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Abstract
The specific genetic subtypes that gliomas exhibit result in variable clinical courses and the need to involve 
multidisciplinary teams of neurologists, epileptologists, neurooncologists and neurosurgeons. Currently, the 
diagnosis of gliomas pivots mainly around the preliminary radiological findings and the subsequent definitive 
surgical diagnosis (via surgical sampling). Radiomics and radiogenomics present a potential to precisely diagnose 
and predict survival and treatment responses, via morphological, textural, and functional features derived from 
MRI data, as well as genomic data. In spite of their advantages, it is still lacking standardized processes of feature 
extraction and analysis methodology among different research groups, which have made external validations 
infeasible. Radiomics and radiogenomics can be used to better understand the genomic basis of gliomas, such as 
tumor spatial heterogeneity, treatment response, molecular classifications and tumor microenvironment immune 
infiltration. These novel techniques have also been used to predict histological features, grade or even overall 
survival in gliomas. In this review, workflows of radiomics and radiogenomics are elucidated, with recent research 
on machine learning or artificial intelligence in glioma.

Highlights
 • AI-based radiomics and radiogenomics aim to provide aid in diagnosis and prediction with higher accuracy.
 • The introduction of MRI-based radiomics and radiogenomics analyses represents a non-invasive and cost-

efficient adjunct tool that can extract quantitative information to augment clinical decision making.
 • Radiomics and radiogenomics present a potential to precisely diagnose and predict survival and treatment 

responses.
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Background
Epidemiology of glioma
Glioblastoma (GBM) and other central nervous sys-
tem (CNS) tumors are among the most lethal tumors 
with substantial morbidity and mortality [1]. Accord-
ing to the latest CBTRUS Statistical Report, malignant 
brain and other CNS tumors resulted in 83,029 deaths 
due to between 2014 and 2018 in the United States [2], 
with a mortality rate of 16,606 deaths per year or 4.43 
per 100,000. The 5-year relative survival for all malig-
nant brain tumors combined increased between 1975 
and 1977 and 2009–2015 from 23 to 36% [1]. GBM is 
the most common malignant primary brain tumor with 
a median survival of less than 2-year [3]. However, due 
to few advances in early diagnosis and efficacious ther-
apy during the past four decades, less gains among older 
patients contributes to a higher burden of healthcare. 
Latest advances in genomic technology have contrib-
uted to a better understanding of pathology, molecular 
mechanisms and markers underlying GBM [4]. In the 
2021 WHO update for CNS tumors, the classification 
of diffuse gliomas was redefined by integrating prog-
nostically and biologically relevant genetic alterations 
with traditional histopathological assessment [5, 6]. Dif-
fuse gliomas are broadly divided into lower grade glioma 
(grade II and III) and glioblastoma (grade IV) based on 
traditional histological grading. Both diffuse lower grade 
gliomas (LGGs) and glioblastomas (GBMs) are further 
subdivided into IDH-mutant and IDH-wildtype based on 
the presence or absence of isocitrate dehydrogenase gene 
1 or 2 (IDH1/2) mutation. For IDH-mutant LGGs, the 
oligodendroglial or astrocytic lineages are defined based 
on the presence or absence of whole arm codeletion of 
chromosome arms 1p and 19q (i.e., 1p/19q codeletion). 
Under the new classification scheme, oligodendrogliomas 
(ODG) are defined by the presence of both IDH1/2 muta-
tion and 1p/19q codeletion. IDH-mutant astrocytomas 
lack 1p/19q codeletion, and typically harbor mutations in 
ATRX and TP53 genes. In circumstances of incomplete 
or inconclusive genetic testing, the WHO assigns the 
“not otherwise specified” (NOS) label to oligodendro-
gliomas, astrocytomas, oligoastrocytomas, and glioblas-
tomas. Other than in cases of incomplete/inconclusive 
molecular characterization, the diagnosis “oligoastrocy-
toma” is avoided. This integrated tissue-based molecular 
and histological characterization is the gold standard for 
classifying diffuse gliomas.

Intratumoral heterogeneity in MRI diagnosis for GBM
In the past decade, critical advances in understanding the 
molecular biology underlying GBM have been obtained, 
but few has been translated into improved diagnosis and 
prognosis for patients [7]. GBM reveals noticeable intra-
tumoral heterogeneity, which perplex clinical diagnosis 

and therapy [8]. Though conventional contrast-enhanced 
MRI techniques are incapable of perceiving this kind of 
heterogeneity, advanced MRI tools and PET imaging can 
present a wide range of image features to reflect physi-
ologic and biophysical characteristics and improve the 
accuracy of MRI diagnoses for GBM. Integrating these 
advanced tools can be beneficial for screening histologi-
cally distinct lesions for surgery and radiotherapy, evalu-
ating the regional heterogeneity of tumor and predicting 
therapeutic reaction after standard adjuvant therapy. The 
limitations in current imaging techniques offer an oppor-
tunity for radiomics and radiogenomics to augment the 
capabilities of MRI imaging.

MRI radiomic features for survival prediction in GBM
Recent studies have shown that MRI radiomic features 
combined with genetic alterations and gene expressions 
could provide deeper insight to the classification of GBM 
subtypes and survival prediction [9–12]. For instance, 
presurgical MR images of 75 GBM patients with genomic 
data from the Cancer Genome Atlas (TCGA) portal were 
evaluated for tumor size, location, and morphology via 
a standardized imaging feature set, which demonstrated 
the capability of MRI imaging features in reproducibly 
characterizing patient survival [9]. Similarly, to assess 
the diagnostic and prognostic accuracy of MRI textural 
features obtained from contrast-enhanced T1-weighted 
(CE T1W) MRI sequences in GBM patients before the 
treatment, a training cohort of 165 patients from local 
institutions and an independent validating cohort of 51 
patients from TCGA were included [11]. The surface-
derived imaging biomarkers derived from CE T1W MRI 
is a sensitive predictor for survival of GBM patients, 
which might be helpful in classifying patients before 
resection surgery. A cohort of 404 GBM patients were 
recruited to investigate whether MRI imaging features 
obtained from pretreatment volumetric postcontrast 
T1W MRI and clinical information could predict survival 
of GBM patients [10]. Based on morphological features, 
a linear prognostic model predicted survival of GBM 
patients with high accuracy. In a retrospective review 
of 97 patients with multifocal glioblastomas, a prognos-
tic model incorporating MRI imaging features on pre-
treatment volumetric postcontrast T1W MRI classified 
patients into different subgroups with variant survival 
[12].

Artificial intelligence-based radiomics and radiogenomics 
for gliomas
Artificial intelligence (AI), an emerging branch of com-
puter science, including “machine learning” and “deep 
learning,” are becoming important adjunct research 
tools in radiomics. With the help of sophisticated com-
putational algorithms and training models, it is now 
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possible to “data mine” hidden information from large 
clinical and imaging datasets. Machine learning belongs 
to a category of artificial intelligence, enabling a com-
puter to learn from “training” data in existence beyond 
being explicitly programmed for predicting novel data, 
which focuses more on generating hypothesis rather 
than driving hypothesis [13]. Machine learning methods 
are mainly classified as unsupervised as well as super-
vised learning. Unsupervised learning provides no labels 
and applies features for discovering categories (natural 
groupings) of data. Oppositely, for supervised learning, 
datasets with labeled data (classes) are utilized as train-
ing for generating models that map features to the cat-
egories. Deep learning belongs to a subcategory of neural 
network-based machine learning that contains massive 
layers, especially applicable to images and videos. Deep 
learning aims at stimulating how neurons work as well 
as connect neurons to each other into a multilayer neu-
ral network, which contributes to the revolution of this 
field of imaging analyses, in which training on numer-
ous digital images enables to test objects in images more 
favorable compared to human intelligence. Deep learning 
mainly comprises convolutional neural network (CNN), 
recurrent neural network (RNN), long short-term mem-
ory (LSTM), etc. Among them, CNN is the latest tech-
nology in the field of imaging analyses.

Recently, the research field of medical imaging has 
grown exponentially, with a great number of advanced 

analyzing tools and available datasets, which have 
boosted the substantial development of radiomics and 
radiogenomics [14]. It is foreseeable that conversion of 
digital images to high-throughput quantitative imaging 
features will eventually become routine clinical practice, 
and assist better clinical decision making, particularly in 
the care of GBM patients.

Methodology of radiomics and radiogenomics
Pipeline of radiomics
Radiomics is an emerging application of advanced sta-
tistical methods in mining of high-throughput quantita-
tive features from clinical medical imaging, in order to 
enhance predictive accuracy for diagnosis and prognosis 
models, especially within oncology [15–17]. These image 
features are being combined with clinical, genomic, tran-
scriptomic and proteomic features to improve repro-
ducibility [18]. Application of radiomics in oncology, 
including gliomas, usually refers to either classification 
tasks, such as benign vs. malignant, or prediction of clini-
cal outcomes, such as overall survival. The major hypoth-
esis of radiomics is that these predictive models can 
potentially improve diagnostic, prognostic, and predic-
tive accuracy. As shown in Fig. 1, the radiomics method-
ology can be divided into five consecutive processes: (a) 
image acquisition, (b) region of interests (ROIs) segmen-
tation, (c) feature extraction and screening, (d) model 
building and training, (e) model validation. As radiomics 

Fig. 1 Pipeline of the general processing steps for radiomic studies. The flowchart presented the major processing steps needed for analysis of radiomic 
features from MRI in glioma. After skull stripping and artifact removal (bias field, noise, etc.), acquired MRI images are subjected to standardization and 
segmentation to extract regions of interests (ROIs). Radiomic features are then extracted from the image masks of ROIs via conventional radiomics or 
deep-learning approaches. After selecting relevant features, advanced statistical analysis is performed to classify and correlate radiomic features, involving 
machine/deep-learning methods for feature selection, classification, and cross-validation. Finally, endpoints are predicted to evaluate the models, such as 
patient’s survival, genomics, response to therapy, subsequent location of recurrence, or tumor micro-environment
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is an immature research field, each of the above processes 
poses its own challenges to be overcome.

The pipeline of radiomics is similar to any image rec-
ognition modality and corresponds to the workflow of 
machine learning or deep learning: images are input 
for an extractor of radiomic feature, and then a model-
ing process is used to map the radiomic features to the 
classification objectives (e.g., survival and subgroups) 
[19]. This pipeline makes each process highly dependent 
on the methods chosen by the previous steps. Hence, 
there are several limitations in each process. For ROIs or 
lesions, a great number of radiomic feature candidates 
can be extracted and screened out, which either variabil-
ity most efficiently reveal data or fit a specific prediction 
model best [20]. Rather than screening out predefined 
set of features, deep learning pipeline combines feature 
selection and model construction directly to further 
improve goodness of fit and prediction accuracy.

Manual segmentation of medical imaging is a time-
consuming work in routine radiotherapy to identify 
anatomical structures of lesions, which determines the 
efficacy and safety of therapeutic regimens [21]. How-
ever, inter- and intra-observer variability can significantly 
influence the accuracy of manual segmentation, which 
may further impair the quality of subsequent radiomic 
analyses and radiotherapy treatment choices. Automatic 
segmentation based on machine learning algorithms 
attempts to address this challenge [22], benefiting from 
advances in visual recognition and machine learning.

After feature extraction, feature selection is an impor-
tant issue for subsequent analyses. Several algorithms 
have been proposed to select a subset of optimal features 
that are closely related to the presumptive outcomes, 
including minimum redundancy maximum relevance 
(mRMR) algorithm [23], sequential forward floating 
selection [24], and the multiview principal components 
analysis (Multiview-PCA) [25]. Feature selection aims 
to restrain potential overfitting connected with the high 
dimensionality of the radiomic features. Once optimal 
features are screened out, machine learning classifiers 
and AI algorithms are applied to constructed predictive 
models [26, 27]. However, a common defect for the appli-
cation of these tools is the lack of normative paradigm 
and the high variability.

Radiomic feature classes
Radiomic features can be generally classified into mor-
phological, histogram, textural, model-based, trans-
form-based, shape-based features [20]. For detailed 
explanations of radiomic features and corresponding 
equations, a reference manual from the Image Biomarker 
Standardization Initiative is recommended [28].

Morphological features
Morphological features, which aim to reflect the topology 
of tumor lesions, can be classified into global and local 
features [29, 30]. Global features quantify the contour 
of tumor lesion via measurements including roundness, 
perimeter, diameters of major and minor axes, as well 
as elongation factor. Local features refer to the surface 
curvature attributes of iso-surfaces, involving degrees of 
curvedness and sharpness.

Histogram features
Histogram features usually refer to the global gray-level 
histogram, including gray-level mean, maximum, mini-
mum, variance, and percentiles. Other histogram fea-
tures involve skewness, kurtosis, entropy and uniformity.

Textural features
Based on statistical and structural techniques, textural 
analyses evaluate the spatial distribution of grey values 
via local features at each image point and the relevant 
statistics, as well as identify structural primitives and the 
corresponding placement rules [31, 32].

Absolute gradient, as the simplest textural features, 
refers to the degree of gray-level intensity fluctuations, 
which involves gradient mean, variance, skewness, and 
kurtosis.

Gray-level co-occurrence matrix (GLCM), as a second-
order gray-level histogram, involves entropy, uniformity, 
and contrast. GLCM reflects spatial relationships of pairs 
of voxels with predefined gray-level intensities in differ-
ent directions, and with a predefined distance between 
the voxels.

Gray-level run-length matrix (GLRLM), which reflects 
the spatial distribution of runs of consecutive pixels with 
the same gray level in different directions and dimen-
sions, involves fraction, long- and short-run empha-
sis (inverse) moments, and gray-level and run-length 
nonuniformity.

Gray-level size zone matrix (GLSZM) is computed for 
two dimensions (8 neighboring pixels) or three dimen-
sions (26 neighboring voxels), involving fraction, large- 
and small-zone emphasis.

Gray-level distance zone matrix (GLDZM) is a ‘‘hybrid’’ 
of textural and morphologic features and involves small-
distance high-gray-level emphasis.

Neighborhood gray-tone difference matrix (NGTDM) 
refers to the sum of differences between the mean gray 
level of a pixel or voxel and that of its neighboring pixels 
or voxels within an established distance. Key features of 
NGTDM involve coarseness, busyness, and complexity.

Neighborhood gray-level dependence matrix 
(NGLDM), which is based on the gray-level rela-
tionship between a predefined pixel or voxel and its 
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neighborhoods, involves large- and small-dependence 
emphases, gray-level nonuniformity, and dependence 
uniformity.

Model-based features
Model-based features seek to reflect spatial gray-level 
information to portray objects or shapes.

Transform-based features
Transform-based features, involving Fourier, Gabor, and 
Haar wavelet transforms, aim to analyze gray-level pat-
terns in a different space. Remarkably, wavelet transfor-
mation can be either used to generate radiomic features 
or to be a preprocessing step before texture analyses.

Shape-based features
Shape-based features interpret geometric properties of 
ROIs, including 2-demension and 3-demension diam-
eters, axes, and their ratios, as well as compactness, sphe-
ricity and density.

Functional features
A key issue to the clinical application of radiomics is hard 
to explain the of biological interpretability of radiomic 
features [33, 34]. Hence, it is necessary to explore 
radiomic features with relevant biological interpretabil-
ity. Functional radiomic features are a new cluster of bio-
markers which indirectly reflect the underlying anatomy 
or physiology. Radiomics phenotypes of MRI, which were 
predicable for overall survival for GBM, were related to 
underlying physiological pathways such as cellular func-
tions, tumor immune, tumor progression, and chemo-
therapy response [35]. T2-weighted MRI-based radiomic 
features in the prediction model for overall survival of 
gliomas were also related to immune response, especially 
tumor macrophage infiltration [36]. A combination of 
three radiomic features (volume-class, hemorrhage, and 
T1/FLAIR-envelope ratio), which was capable of predict-
ing survival in GBM, were associated with molecular pro-
cesses of growth and invasion pathways [37]. In a word, 
functional radiomic features provide a comprehensive 
insight into macroscopic picture of the tumor phenotype 
as well as its microenvironment.

Semantic features
Semantic features are descriptive features from struc-
tural MRI to reflect the location, shape, and geometric 
properties of tumor lesion [33]. The Visually Accessible 
Rembrandt Images (VASARI) feature-set criteria were 
used to obtain qualitative volumetric parameters, includ-
ing contrast enhancement, necrosis, and edema/inva-
sion [38]. These volumetric parameters were useful for 
predicting survival in GBM patients. A similar study also 
demonstrated that semantic features from presurgical 

MR images combined with genetic alterations and gene 
expression subtypes could provide deeper insight to the 
underlying biologic properties of GBM subsets from the 
Cancer Genome Atlas (TCGA) [9]. Semantic features can 
also be combined with machine learning-based radiomic 
features to improve prediction of progression and sur-
vival [39–42].

Pipeline of radiogenomics
Radiogenomics refer to the combination of radiomics-
derived imaging signatures and molecular markers [43], 
which will be beneficial to stratifying patients based on 
their specific imaging and molecular characteristics in 
order to design patient-specific precise therapies, such 
as noninvasive and global assessment of GBM [44]. Radi-
ogenomics offers a reproducible tool to provide more 
information of intratumoral heterogeneity, which will 
improve the prediction precision for tumor progression, 
survival and response to targeted therapies [45], espe-
cially beneficial for recurrent GBM. In addition, radi-
ogenomics can indicate either how a specific genomic 
mutation might affect the imaging characteristics of 
the tumors, or whether there is a potential association 
between molecular biomarkers and radiographic pheno-
types [45–47]. However, efforts are needed to improve 
the utility of radiogenomics in clinical decision making 
for patients with gliomas [16].

A typical radiogenomic analysis is usually conducted 
in four steps: (1) radiomic feature extraction and selec-
tion; (2) biopsy and RNA sequencing; (3) radiogenom-
ics analysis and pathway identification; and (4) external 
validation (Fig.  2). In detail, optimal MRI radiomic fea-
tures are screened out to predict overall survival. Then, 
survival-relevant radiomic features are linked with co-
expressed gene modules obtained by RNA sequencing. 
Furthermore, relevant pathways and key genes are identi-
fied to be able to annotate prognostic radiomic features. 
Finally, the reproducibility of prognostic radiomic-anno-
tated pathways and key genes are validated in an external 
dataset. The integration of multi-omic data accelerated 
the advent of radiogenomics in precise medicine for 
GBM. The critical object of radiogenomics is to associate 
genomic varieties and functional pathways with distinct 
radiomic phenotypes.

Clinical applications
Radiomics in glioma grading
Several studies have tried to assess the accuracy of MRI 
texture analysis in differentiating glioma subtypes and 
predicting survival. In a cohort of 95 patients with glio-
mas, with 27 low grade gliomas (LGGs) and 68 high 
grade gliomas (HGGs), MRI texture analysis was assessed 
to grade cerebral gliomas based on a filtration-histogram 
technique [48]. LGGs and HGGs were best classified via 
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standard deviation (SD) at fine texture scale, with AUC of 
0.91. Another similar cohort of 14 LGGs and 80 HGGs 
also demonstrated that LGGs and HGGs were best dis-
tinguished via mean of 2 mm fine texture scale with AUC 
of 0.90 [49]. The support vector machine-based recur-
sive feature elimination (SVM-RFE) was used to screen 
out the optimal radiomic features derived from multipa-
rametric MRI for LGGs and HGGs [32]. These features 
were then used to establish SVM classifiers to assess the 
grading efficiency. The accuracy was 96.8% for distin-
guishing LGGs from HGGs, and 98.1% for discriminating 
grades III from IV. Textural features from dynamic con-
trast-enhanced MRI (DCE-MRI) also presented a good 
performance in glioma grading [50].

Radiomics in classifying molecular phenotypes of gliomas
As the most aggressive primary central nervous sys-
tem malignancy, the clinical outcome of GBM has been 
revealed to vary depending on the extent of initial resec-
tion and response to chemo-radiation therapy with 
a median survival of 15 months [51, 52]. Radiomics 
and radiogenomics have been developed to investi-
gate the associations between genetic phenotypes and 
MRI radiomic features in GBM [45], in consideration 
of numerous benefits, such as noninvasive and com-
prehensive evaluation of tumor lesion and treatment 
response. Numerous associations have been identified, 
which relate MRI radiomic features to underlying physi-
ological characteristics [53], such as associations between 

hypo-intensity on pre-contrast T1-weighted MRI and 
necrotic tissue, as well as hyper-intensity on T2-weighted 
MRI and edema. In addition, quantitative radiomic fea-
tures have shown significant associations with molecular 
and genomic phenotypes relating to cell proliferation and 
apoptosis. AI-based radiomics have also been applied to 
predict IDH genotypes in gliomas. A recent study tried 
to predict the IDH status of gliomas from MR imag-
ing by applying a residual convolutional neural network 
to preoperative radiographic data [PMID: 29,167,275]. 
Similarly, an explainable recurrent neural network model 
based on DSC perfusion MRI was developed to predict 
IDH genotypes in gliomas [PMID: 31,127,834].

Recent studies have tried to explore the correlation 
between radiomic features and molecular phenotypes 
of gliomas. Based on a random forest model, radiomic 
MRI phenotyping was demonstrated to improve survival 
prediction when combined with clinical and genetic pro-
files [54]. To construct a model for classifying isocitrate 
dehydrogenase (IDH) status in gliomas based on mul-
tiparametric MRI, a total of 105 patients of grade II-IV 
gliomas were obtained with 50 IDH mutant and 55 IDH 
wildtype [55]. IDH genotypes could be discriminated by 
radiomics features with accuracy and AUC of 0.823 and 
0.770, respectively. Based on the GBM subset from The 
Cancer Image Archive (TCIA) and a validation data-
set from Japan, radiogenomic analysis reported a simi-
lar tendency in a machine learning classifier for IDH1/2 
mutation prediction [56]. To detect the IDH1 mutation 

Fig. 2 Pipeline of the general processing steps for radiogenomic studies. A typical radiogenomic analysis is usually conducted in four steps: (1) radiomic 
feature extraction and selection; (2) biopsy and RNA sequencing; (3) radiogenomics analysis and pathway identification; and (4) external validation. First, 
optimal MRI radiomic features are screened out to predict overall survival. Then, survival-relevant radiomic features are linked with co-expressed gene 
modules obtained by RNA sequencing. Furthermore, relevant pathways and key genes are identified to be able to annotate prognostic radiomic features. 
Finally, the reproducibility of prognostic radiomic-annotated pathways and key genes are validated in an external dataset
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in LGG patients, 23 VASARI features from conventional 
multimodal MRI and 56 radiomic features from appar-
ent diffusion coefficient (ADC) maps were extracted to 
establish a machine learning model via a random for-
est classifier, which obtained an AUC to 0.879 [57]. A 
radiomic model based on automated texture analysis and 
VASARI features was also used to predict the genetic 
status of IDH1 mutation and 1p/19q codeletion in LGGs 
[58]. Texture analysis was found to be more accurate than 
VASARI features.

Radiomic features were also used to determine the 
genetic profiles of ATRX, IDH1/2, MGMT and 1p19q 
in gliomas [59]. The BraTS 2019 pretrained DeepMedic 
network obtained a satisfying performance with AUCs 
of 0.979 for the prediction of the ATRX expression loss, 
followed by 0.929, 0.999, and 0.854 for the prediction of 
IDH1/2, 1p19q and MGMT, respectively. Furthermore, 
addition of MR diffusion to conventional MRI features 
significantly improved the diagnostic value in preopera-
tive prediction of IDH1, MGMT, and ATRX in patients 
with glioma [60]. 18F-FET PET-MRI including MR fin-
gerprinting also have been demonstrated to have the 
predictive potential of predicting the mutational sta-
tus of ATRX, IDH1, and 1p19q, with AUCs of 85.1% for 
ATRX, 75.7% for MGMT, 88.7% for IDH1, and 97.8% for 
1p19q [61]. A subgroup of 9 radiomic features from was 
screened out of 431 radiological features, which could 
predict the Ki-67 expression level in LGG patients with 
AUC of higher than 90% [62].

Compared with conventional radiomics, a sparse rep-
resentation-based radiomics obtained a superior per-
formance in differentiation of PCNSL and GBM and 
prediction of IDH1 mutant status [63]. In a cohort of 
200 IDH1 wild-type GBM patients, an integrative model 
based on a panel of radiomic features, clinical profiles, 
and protein expressions (CIC, PIK3R1, FUBP1, p53, 
vimentin) obtained an AUC of 78.24% in predicting sur-
vival outcomes [64]. Based on pretreatment T2-weighted 
MRIs from 45 GBM patients, a deep neural network 
(V-Net) presented robust segmentation capability com-
pared with manual segmentation; however, radiomic 
features from both manual and V-Net segmentation 
methods presented similar performances in IDH1 pre-
diction [65].

Based on Haralick texture parameters derived from 
preoperative FLAIR sequence, the homogeneity param-
eter was demonstrated to be able to differentiate IDH 
mutated LGGs from IDH wild type LGGs [66]. However, 
the other Haralick texture parameters, such as energy, 
entropy, and inertia, could not discriminate LGGs with or 
without IDH mutation. Furthermore, tissue heterogene-
ity (homogeneity and pixel correlation) and FLAIR bor-
der distinctiveness (edge contrast, or EC) could optimally 

classify grade II/III gliomas by IDH status, which may 
give a hand for subsequent therapeutic choices [67].

Radiomic features, such as morphological, intensity, 
and textural features, were extracted from MRI of 32 
IDH1-wild GBM patients and 7 IDH1-mutant patients to 
predict mutations in the IDH1 gene in GBM via a logistic 
regression classifier [68]. The accuracies of morphologi-
cal and intensity features were 51% and 59% respectively, 
while that of textural features was significantly higher 
with an accuracy of 85%. To evaluate the potential of 
radiomics as a noninvasive predictor of 1p/19q codele-
tion status, 152 features were extracted from fluid-atten-
uated inversion recovery (FLAIR), T1-weighted images 
(T1WI) and post-contrast MRI of 47 LGG patients with 
IDH mutation [69]. Best classification was achieved via 
the Ensemble Bagged Trees classifier with AUC of 0.87. 
To recognize the best machine learning classifier for pre-
diction of IDH mutation status in diffuse gliomas, 8 clas-
sical machine learning algorithms were assessed based 
on 704 radiomic features extracted from pre-operative 
MRI of 126 patients [70]. Random forest was found to 
be a promising classifier in predicting IDH mutation sta-
tus with high predictive performance (AUC of 0.931). To 
establish a predicting model for IDH mutation status and 
1p19q codeletion in glioma patients, radiomic features 
were extracted from preoperative MRIs of T1 contrast 
enhanced and T2-FLAIR sequences [71]. A random for-
est model for IDH mutation status obtained an AUC of 
0.921 in the training cohort and 0.919 in the validation 
cohort from TCIA. The overall accuracy for three-way 
classification (IDH-wild type, IDH-mutant and 1p19q 
co-deletion, IDH-mutant and 1p19q non-codeletion) was 
78.2%.

After semi-automatic segmentation of tumor lesions, 
radiomic features from pre-operative multiparametric 
MRI from 88 GBM patients were extracted [72]. IDH1 
mutation status was determined by targeted sequenc-
ing and immunohistochemistry. Machine learning algo-
rithms was demonstrated to be able to classify IDH1 
mutation status in GBM patients with reliable accuracy.

Based on dynamic susceptibility contrast (DSC)-MRI 
from treatment-naïve gliomas, a random-forest model 
was applied to discriminate IDH mutation status via the 
extracted features, including shape, distribution and tex-
ture features [73]. Glioma patients were correctly classi-
fied by IDH mutation status in 71% of the cases.

Radiomics in discriminating radiation necrosis, 
pseudoprogression and tumor recurrence
Contrast-enhancement at MRI after irradiation of GBM 
usually detects a new lesion, which leads to the challenge 
of differentiation between tumor recurrence and radia-
tion necrosis induced by irradiation [74–77]. Pseudopro-
gression is a major clinical challenge after irradiation in 
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GBM, which not only interferes with daily care but also 
disturbs the choice of therapeutic treatments [78]. How-
ever, traditional structural MRI has usually failed in dis-
criminating tumor recurrence from radiation necrosis 
and pseudoprogression. Advanced imaging techniques, 
such as perfusion MRI, MR spectroscopy (MRS), or their 
combination, are expected to improve diagnostic accu-
racy. Despite availability of advanced imaging, radiomics 
were also regarded to provide complementary diagnostic 
information for traditional structural MRI and to help 
to differentiate tumor recurrence from radiation necro-
sis [79]. In addition, radiomics based on multiparametric 
MRI features and machine learning algorithms may be a 
promising non-invasive approach to differentiate radia-
tion necrosis and tumor recurrence in resected GBM 
patients after chemoradiation [29, 80–82].

After surgical excision, radiation therapy with con-
current and adjuvant temozolomide-based chemother-
apy were the current standard therapeutic schemes for 
GBM. Apart from tumor recurrence, radiation necrosis 
and pseudoprogression have also been recognized after 
chemoradiotherapy [83]. Specific MRI T1 post-contrast 
enhancement patterns were supposed to benefit differen-
tiation between tumor recurrence and radiation necrosis 
in patients with high-grade gliomas [84]. Quantitative 
3D shape features of T1WI and T2WI/FLAIR sequences 
in the enhancing lesions were also demonstrated to be 
able to more precisely reflect pathophysiologic variances 
across pseudoprogression and tumor recurrence [29].

Texture analysis of traditional MRI based on a SVM 
classifier to discriminate brain metastasis from radiation 
necrosis obtained a high diagnostic accuracy with AUC 
of 0.9 [85]. Co-occurrence of local anisotropic gradient 
orientations (CoLlAGe), a new radiomic feature derived 
from gadolinium-contrast T1WI, could reflect visually 
indistinguishable differences between benign and patho-
logic phenotypes on routine MRI, and might distinguish 
radiation necrosis and tumor recurrence of posttreat-
ment lesions [86, 87]. A one-class-SVM classifier based 
on an 8-dimensional feature vector derived from mul-
tiparametric MRI features after alignment to post con-
trast T1WI could differentiate radiation necrosis from 
recurrent tumor with AUC of 94.39% [80]. To discrimi-
nate between radiation necrosis and recurrent tumor, 
textural analyses based on contrast-enhanced MRI (CE-
MRI) obtained a diagnostic accuracy of 81%, while 83% 
for textural features derived from 18F-FET-PET [88]. 
After combining textural features of both CE-MRI and 
18F-FET-PET, the diagnostic accuracy was improved to 
89%.

Radiomics in evaluating the efficacy of antiangiogenic 
therapy
Glioma stem cells promote angiogenesis via activating the 
transcriptional program mediated by hypoxia-inducible 
factors (HIFs), which limited the efficacy of antiangio-
genic cancer therapies within hypoxic tumor microen-
vironment [89, 90]. Hypoxia, a typical characteristic of 
GBM, is regarded to result in chemoradiation resistance 
and related to unfavorable prognosis. To evaluate the effi-
cacy of antiangiogenic therapy in differential clusters of 
GBM patients, radiomic features from preoperative and 
pretherapy perfusion MRI were extracted and unsuper-
vised clustering was conducted to classify robust clusters 
of GBM patients [91]. Angiogenesis and hypoxia path-
ways were enriched in a subgroup of GBM patients with 
elevated perfusion features and significantly associated 
with a poor survival. Recently, a subset of MRI radiomic 
features, which were most informative of hypoxia enrich-
ment score (HES) derived from the expression profile of 
21 hypoxia-associated genes, was demonstrated to be 
able to discriminate GBM patients as short-term (STS) 
and long-term survivors (LTS) [92].

Bevacizumab, a monoclonal antibody to the VEGF, 
is the most widely used antiangiogenic agent for recur-
rent GBM. However, its treatment response varies from 
patient to patient, and effective biomarkers for patient 
selection are still not available. Radiomic features may 
provide prognostic value for survival and progression in 
patients with recurrent GBM after bevacizumab treat-
ment [93]. Compared with clinical or volumetric covari-
ates, multivariable analysis of radiomic features revealed 
a stronger ability in stratifications of OS and PFS. Before 
bevacizumab treatment, high-throughput MRI radiomic 
features were automatically extracted for a supervised 
principal component analysis to establish a prognostic 
model for predicting the therapeutic outcome to beva-
cizumab via PFS and OS [94]. This model successfully 
stratified patients into a low- or high- risk group of PFS 
and OS in both the discovery and validation sets. Based 
on 3,800 glioma and GBM patients across four relevant 
datasets, including CGGA and TCGA for RNA-Seq data, 
the Ivy Glioblastoma Atlas Project (Ivy-GAP) and TCIA 
for clinicopathological data, and The Clinical Proteomic 
Tumor Analysis Consortium Glioblastoma Multiforme 
(CPTAC-GBM) for proteomic data, radiogenomic analy-
sis revealed that SOCS3 expression level was significantly 
correlated with radiographical features of perfusion 
imaging, and it could be a potential biomarker for pre-
dicting treatment response of bevacizumab in GBM 
patients [95]. In a cohort of 194 recurrent GBM patients 
treated with bevacizumab, radiomic features from pre-
treatment T2 FLAIR and gadolinium-injected MRI along 
with clinicopathological data were used to predict OS 
and PFS via machine-learning algorithms [96]. Binary 
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classification models successfully stratified the OS at 9, 
12, and 15 months with the AUCs of 0.79, 0.82, and 0.87 
on the training set and 0.78, 0.85, and 0.76 on the valida-
tion set, respectively. Similar results were also reported 
in another dataset from the 2019 BraTS challenge (210 
patients) [97].

To determine whether texture analysis could improve 
the evaluation of response to bevacizumab in gliomas, 
MRI from 33 patients with HGGs before and after the 
treatment of bevacizumab were evaluated [98]. After bev-
acizumab treatment, lower edge contrast of the FLAIR 
hyperintense region was associated with poorer OS and 
PFS. Edge contrast cutoff significantly stratified patients 
for both OS and PFS. Hence, texture analysis based on 
edge contrast of the FLAIR hyperintense region could be 
a predictive indicator in patients with HGGs after treat-
ment with bevacizumab.

Radiomics and radiogenomics in survival stratification
Based on radiomic features from T2-weighted MRI of 
LGGs patients, a radiomic-based risk score was con-
structed and was used to stratify patients into low- or 
high-risk groups for overall survival [99]. Then, radioge-
nomic analysis further indicated that the risk score was 
related to biological pathways of hypoxia, angiogenesis, 
apoptosis, and cell proliferation. Similarly, radiomic fea-
tures, derived from preoperative T2-weighted MRI in 
LGG patients from the Chinese Glioma Genome Atlas 
(CCGA) and TCGA, were found to be a good calibration 
for prediction of PFS [100]. These radiomic features were 
also significantly associated with the biological pathways 
of immune response, programmed cell death, cell prolif-
eration, and angiogenesis.

Radiomic features from both T2WI and CET1WI in 
different genomic profile groups of GBM patients were 
analyzed to identify the potential imaging-molecular 
associations [101]. Major genomic profiles of GBM 
revealed a significant association with radiomic fea-
tures. Radiomic features was revealed to be able to pre-
dict major genomic profiles and the prognosis of GBM 
patients. A combination of MRI imaging, miRNA and 
mRNA expression of 92 GBM patients from TCGA-GBM 
collection was able to significantly stratify survival in a 
statistically manner [37]. Radiogenomic analysis revealed 
that immune-associated pathways, such as natural killer 
cell activity and T-cell lymphocyte differentiation, as 
well as metabolism-associated pathways, including mito-
chondrial activity and oxidative phosphorylation, were 
underlying the survival characteristics. Sixteen three-
dimensional (3D) textural heterogeneity features of 
post-contrast pre-operative T1-weighted MRI in GBM 
patients were extracted, including 11 run-length matrix 
(RLM) features and 5 co-occurrence matrix (CM) fea-
tures [102]. Four RLM features and four CM features 

were revealed to be reliable predictors of survival. A 
novel set of texture features were generated through joint 
intensity characteristics of CE-T1 and FLAIR images in 
necrosis, active tumor, edema and invasion lesions of 
GBM patients [103]. Then, a random forest model was 
used to classify GBM patients into short or long survival 
subgroups. When combining these features with gene 
expression phenotypes, radiogenomic features obtained 
an AUC of 77.56%.

Based on the T1-weighted contrast-enhanced (T1W 
CE), T1W, T2-weighted (T2W), and fluid-attenuated 
inversion recovery (FLAIR) sequences from 119 GBM 
patients in TCGA, radiomic features reflecting tumor 
heterogeneity were extracted for each sequence, includ-
ing the co-occurrence matrix, run-length matrix, and 
histogram features [104]. When a single sequence was 
used for predicting, the T1W-CE sequence obtained 
the highest AUC of 83.33%; when combining the four 
sequences, the predicting accuracy was barely close to 
that of T1W-CE sequence alone. Based on post-con-
trast T1W and T2 FLAIR MRI from 82 GBM patients, 
5 sets of texture features were extracted to predict GBM 
molecular subtypes and 12-month survival status via a 
random forest model [105]. Radiomic analyses indicated 
that these texture features were reliable predictors for 
GBM molecular subtypes and survival status. A total of 
45,792 radiomics features derived from multi-modality 
MR images were automatically extracted to predict OS of 
GBM patients [106]. Voxel size, quantization method and 
gray level were found to influence the predicting perfor-
mance for prognosis of GBM patients. Texture features, 
tumor shape and volumetric features were extracted from 
MR images of 163 GBM patients [107]. After the feature 
selection via SVM-RFE, the predicting model obtained a 
promising accuracy in both the 2-class (short and long) 
and 3-class (short, medium and long) OS groups of 98.7% 
and 88.95%, respectively.

A recent radiogenomic analysis revealed associations 
of the MRI-based phenotypes with the signaling path-
ways in GBM [108]. In the poor OS group of male GBM 
patients, higher expressions of Laws energy features from 
the contrast-enhanced tumor lesions were detected, and 
aggressive pathways of cell adhesion and angiogenesis 
were found to be more enriched. However, in the poor 
OS group of female population, higher expressions of 
Laws energy features from the necrotic core were found 
to be significantly associated with pathways related to 
immune.

A deep learning framework using three different 
3D convolutional neural network (CNN) architec-
tures (W-Net, T-Net, and E-Net) was applied for brain 
tumor segmentation based on multimodal MRI from 
glioma patients [109]. A total of 4,524 radiomic fea-
tures were extracted from segmented tumor regions for 
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each subject, and then a decision tree and cross valida-
tion were used to screen out optimal features. A random 
forest model is trained to predict the overall survival of 
patients with a reliable accuracy in the classification of 
short-, mid- and long-survivors. A total of 348 manu-
ally extracted radiomic features and 8,192 deep features 
generated by a convolutional neural network (CNN) was 
used to predict overall survival in HGG patients [110]. 
After feature selection, an Elastic Net-Cox model was 
able to classify patients into long- and short-term survi-
vors with satisfying performance.

Discussion
Current status and challenges facing clinical 
implementation
Conventional contrast-enhanced MRI usually fails to 
identify intratumoral heterogeneity, which is pronounced 
in GBM patients and interferences clinical diagnosis and 
therapy [8]. Through integrating advanced MRI tech-
niques, radiogenomics based on AI and machine learning 
algorithms are supposed to help improve the accuracy of 
imaging diagnoses and evaluate the regional heterogene-
ity within a single GBM tumor lesion.

Anti-angiogenic therapy with bevacizumab is a widely 
used therapeutic agent for recurrent GBM. Radiomics 
have been demonstrated to be able to improve predicting 
accuracy for survival and treatment response in recurrent 
GBM patients treated by bevacizumab [91, 93, 94, 96]. 
However, the increase of enhancement intensity due to 
bevacizumab treatment did not necessarily mean tumor 
response. The change of enhancement intensity could 
reflect a fluctuation in the permeability properties of the 
blood brain barrier and the switch of the tumor growth 
pattern from an infiltrative non-enhancing phenotype to 
an enhancing one. Even though advanced imaging tools 
to evaluate cellularity, blood flow hemodynamics, and 
biochemistry have been developed to solve this issue 
[111], it remains a challenge to introduce methods to pre-
dict tumor response more accurately.

The aggressiveness of GBM is partly due to tumor 
hypoxia and angiogenesis, which could be assessed by 
multimodal imaging [112]. Invasive tumors have been 
revealed to present a different genomic and metabolic 
abnormalities, which result in a more aggressive GBM 
phenotype [113]. Attempts have been made to explore 
the association between invasive GBM imaging-pheno-
type and genomic abnormalities. For instance, the MYC 
gene was revealed to be related to imaging-phenotypes 
of deep white matter tracts and ependymal invasion in 
GBM patients, who had a poor overall survival. Recent 
radiogenomic studies also indicated that radiomic fea-
tures related to overall survival of GBM patients were 
associated with genomic pathways referred to cellular 

functions, tumor proliferation, immune regulation, and 
treatment responses [35].

Artificial intelligence (AI) has been applied to tradi-
tional and advanced MRI in neuro-oncology to identify 
infiltrating margins of diffuse gliomas, discriminate pseu-
doprogression from true progression, and predict tumor 
recurrence and survival in clinical practice [81]. AI-based 
radiomics and radiogenomics will benefit noninvasive 
sampling of tumor microenvironment with high spatial 
resolution and illuminate underlying heterogeneity of 
cellular and molecular processes. These tools have also 
contributed to noninvasive detection of genomic muta-
tions and epigenetic inheritances, for instance IDH and 
MGMT genes [34]. Hence, these tools have the poten-
tial to more precisely diagnose GBM patients and enable 
more personalized treatments. Hopefully, applications of 
AI-based radiomics and radiogenomics is beneficial to 
diagnosing primary tumor, grading, mutation status and 
aggression, as well as predicting treatment response and 
recurrence in neuro-oncology [114].

Limitations
Gliomas are the most common and aggressive brain 
tumors, with short survival at the advanced stage [115]. 
MRI is widely used for the diagnosis of gliomas, but a 
redundant time needed for manual segmentation of MRI 
impairs its application as a precise quantitative measure-
ment in the clinical practice. Hence, automatic segmenta-
tion is required. However, the large spatial and structural 
variability among MRI from gliomas patients could be a 
potential challenge for automatic segmentation.

Machine learning has been applied to medical images 
as a technique for recognizing patterns [116]. How-
ever, metrics for evaluating the performance of machine 
learning algorithms can result in misleading judgements 
due to their intrinsic pitfalls. For instance, variance of 
radiomic textural features derived from MRI involved 
with can be substantial due to the choice of pulse 
sequence and other parameters [117], which is worthy 
of attention especially when combining MRI-derived 
radiomic features from multicenter patients. Significant 
variability was observed in radiomic texture features with 
variations in MRI sources emphasizing the demand for 
standardized MRI data [118]. In addition, the choice of 
MRI parameters may not significantly affect the pheno-
types of texture analysis, but the spatial resolution may 
deserve special attention.

Radiomic textural features derived from MRI are found 
to be sensitive to variations in signal-to-noise ratio and 
spatial resolution, which forms an obstacle for the clini-
cal application of MRI texture-based prediction in neuro-
oncology [119]. Texture features are increasingly sensitive 
to increasing variations in spatial resolution. However, 
if the spatial resolution is high enough, the effect of 
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variations in MRI parameters on the accuracy of pattern 
discrimination almost disappeared. Almost no textural 
features were robust under spatial resolution variances, 
except entropy [120]. Hence, relatively unified standards 
should be established to promote the application of tex-
tural features of oncological images as imaging biomark-
ers in clinical practice beyond the specific tumor type.

The application of AI- and machine learning-based 
radiomics and radiogenomics is usually limited by access 
and transparency to research data, such as data owner-
ship, patient privacy and confidentiality. Recent efforts 
have been made to facilitate applications of radiomics 
and radiogenomics in medicine and healthcare, especially 
in medical imaging. For instance, MI2RLNet, an open 
platform, allows users to share source code and various 
pre-trained weights for models to boost machine learn-
ing-based radiomic research in radiology [121]. MEDAS 
is another open-source platform, which implements tools 
in pre-processing, post-processing, augmentation, visu-
alization, and other analyses in radiomics [122]. Studi-
erfenster offers a wide range of capabilities, including 
the visualization of medical data (CT, MRI, etc.) in two-
dimensional (2D) and three-dimensional (3D) space, 
manual slice-by-slice outlining of structures, and more 
sophisticated functions involving in convolutional neural 
network (CNN) [123].

Although AI and machine learning has been applied to 
facilitate the data mining and model construction in gli-
oma prediction and prognosis, common limitations and 
pitfalls of machine learning-based radiomics in neuro-
radiology are worthy of attention, such as selection bias, 
overfitting and underfitting [124, 125].

AI-based radiomic features have been demonstrated to 
be qualified for patient stratification in GBM [126, 127]. 
To reflect spatial and molecular heterogeneity via invasive 
biomarkers, these AI-based radiomic and radiogenomic 
features have the potential to classify GBM patients into 
more precise pre-treatment subgroups and promote bet-
ter personalized medicine [81]. In addition, all kinds of AI 
and radiomics derived from conventional and advanced 
MRI techniques are utilized to differentiate brain tumors 
from non-neoplastic lesions, discriminate gliomas from 
lymphomas and metastasis, as well as predict the grad-
ing, treatment response and prognosis of gliomas [128]. 
Radiogenomics further analyze the connection of the 
radiomic features of the tumor to its microenvironment. 
Although substantial obstacles still exist, radiologists are 
ready to introduce AI-based radiomics and radiogenom-
ics into future clinical practice.

Future directions
Radiomics and radiogenomics are exciting fields with 
growing applications for CNS neoplasms, but with 
several challenges warranting further investigation. 

Challenges related to genomics include the contin-
ued requirement for invasive tissue sampling for gold-
standard diagnosis, spatial heterogeneity of genomic 
alterations, variable availability of genetic testing, vari-
able standardization of testing techniques, testing cost 
issues, and evolving knowledge regarding the relevance 
of several of the tested genetic alterations. The creation 
of large public oncological data repositories such as The 
Cancer Genome Atlas/The Cancer Imaging Archive 
(TCGA/TCIA) and large-volume data from individual 
institutions have aided the successful application of AI in 
glioma. One of the important hurdles in developing neu-
roimaging or radiogenomic markers for primary brain 
tumors is the significant variability in image acquisition. 
Such variability can reflect differences in magnet design 
by various manufacturers, variable field strength, and 
differences in the conventional and advanced MRI pro-
tocols including pulse sequences, acquisition parameters, 
acquisition planes, timing of contrast, contrast agent, 
etc. These features result in differences in the image con-
trast, spatial resolution, and signal-to-noise ratio (SNR) 
across different patients or across serial examinations 
performed in the same patient. With this in mind, a mul-
tigroup consensus recommendation for Brain Tumor 
Imaging Protocol (BTIP) was published to standardize 
response assessment in glioblastomas (GBMs) in mul-
ticenter clinical trials [129, 130]. For developing robust 
imaging genomics, such standardization is highly impor-
tant. Despite these challenges, several genetic altera-
tions have already been integrated into the 2021 WHO 
updated CNS tumor classification; undoubtedly, more 
will find their way in the future updates. As outlined in 
this review, there are several useful radiomics features 
that have shown strong correlation to genomics and 
appear promising for preoperative prognostic and treat-
ment counseling. This has ushered a new era of research 
particularly utilizing artificial intelligence for nonin-
vasive prediction of the genetic and biological status of 
primary brain tumors radiogenomics. Like for genomics, 
cross-institutional standardization and collaboration is 
required to achieve the full potential of radiomics.

AI integrated with radiomics and radiogenomics has 
introduced new perspectives in characterizing nonin-
vasive biomarkers for prediction of survival and tumor 
recurrence in gliomas, especially HGG patients [44], 
which therefore promoting treatments tailored to per-
sonalized medicine. MRI-based textual analysis also 
helps characterize regional genetic heterogeneity in 
GBM, which provides potential diagnostic value under 
the paradigm of personalized medicine [131]. Machine 
learning-based radiogenomics directly associate the clin-
ical imaging phenotypes of GBM with underlying mor-
phologic and physiological features [132].
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Radiomics and radiogenomics has the potential to 
significantly improve GBM management via personal-
ized medicine; however, the application of radiomics for 
GBM treatment remains in developing, since standard-
ized image acquisition and data extraction techniques, 
as well as larger sample sizes, are needed for construct-
ing machine learning models that are reliable for clinical 
practice [133]. Furthermore, a lack of basic infrastruc-
tures, such as shared software algorithms, architectures, 
and the tools required for computing, comparing, eval-
uating, and disseminating predictive models, has ham-
pered the development of radiomics and radiogenomics 
as well as their clinical implementations. Fortunately, 
more and more researchers are working to solve these 
problems. IBEX, an open infrastructure software plat-
form, has been developed to flexibly support common 
radiomics workflow tasks including multimodality image 
data import and review, development of feature extrac-
tion algorithms, model validation, and consistent data 
sharing among multiple institutions [134]. Similarly, Ray-
Plus, as a web application, provides multiple functions 
such as multimodality image import and viewing, ROI 
definition, feature extraction, and data sharing among 
multi-institution and multi-department collaborative 
radiomics research [135]. The quantitative image feature 
pipeline (QIFP), an open-source, web-based, graphical 
user interface of quantitative image-processing pipelines 
for both 2D and 3D medical images, allows users to pro-
cess and analyze images with no need of self-program-
ming [136]. The QIFP also allows users to access publicly 
available datasets (e.g., TCIA) through direct links.

Conclusions
Rather than replace radiologists in clinical practice, AI-
based radiomics and radiogenomics aim to provide aid 
in diagnosis and prediction with higher accuracy and be 
beneficial to less invasive and more personalized treat-
ment strategies, especially for neuroradiology and to 
ultimately optimize patient care. In order to continue 
evolving and make its way into clinical practice, it is 
critical to establish a general scheme of standardized and 
reproducible methods for data extraction, analysis, and 
interpretation, as well as to promote open-access plat-
forms for prospective large-scale multi-center studies. 
Hopefully, radiomics and radiogenomics will develop to 
maturation and be widely used for precise medicine in 
the near future.
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