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Abstract 

Objectives To differentiate benign and malignant solitary pulmonary lesions (SPLs) by amide proton transfer-
weighted imaging (APTWI), mono-exponential model DWI (MEM-DWI), stretched exponential model DWI (SEM-DWI), 
and 18F-FDG PET-derived parameters.

Methods A total of 120 SPLs patients underwent chest 18F-FDG PET/MRI were enrolled, including 84 in the train-
ing set (28 benign and 56 malignant) and 36 in the test set (13 benign and 23 malignant). MTRasym(3.5 ppm), ADC, 
DDC, α,  SUVmax, MTV, and TLG were compared. The area under receiver-operator characteristic curve (AUC) was used 
to assess diagnostic efficacy. The Logistic regression analysis was used to identify independent predictors and estab-
lish prediction model.

Results SUVmax, MTV, TLG, α, and MTRasym(3.5 ppm) values were significantly lower and ADC, DDC values were 
significantly higher in benign SPLs than malignant SPLs (all P < 0.01).  SUVmax, ADC, and MTRasym(3.5 ppm) were 
independent predictors. Within the training set, the prediction model based on these independent predictors 
demonstrated optimal diagnostic efficacy (AUC, 0.976; sensitivity, 94.64%; specificity, 92.86%), surpassing any single 
parameter with statistical significance. Similarly, within the test set, the prediction model exhibited optimal diag-
nostic efficacy. The calibration curves and DCA revealed that the prediction model not only had good consistency 
but was also able to provide a significant benefit to the related patients, both in the training and test sets.

Conclusion The  SUVmax, ADC, and MTRasym(3.5 ppm) were independent predictors for differentiation of benign 
and malignant SPLs, and the prediction model based on them had an optimal diagnostic efficacy.
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Introduction
Solitary pulmonary lesions (SPLs) encompass single 
well-defined solid or sub-solid lung lesions surrounded 
by normal lung tissue and lack signs such as atelectasis 
or significant pleural effusion [1, 2]. In recent years, due 
to increasing environmental pollution, the prevalence 
of tobacco usage, and the increased awareness of health 
check-ups, the detection of SPLs has been on the rise 
[3]. Although most SPLs are eventually determined to be 
benign, early differentiation between benign and malig-
nant lesions remains crucial for effective patient man-
agement [4]. For instance, accurate identification and 
prompt resection of malignant SPLs can improve the 
5-year survival rate of patients with non-small cell lung 
cancer [5]. Similarly, accurately identifying benign SPLs 
before treatment could avoid unnecessary interventions, 
optimise the allocation of healthcare resources, and alle-
viate patient suffering [6]. Needle biopsy is currently an 
accepted method for distinguishing between benign and 
malignant SPLs prior to treatment. However, its limita-
tions, such as small sample size and invasiveness, not 
only hinder its ability to accurately represent the charac-
teristics of SPLs but also pose challenges for patients in 
poor physical condition or with lesions near vital struc-
tures such as the heart or large blood vessels [7, 8]. There-
fore, finding a non-invasive method that can differentiate 
between benign and malignant SPLs prior to treatment 
holds importance for the patients involved.

In clinical practice, computed tomography (CT) is 
commonly used as the primary modality for evaluat-
ing patients with SPLs. However, it has inherent limi-
tations, including exposure to ionising radiation and 
reliance solely on morphological criteria [4]. One of the 
most valuable diagnostic and evaluation tools for oncol-
ogy is 18Fluorine-fluorodeoxyglucose positron emission 
tomography/magnetic resonance imaging (18F-FDG 
PET/MRI). This imaging technique not only provides 
information about glucose metabolism through 18F-FDG 
PET imaging but also enables the simultaneous acquisi-
tion of multiple quantitative MRI sequences during PET 
imaging, offering a more comprehensive assessment for 
clinical decision-making in these patients [9]. Amide pro-
ton transfer-weighted imaging (APTWI), mono-expo-
nential model diffusion-weighted imaging (MEM-DWI), 
and stretched exponential model DWI (SEM-DWI) are 
quantitative MRI imaging sequences. APTWI allows the 
evaluation of mobile protein and peptide content in bio-
logical tissues without using exogenous contrast agents 
[10], while MEM-DWI and SEM-DWI provide insights 
into water molecule diffusion and tissue heterogene-
ity within the body [11]. Currently, 18F-FDG PET and 
MEM-DWI have shown promising results in differen-
tiating between benign and malignant lung lesions and 

are widely used [12]. However, APTWI and SEM-DWI 
are still in the early stages of research regarding the dif-
ferentiation between benign and malignant lung lesions, 
with limited studies available, often characterised by 
small sample sizes and the exclusion of SEM-DWI [13, 
14]. Moreover, to the best of our knowledge, no system-
atic comparison has been made to assess the diagnos-
tic performance of 18F-FDG PET, APTWI, MEM-DWI, 
and SEM-DWI in differentiating malignant from benign 
SPLs, and there is a lack of guidance on which parameters 
should be selected to help establish a clinical diagnosis.

This study aimed to use a hybrid 18F-FDG PET/MRI 
scanner to perform simultaneous chest 18F-FDG PET, 
APTWI, MEM-DWI, and SEM-DWI scans in patients 
with SPLs to compare the differences in each quantita-
tive/semi-quantitative parameter between the benign 
and malignant groups, identify independent predictors, 
and establish a prediction model and validate it. The 
ultimate goal is to offer a novel reference for the clinical 
management of these patients.

Materials and methods
Patients
This study was approved by the ethics review commit-
tee at our hospital, and written informed consent was 
obtained from all patients. From August 2020 to April 
2022, a series of 165 patients diagnosed with SPLs on 
CT underwent chest 18F-FDG PET/MRI. The following 
patients were excluded from the analysis: (i) those unable 
to complete all imaging sequences due to claustropho-
bia or other physical symptoms (n = 9); (ii) patients who 
had previously undergone radiotherapy, chemotherapy, 
or surgery prior to the 18F-FDG PET/MRI scan (n = 11); 
(iii) patients with poor image quality for 18F-FDG PET, 
APTWI, MEM-DWI, or SEM-DWI, making analysis 
challenging (n = 10); (iv) patients with missing clinical 
or histopathological information (n = 15). A total of 120 
patients with SPLs were enrolled, and information on 
age, sex, smoking history, and maximum diameter of the 
lesion was collected. The study flow is presented in Fig. 1.

Image acquisition
A chest scan was conducted using a hybrid 3.0  T PET/
MRI system (uPMR 790, United Imaging, Shanghai, 
China) equipped with a 12-channel phased-array body 
coil. The 18F-FDG used in this study was produced by 
FracerLab FX-FDG (GE Minitrac) with a purity of > 95% 
and a pH of 4.5–8.5. All patients fasted for a minimum of 
6 h before the scan to ensure that their serum glucose lev-
els were < 6.5 mmol/L while injecting 18F-FDG (0.11 mCi/
kg). The PET scan began 60 min after administering 18F-
FDG and lasted for 27  min. All patients were placed in 
the supine position headfirst and were scanned from 
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the upper thoracic inlet to the lower lung margin. All 
patients underwent breathing training before scanning in 
order to maintain smooth breathing during scanning and 
reduce image artefacts. A breathing strap was attached to 
monitor respiration by attaching it to the patient’s abdo-
men. Magnetic resonance-based attenuation correction 
was performed using a three-dimensional T1-weighted 
spoiled gradient-echo sequence with Dixon-based water-
fat separation imaging. This technique enabled the seg-
mentation of corrected images into soft tissue, fat, lung, 
and air compartments [15, 16]. The PET images were 
reconstructed using ordered subsets expectation maxi-
misation with two iterations, 20 subsets, and a voxel size 
of 2.6 × 2.6 × 2.0  mm3. Simultaneously, during the 18F-
FDG PET scan, axial T1-weighted imaging, T2-weighted 
imaging (T2WI), SEM-DWI, and APTWI were sequen-
tially performed. The APTWI parameters were as fol-
lows:  B1 values of 1.3 μT and 2.5 μT, ETL of 39, Gaussian 
pulse, 10 repeats, 100  ms duration, with an additional 
 S0 image without chemical exchange saturation transfer 
(CEST) saturation pulse for normalisation, and Δ rang-
ing from -4.5 to 4.5  ppm in 31 steps. Additionally, 11 
low-power  B1 images  (B1 = 0.13 μT) were acquired with Δ 
ranging from -1.0 to 1.0 ppm for wide-angle staring syn-
thetic aperture radar images used in  B0 map correction. 
Table 1 provides a comprehensive description of the pro-
tocol details.

Parameter generation
All images were uploaded to the post-processing Work-
station (uWS-MR005, United Imaging, Shanghai, China) 
for motion correction and analysis. Fused PET/MRI 

software was used to automatically extract the volume 
of interest (VOI), determine the maximum standard-
ised uptake value  (SUVmax), and quantify the metabolic 
tumour volume (MTV) and total lesion glycolysis (TLG) 
using a 40%  SUVmax threshold [17]. Advanced analysis 
toolkit software, specifically diffusion analysis and CEST 
software, were used to process the MEM-DWI, SWM-
DWI, and APTWI data. The parameters for MEM-DWI 
and SEM-DWI were calculated using Eqs. 1 and 2:

where b represents the diffusion sensitising factor,  S0, and 
 Sb represent the signal intensities (SIs) at a b-value of 0 or 
the b-value indicated by the subscript, respectively. ADC, 
DDC, and α represent the standard apparent diffusion 
coefficient, distributed diffusion coefficient, and water 
molecular diffusion heterogeneity index, respectively [11, 
18]. The APTWI parameter was derived from the follow-
ing formula:

where  S0 and  Ssat were the SIs obtained without and 
with selective saturation, respectively, and MTRasym 
(3.5  ppm) was the magnetisation transfer ratio asym-
metry at 3.5  ppm downfield from the water signal [10]. 
The regions of interest (ROIs) were manually drawn 
within the tumour margin layer by layer on the axial 
T2WI images with reference to the PET/MR fusion 
image. Areas with cystic degeneration, necrosis, apparent 

(1)Sb = S0 exp (−b · ADC)

(2)Sb/S0 = exp (−b× DDC)a

(3)MTRasym(3.5ppm) = [Ssat (−3.5ppm)− Ssat (+3.5ppm)]/S0

Fig. 1 Flow diagram of the patient selection process
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signs and haemorrhage artefacts, and blood vessels were 
avoided. Subsequently, all completed ROIs were copied 
to the pseudo colour maps of the MEM-DWI-, SWM-
DWI-, and APTWI-derived parameters to calculate the 
mean values based on the VOI. An attending radiologist 
and an associate chief radiologist who had 8 and 15 years 
of experience, respectively, independently performed the 
above procedures. Both the radiologists were blinded to 
each other’s results and the patient’s clinicopathological 
data.

Histopathologic evaluation
Within 2 weeks after 18F-FDG PET/MRI, surgical resec-
tion or biopsy were performed to obtain specimens of all 
malignant SPLs and 30 benign SPLs. These specimens 
were sent to our pathology centre for histological analy-
sis [19]. The remaining 11 cases of benign SPLs were fol-
lowed up for 5–20 weeks to obtain a final diagnosis.

Statistical analysis
All data were analysed using R (version 3.5.3; R Foun-
dation, Auckland, Zealand) and SPSS (version 15.0; 
MedCalc Software, Ostend, Belgium). Interobserver 
consistency for the 18F-FDG PET, MEM-DWI, SEM-
DWI, and APTWI parameters was assessed using the 
interclass correlation coefficient (ICC), with interpreta-
tions as follows: < 0.40 for poor consistency, 0.40–0.60 
for fair consistency, 0.60–0.75 for good consistency, 

and > 0.75 for excellent consistency [20]. Categori-
cal variables are presented as counts and percentages. 
Continuous variables are presented as the median and 
upper and lower quartiles if non-normally distributed 
and as the mean ± standard deviation if normally dis-
tributed. The Mann–Whitney U test, independent sam-
ples t-test, and chi-square test were used to compare 
different variables between the benign and malignant 
groups. The diagnostic efficacy was evaluated using the 
area under the receiver operating characteristic curve 
(AUC), and differences in AUCs were assessed using 
the DeLong test. The logistic regression (LR) analysis 
(forward LR method) was used to identify independ-
ent predictors and establish a prediction model. Cali-
bration curves and decision curve analysis (DCA) were 
used for evaluating the prediction model. Statistical 
significance was set at P < 0.05.

Results
Basic information
A total of 79 malignant SPLs (11 small cell lung can-
cer, 16 squamous cell carcinoma, and 52 adenocar-
cinoma cases) and 41 benign SPLs (eight common 
inflammation, eight mechanical pneumonia, six tuber-
culosis, three hamartoma, eight fungal infection, five 
lung abscess, and three inflammatory pseudotumour 
cases) were enrolled in this study. Based on the princi-
ple of randomisation, 70% of patients in the benign and 
malignant groups were selected to form a training set 

Table 1 Details of scanning protocol

Wfi3d-trig 3D T1-weighted spoiled gradient-echo sequence with Dixon-based water-fat separation imaging, FSE Fast spin echo, SS-EPI Single Shot Echo Planar 
Imaging, T1WI T1-weighted imaging, T2WI T2-weighted imaging, SEM-DWI Stretch-exponential model diffusion-weighted imaging, APTWI Amide proton transfer-
weighted imaging

Sequence Wfi3d-trig T1WI T2WI SEM-DWI APTWI

Type / Orientation FSE /Axial FSE /Axial FSE /Axial SS—EPI /Axial FSE /Axial

Field of view  (cm2) 35 × 50 35 × 50 35 × 50 35 × 50 35 × 50

Repetition time (ms) 4.92 5.06 3315 1620 4500

Echo time (ms) 2.24 2.1 87.8 69.6 42.56

Matrix 192 × 192 303 × 456 264 × 480 202 × 256 128 × 100

Slice thickness (mm) 2 5 5 5 5

Interval (mm) 0 1 1 1 1

Number of excitations 2 2 2 1, 1, 2, 2, 4, 4, 6, 6, 8, 10 1

b-values (s/mm2) / / / 0, 25, 50, 100, 150, 200, 400, 600, 
800, 1000

/

Fat suppression No No Yes Yes No

Respiratory compensation Yes Yes Yes Yes Yes

Scan time 2 min 04 s 14 s 2 min 26 s 3 min 38 s 3 min 15 s 
(single 
slice)



Page 5 of 13Meng et al. Cancer Imaging           (2024) 24:33  

(n = 84), while the remaining 30% of patients formed a 
test set (n = 36). The patients’ clinical characteristics are 
summarised in Table 2.

Consistency test
The  SUVmax, MTV, TLG, ADC, DDC, α, and MTRa-
sym(3.5  ppm) values measured by the 2 radiologists 
had excellent consistency. The ICC were 0.969 (95% CI: 
0.957 ~ 0.979), 0.988 (95% CI: 0.983 ~ 0.992), 0.968 (95% 
CI: 0.954 ~ 0.978), 0.910 (95% CI: 0.871 ~ 0.938), 0.940 
(95% CI: 0.915 ~ 0.958), 0.932 (95% CI: 0.902 ~ 0.953), and 
0.897 (95% CI: 0.852 ~ 0.928), respectively. The average 
results were used for the ultimate analysis.

Parameter comparison
SUVmax, MTV, TLG, α, and MTRasym(3.5  ppm) values 
were significantly lower and ADC, DDC values were sig-
nificantly higher in benign SPL than malignant SPL (P < 0
.001, < 0.001, < 0.001, = 0.004, < 0.001, < 0.001, and < 0.001, 
respectively, Table 3, Figs. 2 and 3).

Regression analyses
The potential risk-related factors such as age, maximum 
diameter, sex, smoking,  SUVmax, MTV, TLG, ADC, DDC, 
α, and MTRasym(3.5 ppm) were all enrolled in regression 
analysis. Univariate analysis demonstrated that maxi-
mum diameter,  SUVmax, MTV, TLG, ADC, DDC, α, and 

MTRasym(3.5 ppm) were all risk predictors (P all < 0.05), 
while multivariate analysis showed that only  SUVmax, 
ADC, and MTRasym(3.5 ppm) were independent predic-
tors (P = 0.001, 0.001, and 0.024, respectively, Table 4).

Diagnostic performance
Within the training set, the prediction model based on 
these independent predictors demonstrated optimal 
diagnostic efficacy (AUC, 0.976; sensitivity, 94.64%; spec-
ificity, 92.86%), surpassing ADC,  SUVmax, TLG, DDC, 
α, MTV, and MTRasym (3.5  ppm) with statistical sig-
nificance (AUC = 0.888, 0.853, 0.809, 0.786, 0.786, 0.768, 
and 0.691, Z = 2.761, 3.080, 3.653, 3.844, 3.773, 4.030, and 
4.938, respectively, P = 0.006, 0.002, < 0.001, < 0.001, < 0.
001, < 0.001, and < 0.001, respectively). Similarly, within 
the test set, the prediction model exhibited optimal diag-
nostic efficacy (AUC, 0.957; sensitivity, 91.30%; specific-
ity, 92.31%, Table  5, Fig.  4), outperforming TLG, MTV, 
α, ADC, MTRasym (3.5 ppm), and DDC with statistical 
significance (AUC = 0.833, 0.793, 0.776, 0.756, 0.732, and 
0.729, Z = 2.317, 2.337, 2.514, 2.263, 2.562, and 2.697, 
respectively, P = 0.021, 0.020, 0.012, 0.024, 0.010, and 
0.007, respectively).

Validation
The calibration curves and DCA revealed that the predic-
tion model exhibited not only good consistency but also 

Table 2 Summary of characteristics in training and testing sets

SUVmax Maximum standardized uptake value, MTV Metabolic tumor volume, TLG Total lesion glycolysis, ADC Apparent diffusion coefficient, DDC Distributed diffusion 
coefficient, α Diffusion heterogeneity index, MTRasym (3.5 ppm) Magnetization transfer ratio asymmetry at 3.5 ppm. A represents the Mann–Whitney U test, b 
represents the chi-square test and c represents the independent samples t-test

Variables Training set (n = 84) Test set (n = 36) χ2 / z / t value P value

Age (year) 62.50 (54.25, 68.00) 56.00 (51.00, 61.75) - 2.507 0.012 a

Maximum diameter (mm) 29.50 (18.25, 40.75) 25.00 (16.50, 44.50) - 0.221 0.825 a

Nature of lesion 0.086 0.769

 Benign 28 (33.33%) 13 (36.11%)

 Malignant 56 (66.67%) 23 (63.89%)

Sex 0.007 0.935 b

 Male 52 (61.90%) 22 (61.11%)

 Female 32 (38.10%) 14 (38.89%)

Smoking 1.633 0.201 b

 Never 48 (57.14%) 16 (44.44%)

 Always 36 (42.86%) 20 (55.56%)

Parameters

  SUVmax 6.76 (4.41, 12.10) 3.66 (2.50, 6.40) - 3.296 0.001 a

 MTV (ml) 7.87 (3.45, 23.12) 8.55 (2.52, 19.06) - 1.042 0.297 a

 TLG (g) 20.73 (5.91, 109.11) 17.65 (3.43, 79.45) - 1.392 0.164 a

  ADCstand (×  10−3mm2/s) 1.54 ± 0.31 1.43 ± 0.29 - 1.898 0.062 c

 DDC (×  10−3mm2/s) 2.41 (1.69, 3.12) 2.29 (1.54, 2.74) - 0.988 0.323 a

 α 0.53 (0.48, 0.71) 0.62 (0.47, 0.74) - 0.942 0.346 a

 MTRasym(3.5 ppm) (%) 1.64 (0.51, 3.53) 0.88 (0.40, 3.73) - 0.793 0.428 a
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provided greater clinical benefits to the relevant patients 
compared with any single parameter, as evident in the 
training and test sets (Fig. 5).

Discussion
Currently, 18F-FDG PET is widely employed as a molecu-
lar imaging technique in clinical practice. It provides val-
uable information regarding the metabolism of the target 
tissue, with derived parameters such as  SUVmax, TLG, 
and MTV commonly used to quantify glucose metabo-
lism.  SUVmax primarily reflects the highest levels of glu-
cose metabolism within the target region, while TLG and 
MTV reflect the overall glucose metabolism in the target 
region [21]. Erdoğan et  al. comprehensively evaluated 
18F-FDG PET data from 113 patients with lung lesions 
and observed that  SUVmax, TLG, and MTV all played a 
positive role in distinguishing between benign and malig-
nant lung lesions [22]. In a meta-analysis conducted by Li 
et al., the role of 18F-FDG PET in evaluating lung lesions 
was assessed. The findings demonstrated that although 
there was some overlap in 18F-FDG uptake between 
benign and malignant lesions, 18F-FDG PET remained a 
reliable diagnostic tool [23]. In this study, malignant SPLs 
exhibited elevated metabolic activity and higher 18F-FDG 
transport and uptake compared with benign SPLs. Con-
sequently, there were significant increases in  SUVmax, 
MTV, and TLG in the malignant group. Furthermore, 
the LR analysis confirmed that  SUVmax served as an inde-
pendent predictor for discriminating between benign 

and malignant SPLs, which is consistent with the above 
findings, further suggesting that 18F-FDG PET could help 
differentiate between benign and malignant SPLs.

The MEM-DWI represents the first DWI method to be 
used in clinical practice and assumes a uniform Gaussian 
distribution for the diffusion motion of water molecules 
in biological tissues. It uses the quantitative parameter 
ADC to capture variations in water molecule diffusion 
motion [24]. The value of ADC has been extensively 
investigated for its potential in differentiating between 
benign and malignant lung lesions. Numerous studies 
have consistently reported significantly lower ADC val-
ues in malignant lesions compared with benign lesions, 
primarily attributed to the increased cell proliferation, 
dense tissue structure, and more restricted diffusion of 
water molecules within the malignant lesions [25]. In 
our study, the ADC values in malignant SPLs were sig-
nificantly lower compared with those in benign SPLs. 
Furthermore, ADC emerged as an independent predictor 
for differentiating between benign and malignant SPLs, 
which is consistent with the previous studies and further 
demonstrates the role of MEM-DWI in differentiating 
between benign and malignant SPLs.

In contrast to MEM-DWI, SEM-DWI assumes that 
the movement of water molecules in biological tissues 
occurs within a non-homogeneous environment. This 
approach yields two quantitative parameters, namely 
DDC, which reflects the distributed diffusion of water 
molecules, and α, which reflects tissue heterogeneity 

Table 3 Comparison of different characteristics between benign and malignant group in the training set

SUVmax Maximum standardized uptake value, MTV Metabolic tumor volume, TLG Total lesion glycolysis, ADC Apparent diffusion coefficient, DDC Distributed diffusion 
coefficient, α Diffusion heterogeneity index, MTRasym (3.5 ppm) Magnetization transfer ratio asymmetry at 3.5 ppm. A represents the Mann–Whitney U test, b 
represents the chi-square test and c represents the independent samples t-test

Variables Benign group (n = 84) Malignant group (n = 36) χ2 / z / t value P value

Age (year) 57.54 ± 7.98 61.59 ± 11.96 - 1.845 0.069 a

Maximum diameter (mm) 16.50 (9.25, 31.00) 31.50 (24.00, 46.25) - 3.551  < 0.001 b

Sex 0.404 0.525 c

 Male 16 (57.14%) 36 (64.29%)

 Female 12 (42.86%) 20 (35.71%)

Smoking 0.219 0.640 c

 Never 17 (60.71%) 31 (55.36%)

 Always 11 (39.29%) 25 (44.64%)

Parameters

  SUVmax 4.38 (2.78, 5.44) 9.63 (6.23, 13.23) - 5.257  < 0.001 b

 MTV (ml) 4.05 (2.33, 6.78) 14.46 (4.77, 38.82) - 3.981  < 0.001 b

 TLG (g) 6.29 (1.86, 12.96) 62.16 (11.33, 155.71) - 4.602  < 0.001 b

 ADC (×  10−3mm2/s) 1.79 ± 0.19 1.42 ± 0.28 7.266  < 0.001 a

 DDC (×  10−3mm2/s) 3.00 (2.78, 3.32) 1.93 (1.57, 2.60) - 4.261  < 0.001 b

 α 0.48 (0.42, 0.52) 0.63 (0.50, 0.78) - 4.251  < 0.001 b

 MTRasym(3.5 ppm) (%) 1.07 (0.35, 1.75) 2.58 (0.62, 3.87) - 2.847 0.004 b
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[11]. Similar to ADC, DDC values are primarily influ-
enced by the tightness of the tissue structure, In this 
study, patients with malignant SPLs, characterised 
by increased cell proliferation and tighter structure, 
exhibited significantly lower DDC values compared to 
those with benign SPLs. On the other hand, the mag-
nitude of α is closely associated with tissue heteroge-
neity. Previous studies on endometrial carcinoma [26], 
breast cancer [27], and renal cancer [28] have demon-
strated that more malignant lesions generally exhibit 
significant tissue heterogeneity due to factors such 
as necrosis, haemorrhage, and cellular heterogeneity, 
resulting in reduced α values. Surprisingly, the findings 
of this study revealed an opposite trend, wherein the α 

value was increased in malignant SPLs compared with 
benign SPLs. It is speculated that this discrepancy may 
be attributed to the specific structure of the lung tissue. 
In benign SPLs, although there is relatively less necro-
sis, haemorrhage, and cellular heterogeneity, it contains 
more normal lung tissues such as alveoli and fine bron-
chi. These elements could contribute to increased tissue 
heterogeneity to some extent. Conversely, in malignant 
SPLs, despite the presence of more pronounced necro-
sis, haemorrhage, and cellular heterogeneity, tissues 
such as alveoli and fine bronchi are often replaced by 
cancer cells, thereby reducing the heterogeneity [29]. 
Nevertheless, the accuracy of this inference should be 

Fig. 2 A 35-year-old woman with benign SPLs in the lower lobe of the left lung (arrowheads, size 15 mm × 25 mm × 21 mm, fibrous tissue 
hyperplasia with chronic inflammation). a Map of T2WI; b Map of 18F-FDG PET; (c) Map of MEM-DWI (b = 600 s/mm.2); (d) Pseudo colored map 
of ADC; (e) Pseudo colored map of DDC; (f) Pseudo colored map of α; (g) Map of APTWI; (h) Pseudo colored map of MTRasym(3.5 ppm); and (i) 
Pathological images (H&E staining,100 ×)



Page 8 of 13Meng et al. Cancer Imaging           (2024) 24:33 

validated, given the limited application of SEM-DWI in 
lung lesions.

APTWI, a quantitative MRI sequence based on CEST, 
uses proton exchange to transfer variations in tissue-
mobile protein/peptide concentrations to water mole-
cules. It calculates the quantitative parameter MTRasym 
(3.5 ppm) to reflect changes in mobile protein and pep-
tide concentrations within biological tissues [10]. This 
study aimed to compare the differences in MTRasym 
(3.5  ppm) values between patients with benign and 
malignant SPLs. The results indicated that patients in 
the malignant SPL group exhibited significantly higher 
MTRasym (3.5  ppm) values than those in the benign 
SPLs group, consistent with the findings of Ohno et  al. 

[13, 14]. These findings further suggest the potential of 
APTWI in aiding the qualitative diagnosis of SPLs. One 
possible explanation for this outcome is that patients 
with benign SPLs tend to have more robust cell prolif-
eration and a higher presence of necrotic and haemor-
rhagic components. Consequently, there is an increased 
concentration of mobile protein/peptide within the tis-
sue, resulting in increased MTRasym (3.5  ppm) values 
[30–32].

Due to the inherent tissue heterogeneity in tumourous 
lesions, relying on a single parameter for a comprehensive 
and accurate assessment can be challenging [33]. Previous 
studies have highlighted the advantages of using multi-
parameter combination diagnosis based on multiple 

Fig. 3 A 35-year-old man with malignant SPLs in the high lobe of the left lung (arrowheads, size 50 mm × 50 mm × 40 mm, mucinous 
adenocarcinoma). a Map of T2WI; (b) Map of 18F-FDG PET; (c) Map of MEM-DWI (b = 600 s/mm.2); (d) Pseudo colored map of ADC; (e) Pseudo 
colored map of DDC; (f) Pseudo colored map of α; (g) Map of APTWI; (h) Pseudo colored map of MTRasym(3.5 ppm); and (i) Pathological images 
(H&E staining,100 ×)
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quantitative or semi-quantitative parameters, particu-
larly multiple independent predictors, in improving the 
diagnosis and evaluation of tumours compared with 
relying on single parameters [34, 35]. Accordingly, the 
study employed univariate and multivariate LR analysis 

to identify independent predictors  (SUVmax, MTRasym 
[3.5  ppm], and ADC) for differentiating between benign 
and malignant SPLs among various clinical factors and 
quantitative and semi-quantitative parameters. Based on 
these predictors, a corresponding prediction model was 

Table 4 Univariate and multivariate analyses

Both univariate and multivariate analyses were conducted using the forward LR method

SUVmax Maximum standardized uptake value, MTV Metabolic tumor volume, TLG Total lesion glycolysis, ADC Apparent diffusion coefficient, DDC Distributed diffusion 
coefficient, α Diffusion heterogeneity index, MTRasym (3.5 ppm) Magnetization transfer ratio asymmetry at 3.5 ppm, OR Odds ratio; *OR for per 1 standard deviation, 
CI Confidence interval

Variables Univariate Analyses Multivariate Analyses

OR (95% CI) P-value OR (95% CI) P-value

Age (year) 1.447 (0.914 ~ 2.290) 0.115 / /
Sex 1.158 (0.736 ~ 1.821) 0.526 / /
Smoking 0.896 (0.566 ~ 1.419) 0.640 / /
Maximum diameter (mm) 2.279 (1.224 ~ 4.245) 0.009 / /
SUVmax 9.892 (3.253 ~ 30.082)  < 0.001 61.636 (5.636 ~ 674.116) 0.001

MTV (ml) 4.330 (1.184 ~ 15.832) 0.027 / /
TLG (g) 31.119 (2.786 ~ 347.591) 0.005 / /
ADC (×  10−3mm2/s) 0.128 (0.050 ~ 0.329)  < 0.001 0.017 (0.002 ~ 0.181) 0.001

DDC (×  10−3mm2/s) 0.406 (0.226 ~ 0.728) 0.002 / /
α 3.696 (1.816 ~ 7.522)  < 0.001 / /
MTRasym(3.5 ppm) (%) 2.085 (1.142 ~ 3.804) 0.017 11.178 (1.378 ~ 90.661) 0.024

Table 5 Predictive performance for identifying benign and malignant SPL

SPL solitary pulmonary lesion, SUVmax Maximum standardized uptake value, MTV Metabolic tumor volume, TLG Total lesion glycolysis, ADC Apparent diffusion 
coefficient, DDC Distributed diffusion coefficient, α diffusion heterogeneity index, MTRasym(3.5 ppm) magnetization transfer ratio asymmetry at 3.5 ppm. The 
prediction model represents  SUVmax. + ADC + MTRasym (3.5 ppm)

Parameters AUC (95% CI) P-value Cutoff Sensitivity Specificity Comparison 
with a combined 
diagnosis

Training set

  SUVmax 0.853 (0.759 ~ 0.921)  < 0.001 6.690 73.21% 96.43% Z = 3.080, P = 0.002

 MTV (ml) 0.768 (0.663 ~ 0.853)  < 0.001 6.930 67.86% 78.57% Z = 4.030, P < 0.001

 TLG (g) 0.809 (0.709 ~ 0.887)  < 0.001 16.653 73.21% 82.14% Z = 3.653, P < 0.001

 ADC (×  10−3mm2/s) 0.888 (0.800 ~ 0.946)  < 0.001 1.573 76.79% 92.86% Z = 2.761, P = 0.006

 DDC (×  10−3mm2/s) 0.786 (0.683 ~ 0.868)  < 0.001 2.721 78.57% 85.71% Z = 3.844, P < 0.001

 α 0.786 (0.683 ~ 0.868)  < 0.001 0.534 67.86% 89.29% Z = 3.773, P < 0.001

 MTRasym(3.5 ppm) (%) 0.691 (0.581 ~ 0.788) 0.002 2.225 55.36% 89.29% Z = 4.938, P < 0.001

 Prediction model 0.976 (0.916—0.997)  < 0.001 / 94.64% 92.86% /

Test set

  SUVmax 0.885 (0.734 ~ 0.967)  < 0.001 3.330 86.96% 84.62% Z = 1.741, P = 0.081

 MTV (ml) 0.793 (0.625 ~ 0.909)  < 0.001 8.395 69.57% 84.62% Z = 2.337, P = 0.020

 TLG (g) 0.833 (0.671 ~ 0.936)  < 0.001 17.924 69.57% 92.31% Z = 2.317, P = 0.021

 ADC (×  10−3mm2/s) 0.756 (0.584 ~ 0.883) 0.004 1.324 60.87% 92.31% Z = 2.263, P = 0.024

 DDC (×  10−3mm2/s) 0.729 (0.555 ~ 0.863) 0.006 1.824 52.17% 92.31% Z = 2.697, P = 0.007

 α 0.776 (0.606 ~ 0.898)  < 0.001 0.485 86.96% 61.54% Z = 2.514, P = 0.012

 MTRasym(3.5 ppm) (%) 0.732 (0.559 ~ 0.866) 0.007 1.880 65.22% 100.00% Z = 2.562, P = 0.010

 Prediction model 0.957 (0.831—0.997)  < 0.001 / 91.30% 92.31% /
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developed. The results demonstrated that the prediction 
model not only exhibited varying degrees of improved 
diagnostic efficacy compared with individual param-
eters but also provided reliable benefits to the patients, 
as observed in both the training and test sets. These find-
ings suggest that the combination of multiple parameters 
might more and accurately reflect the characteristics of 
the lesion, emphasising the importance of using as many 

imaging methods as possible to assess patients whenever 
feasible.

While this study yielded encouraging results, it is 
important to acknowledge several limitations. First, the 
study was conducted at a single institution, and although 
a training and test set were employed, the sample size 
remained relatively small. Additionally, the external vali-
dation of these findings across multiple institutions was 

Fig. 4 The area under receiver-operator characteristic (ROC) curves of different parameters and the prediction model. a, b ROC curve of the training 
set. c, d ROC curve of the test set
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not performed, which might affect the reliability of the 
results to some extent. Second, the exclusion of some 
microscopic lesions, particularly benign SPLs, from 18F-
FDG PET/MRI scans due to poor display could limit the 
applicability of the study. Third, respiratory and cardio-
vascular pulsation artefacts in the lungs can be signifi-
cant, despite attempts to mitigate their effects through 
various techniques. These artefacts might still influence 
the stability of the various quantitative/semi-quantitative 
parameters. Fourthly, the present study has not explored 
the value of APTWI, SEM-DWI, and 18F-FDG PET in the 
assessment of different histopathological features of SPL 
such as Ki-67, grade, etc., which may have led to an inad-
equate study. Future studies should aim to expand the 
sample size, conduct multi-center studies, asses a wider 

range of histopathological features, and explore tech-
nologies that can reduce artefacts, such as cardiovascular 
gating, rapid scanning and electrocardiogram triggering, 
to enhance imaging quality and obtain more stable and 
reliable experimental results.

Conclusion
Multiparametric PET/MRI based on 18 F-FDG PET, 
MEM-DWI, SEM-DWI, and APTWI can effectively eval-
uate the characteristics of SPLs. The prediction model 
comprising  SUVmax, ADC, and MTRasym (3.5  ppm) 
demonstrated superior diagnostic efficacy compared 
with individual parameters. It holds promise as a reliable 
imaging marker for differentiating between benign and 
malignant SPLs.

Fig. 5 Calibration curves and decision curve analysis (DCA) curves. a, b Calibration curve and DCA of the training set. c, d Calibration curve curve 
and DCA of the test set
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Abbreviations
APTWI  Amide proton transfer-weighted imaging
18F-FDG PET  18F-Fluorodeoxyglucose positron emission tomography
SPLs  Solitary pulmonary lesions
PFS  Progression-free survival
ADC  Apparent diffusion coefficient
DDC  Distributed diffusion coefficient
α  Water molecular diffusion heterogeneity index
MTRasym (3.5 ppm) Magnetization transfer ratio asymmetry at 3.5 ppm
SUVmax  Maximum standardized uptake value
MTV  Metabolic tumor volume
TLG  Total lesion glycolysis
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