. Sarcoma? 
Radiol. 2014;272:192–201.

3. Chhabra A, Soldatos T. Soft-tissue lesions: when can we exclude sarcoma? 
AJR Am J Roentgenol. 2012;199:1345–57.

4. Wang H, Zhang J, Bao S, Liu J, Hou F, Huang Y, et al. Preoperative MRI-Based 
Radiomic Machine-Learning Nomogram May accurately distinguish between 
Benign and malignant soft-tissue lesions: a two-Center Study. J Magn Reson 
Imaging. 2020;52:873–82.

5. Crombe A, Alberti N, Stoeckle E, Brouste V, Buy X, Coindre JM, et al. Soft tissue 
masses with myxoid stroma: can conventional magnetic resonance imaging 
differentiate benign from malignant tumors? Eur J Radiol. 2016;85:1875–82.

6. Arkun R, Argin M. Pitfalls in MR imaging of musculoskeletal tumors. Semin 
Musculoskelet Radiol. 2014;18:63–78.

7. Fields BKK, Demirjian NL, Hwang DH, Varghese BA, Cen SY, Lei X, et al. 
Whole-tumor 3D volumetric MRI-based radiomics approach for distin-
guishing between benign and malignant soft tissue tumors. Eur Radiol. 
2021;31:8522–35.

8. Noebauer-Huhmann IM, Amann G, Krssak M, Panotopoulos J, Szomolanyi P, 
Weber M, et al. Use of diagnostic dynamic contrast-enhanced (DCE)-MRI for 
targeting of soft tissue tumour biopsies at 3T: preliminary results. Eur Radiol. 
2015;25:2041–8.

9. Sourbron SP, Buckley DL. On the scope and interpretation of the Tofts models 
for DCE-MRI. Magn Reson Med. 2011;66:735–45.

10. Khalifa F, Soliman A, El-Baz A, Abou El-Ghar M, El-Diasty T, Gimel’farb G, 
et al. Models and methods for analyzing DCE-MRI: a review. Med Phys. 
2014;41:124301.

11. Koh TS, Bisdas S, Koh DM, Thng CH. Fundamentals of tracer kinetics for 
dynamic contrast-enhanced MRI. J Magn Reson Imaging. 2011;34:1262–76.

12. Tofts PS, Berkowitz B, Schnall MD. Quantitative analysis of dynamic Gd-DTPA 
enhancement in breast tumors using a permeability model. Magn Reson 
Med. 1995;33:564–8.

13. Zhang Y, Yue B, Zhao X, Chen H, Sun L, Zhang X, et al. Benign or malig-
nant characterization of soft-tissue tumors by using semiquantitative and 
quantitative parameters of dynamic contrast-enhanced magnetic resonance 
imaging. Can Assoc Radiol J. 2020;71:92–9.

14. Choi YJ, Lee IS, Song YS, Kim JI, Choi KU, Song JW. Diagnostic performance of 
diffusion-weighted (DWI) and dynamic contrast-enhanced (DCE) MRI for the 
differentiation of benign from malignant soft-tissue tumors. J Magn Reson 
Imaging. 2019;50:798–809.

15. Lee SK, Jee WH, Jung CK, Chung YG. Multiparametric quantitative analysis of 
tumor perfusion and diffusion with 3T MRI: differentiation between benign 
and malignant soft tissue tumors. Br J Radiol. 2020;93:20191035.

16. Li Z, Zhao W, He B, Koh TS, Li Y, Zeng Y, et al. Application of distributed 
parameter model to Assessment of Glioma IDH Mutation Status by Dynamic 
contrast-enhanced magnetic resonance imaging. Contrast Media Mol Imag-
ing. 2020;2020:8843084.

17. Sourbron SP, Buckley DL. Tracer kinetic modelling in MRI: estimating perfu-
sion and capillary permeability. Phys Med Biol. 2012;57:R1–33.

18. Shao J, Zhang Z, Liu H, Song Y, Yan Z, Wang X, et al. DCE-MRI pharmacoki-
netic parameter maps for cervical carcinoma prediction. Comput Biol Med. 
2020;118:103634.

19. Wang X, Lin W, Mao Y, Peng W, Song J, Lu Y, et al. A comparative study of 
two-Compartment Exchange models for Dynamic contrast-enhanced MRI 
in characterizing uterine cervical carcinoma. Contrast Media Mol Imaging. 
2019;2019:3168416.

20. Ye Z, Ning G, Li X, Koh TS, Chen H, Bai W, et al. Endometrial carcinoma: use of 
tracer kinetic modeling of dynamic contrast-enhanced MRI for preoperative 
risk assessment. Cancer Imaging. 2022;22:14.

21. Moch HJWCoT. Soft Tissue and Bone Tumours WHO Classification of 
Tumours/Volume 3 2020;3.

22. Li X, Xie Y, Hu Y, Lu R, Li Q, Xiong B, et al. Soft tissue sarcoma: correlation 
of dynamic contrast-enhanced magnetic resonance imaging features 
with HIF-1α expression and patient outcomes. Quant Imaging Med Surg. 
2022;12:4823–36.

23. Sourbron SP, Buckley DL. Classic models for dynamic contrast-enhanced MRI. 
NMR Biomed. 2013;26:1004–27.

24. Partridge SC, Demartini WB, Kurland BF, Eby PR, White SW, Lehman CD. Dif-
ferential diagnosis of mammographically and clinically occult breast lesions 
on diffusion-weighted MRI. J Magn Reson Imaging. 2010;31:562–70.

25. Holash J, Maisonpierre PC, Compton D, Boland P, Alexander CR, Zagzag D, et 
al. Vessel cooption, regression, and growth in tumors mediated by angiopoi-
etins and VEGF. Science. 1999;284:1994–8.

26. Zhang Y, Zhao H, Liu Y, Zeng M, Zhang J, Hao D. Diagnostic performance of 
dynamic contrast-enhanced MRI and (18)F-FDG PET/CT for Evaluation of 
Soft Tissue Tumors and correlation with Pathology parameters. Acad Radiol. 
2022;29:1842–51.

27. Lu Y, Peng W, Song J, Chen T, Wang X, Hou Z, et al. On the potential use of 
dynamic contrast-enhanced (DCE) MRI parameters as radiomic features of 
cervical cancer. Med Phys. 2019;46:5098–109.

28. Lee JH, Yoon YC, Seo SW, Choi YL, Kim HS. Soft tissue sarcoma: DWI and 
DCE-MRI parameters correlate with Ki-67 labeling index. Eur Radiol. 
2020;30:914–24.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in 
published maps and institutional affiliations.


	Applying dynamic contrast-enhanced MRI tracer kinetic models to differentiate benign and malignant soft tissue tumors
	Abstract
	Introduction
	Methods
	Patients
	MRI acquisition
	MRI morphologic characteristics
	DCE-MR image analysis
	Statistical analysis

	Results
	Discussion
	Conclusion
	References


