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Abstract
Objectives Magnetic resonance (MR)-based radiomics features of brain metastases are utilised to predict epidermal 
growth factor receptor (EGFR) mutation and human epidermal growth factor receptor 2 (HER2) overexpression in 
adenocarcinoma, with the aim to identify the most predictive MR sequence.

Methods A retrospective inclusion of 268 individuals with brain metastases from adenocarcinoma across two 
institutions was conducted. Utilising T1-weighted imaging (T1 contrast-enhanced [T1-CE]) and T2 fluid-attenuated 
inversion recovery (T2-FLAIR) sequences, 1,409 radiomics features were extracted. These sequences were randomly 
divided into training and test sets at a 7:3 ratio. The selection of relevant features was done using the least absolute 
shrinkage selection operator, and the training cohort’s support vector classifier model was employed to generate the 
predictive model. The performance of the radiomics features was evaluated using a separate test set.

Results For contrast-enhanced T1-CE cohorts, the radiomics features based on 19 selected characteristics exhibited 
excellent discrimination. No significant differences in age, sex, and time to metastasis were observed between the 
groups with EGFR mutations or HER2 + and those with wild-type EGFR or HER2 (p > 0.05). Radiomics feature analysis 
for T1-CE revealed an area under the curve (AUC) of 0.98, classification accuracy of 0.93, sensitivity of 0.92, and 
specificity of 0.93 in the training cohort. In the test set, the AUC was 0.82. The 19 radiomics features for the T2-FLAIR 
sequence showed AUCs of 0.86 in the training set and 0.70 in the test set.

Conclusions This study developed a T1-CE signature that could serve as a non-invasive adjunctive tool to determine 
the presence of EGFR mutations and HER2 + status in adenocarcinoma, aiding in the direction of treatment plans.

Clinical relevance statement We propose radiomics features based on T1-CE brain MR sequences that are both 
evidence-based and non-invasive. These can be employed to guide clinical treatment planning in patients with brain 
metastases from adenocarcinoma.
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Introduction
Cell surface receptor tyrosine kinases, such as the epi-
dermal growth factor receptor (EGFR) and human epi-
dermal growth factor receptor 2 (HER2), dimerise with 
other HER family receptors to transmit growth signals 
[1]. Many common cancers often involve the activation, 
overexpression, or mutation of EGFR and HER2. When 
EGFR and HER2 are overexpressed in tumour cells, these 
cells multiply rapidly [2]. Numerous solid tumours have 
been found to harbour mutant forms of EGFR, with 
these mutations being associated with tumour progres-
sion, drug resistance, and patient survival [3]. In certain 
individuals with various solid tumours, HER2 is overex-
pressed [4], substantially predicting poorer overall sur-
vival. Recent studies have identified HER2 kinase domain 
mutations in 4% of all primary lung cancer tumours and 
10% of those with adenocarcinoma histology [5]. As a 
result, timely determination of EGFR mutations and 
HER2 overexpression is crucial for predicting therapeutic 
response and determining specific treatment plans.

The currently accepted method for determining genetic 
status is biopsy. However, its highly invasive nature often 
precludes the collection of tissue samples from the main 
tumour or brain metastases. The size of the lesion, degree 
of intratumoral cystic necrosis, degree of paratumoral 
oedema, and degree of imaging signal are all character-
istics of brain metastasis that may be effectively reflected 
by magnetic resonance (MR) imaging [6, 7]. Nonetheless, 
MR imaging is unable to predict alterations at the molec-
ular level. Therefore, precise, non-invasive quantitative 
approaches are required to provide a real-time comple-
ment to histologic evaluation and represent intratumoral 
heterogeneity.

Existing brain metastasis radiomic research has pri-
marily focused on building models to differentiate 
between various primary malignancies or lung can-
cer subtypes [8–11]. However, there has been limited 
information available on the radiomic characteristics of 
brain metastases. Brain metastases might offer a genetic 
opportunity to select patients for specific treatments.

This study explores the potential of radiomics in ana-
lysing EGFR and HER2 gene statuses in patients with 
brain metastases. It aims to create a relevant model using 
radiomics for this purpose and verify the model’s valid-
ity. Such a model could be clinically guided by radiomics 
for treatment planning in patients with brain metastases 
from adenocarcinoma.

Methods and materials
Study content
This study aims to utilise T1 contrast-enhanced (T1-CE) 
and T2 fluid-attenuated inversion recovery (T2-FLAIR) 
radiomic features to predict EGFR mutations and HER2 
overexpression in adenocarcinoma in a personalised 

manner. Radiological features were derived from seg-
mented regions of the MRI images. The collected data 
were divided into training and test sets according to 
the experimental design and were subsequently used 
for training and independent validation of the model, 
respectively. The most valuable radiological features were 
selected using the least absolute shrinkage and selec-
tion operator (LASSO) technique. The prediction model 
was developed using the support vector classifier (SVC) 
method. A detailed description and analysis workflow 
can be seen in Fig. 1.

Participants
Between January 2015 and January 2022, this two-cen-
tre retrospective cohort study was authorised by our 
hospital’s ethics committee. Patients were initially diag-
nosed with brain metastases resulting from cancer using 
MR imaging and genetic testing. Pathology confirmed 
the diagnosis of all primary lesions. All MR-confirmed 
metastases were reported independently by nuclear med-
icine specialists and radiologists with at least five years of 
board certification.

To be included in the study, patients had to meet the 
following criteria: (1) primary tumour pathologically con-
firmed as adenocarcinoma by surgery or biopsy, (2) pres-
ence of brain metastases, (3) brain metastases confirmed 
by pathology, and (4) assessment using MR imaging. The 
exclusion criteria were as follows: (1) various types of 
original malignancies, (2) absence of genetic testing, (3) 
patients who had received systemic therapy, and (4) lack 
of follow-up data.

EGFR mutation status and overexpressed HER2
All adenocarcinoma patients underwent an evaluation 
of their EGFR status using next-generation sequencing 
technologies.

The HER2 status of all patients with adenocarcinoma 
was assessed using immunohistochemistry (IHC) or 
fluorescence in situ hybridisation (FISH) [12]. Two inde-
pendent pathologists reviewed the patients’ IHC results 
at the time of the HER2 status assessment. Patients 
were considered negative for HER2 if IHC results were 
0/1 + and positive if IHC results were 3+. HER2 status 
was further determined using FISH results when IHC 
results were 2+ [12, 13].

MR image acquisition
Brain MR images were obtained from patients with ade-
nocarcinoma at their initial diagnosis of brain metasta-
ses. At the First Affiliated Hospital of Xinjiang Medical 
University, patients underwent evaluation using a 3.0 
T MR scanner (MAGNETOM Skyra, Siemens Health-
ineers, USA) and a 3.0 T MR scanner (Discovery MR750, 
GE Healthcare, USA). At Changzhi People’s Hospital, 
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a 1.5 T MR scanner and a 3.0 T MR scanner (MAGNE-
TOM Verio, Siemens Healthineers, USA) were employed. 
The T1-CE and T2-FLAIR sequences, which are com-
monly used for detecting brain metastases, were chosen 
for the extraction of image features [7, 14–17]. The image 
matrix size varied from 240 × 240 to 256 × 256 pixels, with 
slice thickness ranging from 1 mm to 6 mm. Additional 
scanning parameters for these sequences are presented in 
Supplementary Table 1.

Image segmentation
Regions of interest (ROIs) on the MR images of the afore-
mentioned sequences were delineated using ITK-SNAP 
[18] around the metastases. To minimise the impact of 
clustering, only one ROI per image was selected. Initially, 
ROIs were created around each axial section of the meta-
static profile to examine tumour heterogeneity. Subse-
quently, areas of oedema, haemorrhage, cystic changes, 
and necrosis were excluded from the images. Represen-
tative sections of the metastases for each sequence were 
chosen. The red spots in Fig. 1 indicate the axial distribu-
tion of the metastases.

Radiomics features extraction
Before feature extraction, several preprocessing steps 
were undertaken to enhance texture recognition. First, 
the bin width was set to 25. Second, Z-score normali-
sation was applied to the MR images. Finally, cubic 
interpolation was utilised to resample the ROIs isotropi-
cally to an in-plane resolution of 3 × 3 × 3  mm, ensuring 

the consistency of proportions and orientation in the 
acquired 3D features [19].

Prior to radiomic feature extraction, each image under-
went preprocessing with eight image filters to highlight 
specific details and reduce noise. These filters, comprising 
Wavelet (HH, HL, LL, LHH, LLL), Laplacian of Gaussian 
(sigma = 1, 2, 3), Square, Square Root, Logarithm, Local 
Binary Pattern, Gradient, and Exponential, were used 
to evaluate three different categories of radiomic fea-
tures in each image. A total of 1,409 radiomic features 
were extracted per tumour, with an equivalent number 
of features generated from both T1-CE and T2-FLAIR 
sequences. The radiomic features were extracted using 
the open-source Python program Pyradiomics (https://
github.com/Radiomics/pyradiomics). Various radiomic 
features were utilised for this extraction process.

Establishment of radiomics features
Data from Institutions 1 and 2 were combined and sub-
sequently divided into training (70%) and test (30%) sets 
after manually segmenting and extracting features from 
all ROIs for each participant. A PyRadiomics-based pipe-
line, previously tested, was used to extract radiomics 
features and conduct feature selection. Among the 
radiomics features retrieved, there were several dupli-
cated, unstable, and irrelevant imaging characteristics. 
Feature selection methods were used to identify and 
select the most informative, stable radiomics features. 
This approach also helps prevent overfitting. The final 
feature set was established using the LASSO method and 
recursive feature elimination.

Fig. 1 Workflow for radiomics modeling and analysis including segmentation of metastases and examples from MR images
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Model building
A radiomics model was constructed using a linear SVC 
based on these two MR image sequences after feature 
selection. To address the data imbalance, the synthetic 
minority oversampling technique algorithm with default 
parameters was applied [20]. This created minority 
instances along a line connecting a minority instance to 
its nearest neighbours.

Interobserver reproducibility evaluation
In our radiomics inquiry, ROI segmentation repeatabil-
ity and radiomics feature extraction reproducibility are 
integral to the interobserver reproducibility process. The 
repeatability of the ROI segmentation was tested through 
multi-reader segmentation. For this purpose, two inde-
pendent radiologists manually delineated ROIs in four 
MR sequences using the same annotation program, 
ITK-SNAP (http://www.itksnap.org). For reproducible 
radiomics feature extraction, we employed PyRadiomics, 
an open-source program, to compute the radiomics 
features and to perform image preprocessing. The fea-
ture extraction process was guided by a.yaml file, allow-
ing separate individuals to replicate the extraction of 
radiomics features outlined in our study using the same 
file.

Pleas einclude the supplier’s information.

Statistical analysis
SPSS (version 22.0) was utilised for the statistical analy-
sis. To explore group differences, we applied chi-squared 
tests to categorical variables and t-tests for continu-
ous data. The model’s effectiveness was assessed using 
the receiver operating characteristic (ROC) curve and 
the area under the curve (AUC). Sensitivity and speci-
ficity metrics were calculated using a threshold of 0.5. 
A p-value of less than 0.05 was deemed statistically 
significant.

Results
Patients’ information
Between January 2015 and January 2022, we conducted a 
retrospective analysis of 513 patients with brain metasta-
sis from two institutions (Institution 1 = 272, Institution 
2 = 241). In Institution 1, 81 patients and in Institution 
2, 69 patients with brain metastasis were excluded as 
these metastases did not originate from adenocarci-
noma. Additionally, 52 patients in Institution 1 and 43 in 
Institution 2 were excluded due to a lack of genetic test-
ing on these brain metastases. Ultimately, 268 patients 
with documented T1-CE sequences in hospital archives 
were enrolled across both institutions (Fig. 2). The gene 
expression features of these 268 patients are summarised 
in Table 1. Overall, there were no significant differences 

Fig. 2 The flow chart of patient enrollment
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in age, sex, and time to metastasis between the groups 
with EGFR mutant or HER2 + and those with wild-type 
EGFR or HER2− (p > 0.05).

Selection of features and creation of radiomics features
For a more robust feature selection, we employed a com-
bination of cross-validation and grid search techniques. 

The search range consisted of 100 evenly spaced values 
within the range [− 10, 1] (lambda). After examining 
these values, 0.027826 emerged as the optimal lambda 
value for T1-CE. Both the mean squared error (MSE) 
versus lambda plot and the LASSO coefficients versus 
lambda plot were provided. Figure 3 illustrates the MSE 
vs. lambda plot, whereas Fig. 4 displays the LASSO coef-
ficients versus the lambda plot.

A total of 19 out of 1,409 considered radiomics features 
were ultimately selected for the T1-contrast sequence. The 
chosen radiomics features for the T1-contrast sequence 
included original_firstorder_InterquartileRange, origi-
nal_firstorder_Range, original_glszm_SmallAreaEmpha-
sis, original_glszm_SmallAreaLowGrayLevelEmphasis, 
wavelet-LLH_firstorder_Maximum, wavelet-LLH_glcm_
ClusterProminence, wavelet-LLH_glcm_ClusterShade, 
wavelet-LLH_glszm_SmallAreaEmphasis, wavelet-LLH_
ngtdm_Contrast, wavelet-LHL_firstorder_Mean, wave-
let-LHH_firstorder_RobustMeanAbsoluteDeviation, 
wavelet-LHH_glrlm_LongRunHighGrayLevelEmphasis, wavelet-
LHH_glszm_SizeZoneNonUniformityNormalized, wave-
let-HLH_glszm_SizeZoneNonUniformityNormalized, 
wavelet-HLH_ngtdm_Complexity, wavelet-HHL_gldm_
HighGrayLevelEmphasis, lbp-2D_firstorder_MeanAb-
soluteDeviation, logarithm_glszm_SmallAreaEmphasis, 
and logarithm_glszm_SmallAreaLowGrayLevelEmphasis.

Radiomics features performance
After feature selection, a radiomics feature set was cre-
ated using an SVC model to differentiate between mutant 
EGFR and HER2 + and wild-type EGFR and HER2. For 
the MR sequences, a radiomics feature set was developed 
using the training cohort, and the test set was employed 
to evaluate the feature set’s performance. Its complete 
performance is detailed in Table 2.

The radiomics signature of T1-CE demonstrated the 
best performance in the training group. Analysis of 
radiomics profiles for T1-CE revealed an AUC of 0.98, 
classification accuracy (ACC) of 0.93, sensitivity (SEN) 
of 0.92, and specificity (SPE) of 0.93. This performance 
was also evaluated on a separate test set, where the 
T1-CE radiomics signature showed an AUC of 0.82, ACC 

Table 1 Pathological diagnosis of primary tumors
Pathological 
diagnosis of 
primary focus

Gene expression
EGFR 
mutation

HER2+ EGFR 
wild-type

HER2- Total

Lung adenocar-
cinoma

105 (39.2%) 56 (20.9%) 161 
(60.1%)

Breast adeno-
carcinoma

8 (3%) 24 
(9%)

22 
(8.2%)

54 
(20.1%)

Gastric adeno-
carcinoma

9 
(3.4%)

7 
(2.6%)

16 (6%)

Adenocarcino-
ma of colon

6 (2.2%) 8 (3%) 14 
(5.2%)

Undefined ad-
enocarcinoma

16 (6%) 7 (2.6%) 23(8.6%)

Total 129 (48.1%) 33 
(12.3%)

69 (25.8%) 37 
(13.8%)

268

Table 2 Performance of each MR sequence’s radiomics 
signature in the training group and the testing cohort
Metrics Training cohort Testing cohort

T1-CE T2-FLAIR T1-CE T2-FLAIR
AUC 0.98 0.86 0.82 0.70
ACC 0.93 0.74 0.70 0.62
SPE 0.93 0.67 0.69 0.67
SEN 0.92 0.83 0.73 0.57
AUC area under the curve, ACC classification accuracy, SEN sensitivity, SPE 
specificity

Fig. 4 The LASSO coefficients versus Lambda for T1-CE

 

Fig. 3 The MSE versus Lambda plot for T1-CE
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of 0.70, SEN of 0.73, and SPE of 0.69, indicating strong 
performance.

In contrast, the T2-FLAIR sequence exhibited substan-
tially weaker performance. The radiomics signature of 
T2-FLAIR in the training group achieved an AUC of 0.86, 
ACC of 0.74, SEN of 0.83, and SPE of 0.67. In the test set, 
the AUC of the T2-FLAIR was 0.70. Figure  5 illustrates 
the ROC curves for these two MR sequences. Addition-
ally, the AUC scores associated with different radiomics 
interpolators are presented in Supplementary Fig. 1.

Discussion
At present, invasive biopsy or surgical resection of brain 
metastases is typically required to identify gene muta-
tion status in clinical practice. However, these invasive 
examinations may lead to serious complications, such as 
postoperative bleeding and cerebrospinal fluid leakage. 
Furthermore, it is challenging to obtain accurate gene 
mutation statuses for patients who cannot tolerate sur-
gery [21]. The imageomics model created in this study 
demonstrates high accuracy in predicting gene muta-
tions in adenocarcinoma brain metastases and possesses 
substantial predictive power. Consequently, this study 
provides a potent non-invasive tool for predicting EGFR 
gene mutation status and HER2 overexpression in adeno-
carcinoma brain metastases, thereby greatly enhancing 
patient prognosis. Additionally, prior studies have pri-
marily focused on the prediction of gene mutations in 
lung cancer brain metastases, with the research scope 
being somewhat limited. Most of these studies target 

EGFR mutations, with fewer investigations into other 
gene mutations [22]. Imageomics studies predicting 
EGFR mutation status in patients with lung cancer typi-
cally rely on CT or MRI images of primary lung lesions 
[23]. In contrast, most MRI imageomics studies of brain 
metastases aim to distinguish between different lung can-
cer subtypes or primary sites [24], with a limited num-
ber focused on predicting EGFR mutation status in lung 
cancer. Sui et al. [25] predicted the EGFR mutation status 
in primary lung adenocarcinoma based on MRI imaging 
omics characteristics of brain metastases, exploring the 
optimal MRI sequence for EGFR mutation prediction. 
Their results indicated that imaging omics characteristics 
based on multiple combined MRI sequences (enhanced 
T1WI, FLAIR, and DWI) could serve as a non-inva-
sive auxiliary tool for predicting EGFR mutation sta-
tus in lung adenocarcinoma. Jiang et al. [26] established 
a 3D-T1WI enhanced imaging omics model of brain 
metastases from non-small cell lung cancer to assess its 
diagnostic efficacy for EGFR mutation status in these 
patients. The findings showed that 3D-T1WI enhanced 
imaging omics of brain metastases from non-small cell 
lung cancer had high diagnostic efficacy and net clini-
cal benefit in determining EGFR mutation status. This 
study’s establishment of an imageomics model to predict 
gene mutation in brain metastases and the identification 
of effective MRI diagnostic sequences enrich the research 
in this field and provide a novel diagnostic method that 
can accurately predict EGFR mutation/HER2 + status in 
adenocarcinoma.

Fig. 5 ROC curves in the training and testing cohort for various MR sequences. A.T1-CE training cohort. B. T1-CE testing cohort. C. T2-FLAIR training 
cohort. D. T2-FLAIR testing cohort
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Ahn utilised radiomics features to identify EGFR muta-
tions in the treatment of primary lung cancer and brain 
metastases, achieving a prediction AUC of 86.81 [27]. We 
examined 268 patients using the T1-CE sequence and 
252 using the T2-FLAIR sequence. Higher rates of EGFR 
mutation were observed in women than in men, with 
the majority of changes being prevalent [28, 29]. Clinical 
factors such as age, sex, smoking, and drinking cannot 
effectively predict tumour mutation status. Meanwhile, 
multiple studies have demonstrated that classic imaging 
characteristics, including breast density [30], a spiculated 
mass [31], and microcalcifications [32] on mammograms, 
are strongly correlated with HER2 status. However, the 
predictive capability of these characteristics for HER2 
status is limited.

In establishing HER2 status, challenges include the 
scarcity of sufficient tissue samples for genetic testing, 
the high cost of genetic detection, and the extended dura-
tion required to obtain genetic testing results. To address 
these challenges, our study measured heterogeneity 
within MR images by exploring the potential correlation 
between the spatial distribution of voxel grey levels and 
the shape of the underlying tissue. These methods may 
provide additional insights into the adenocarcinoma phe-
notype and genotype, thereby improving the prediction 
of related gene statuses.

Nineteen key characteristics, all statistically significant, 
were selected from 1,409 candidate features extracted 
from normalised MR imaging data. We then developed a 
radiomics signature using SVC regression on the selected 
variables, and its efficacy was evaluated in the test set. 
This proposed radiomics signature demonstrates high 
accuracy in differentiating between mutant EGFR or 
HER2 + and normal EGFR or HER2−.

Previous research indicates that radiomics analysis 
is effective in determining the status of EGFR muta-
tions [33–35]. Furthermore, the radiomics signature of 
T2-FLAIR provided an AUC of 0.7, ACC of 0.62, SEN of 
0.57, and SPE of 0.67. These findings suggest that using 
T1-CE data, the proposed radiomics signature can pre-
dict EGFR mutation/HER2 + status non-invasively. 
However, the T2-FLAIR sequence exhibits limited dis-
criminatory ability for classifying EGFR mutation status.

Associating radiomics properties with clinical imag-
ing is an emerging field that enhances molecular biol-
ogy relevance. The correlation between radiomics traits 
and molecular characteristics may reflect gene expres-
sion variations within and across tumours. Tumours 
enriched in genetic mutations during development lead 
to alterations in downstream signalling pathways, causing 
widespread biological responses and driving processes 
such as cell proliferation and inflammation. Extracting 
a broad array of quantitative imaging metrics, proven 
effective in other studies, can translate these changes 

into interpretable data. Segal et al. were the first to dem-
onstrate the use of radiogenomic maps, reconstructing 
tumour gene expression patterns using 28 imaging char-
acteristics [36]. Koay et al. posited that quantifiable imag-
ing parameters could reveal genetic and pathological 
tumour heterogeneity. They observed that patients with 
prominent tumours showed substantially less stroma, 
more mesenchymal features, and a higher likelihood of 
multiple signalling pathway alterations [37]. Grossmann 
et al. [38] suggested that radiomics facilitates the non-
invasive assessment of adenocarcinoma molecular and 
clinical traits, hypothesising a link between radiomic 
imaging properties and signalling pathways. These stud-
ies demonstrate that image phenotypes can be used for 
non-invasive assessments with therapeutic implica-
tions and may indicate the activity of different biological 
pathways.

In our study, we established a connection between the 
resilience of the radiomics signature, its enhanced per-
formance, and the tumour’s molecular biological charac-
teristics. Lung cancer development and progression are 
influenced by the transmembrane protein EGFR, which 
has cytoplasmic kinase activity. EGFR promotes cell pro-
liferation upon binding to specific ligands [39]. Aberrant 
EGFR expression, such as gene amplification, overexpres-
sion of EGFR ligands, and mutations, all contribute to 
tumour growth and metastasis [3]. Experimental models 
using animal models with tumour cell xenografts have 
shown that blocking EGFR increases tumour cell mortal-
ity, reduces angiogenic factor production, and prolongs 
survival [3].

It has been demonstrated that HER2, through heterodi-
merisation with EGFR and other HER family members, 
activates a wide array of intracellular signalling pathways. 
Notably, HER2 appears to be the preferred heterodimeri-
sation partner for other members of the HER family [40]. 
When HER2 is overexpressed, a substantial number of 
HER2 homodimers and heterodimers are formed. This 
aberrant downstream signalling is partly mediated by 
the constitutive activation of the PI3-kinase/Akt and ras/
mitogen-activated protein kinase pathways. These path-
ways inhibit apoptosis, promote cell motility, and sup-
port cell growth and survival. Transfecting HER2 into 
human tumour cell lines has been shown to create a more 
aggressive tumour cell phenotype [41].

However, there are several limitations to this research. 
Since the amount of segmentation determines the 
radiomics characteristic, segmentation is initially one 
of the more challenging aspects of radiomics. To ensure 
the consistency of ROI delineation, we aim to establish a 
deep-learning segmentation model based on large datas-
ets in future work. Second, the information was obtained 
retrospectively, introducing a potential selective bias 
that cannot be eliminated. The participants in this study 
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also originated from two separate institutions, each with 
its own set of protocols and scanners, resulting in nota-
ble variations in patients’ characteristics between the 
two centres. A normalisation strategy was employed to 
mitigate data discrepancies across multiple centres and 
enhance the stability of features and various models.

Conclusion
In conclusion, we have proposed a radiomics signature 
derived from T1-CE brain MR sequences that are both 
reliable and non-invasive. Our brain metastasis model 
has the potential to more accurately predict EGFR muta-
tion/HER2 + status in patients with adenocarcinoma 
compared with models predominantly focused on pri-
mary lesions. This could substantially assist in directing 
individualised treatment regimens. While larger pro-
spective studies are necessary to validate our findings, 
our initial results indicate that radiomics could serve as 
a non-invasive tool for tumour genotyping through the 
examination of metastases.
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