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Abstract 

Background Identifying breast cancer (BC) patients with germline breast cancer susceptibility gene (gBRCA ) muta-
tion is important. The current criteria for germline testing for BC remain controversial. This study aimed to develop 
a nomogram incorporating ultrasound radiomic features and clinicopathological factors to predict gBRCA  mutations 
in patients with BC.

Materials and methods In this retrospective study, 497 women with BC who underwent gBRCA  genetic testing 
from March 2013 to May 2022 were included, including 348 for training (84 with and 264 without a gBRCA  mutation) 
and 149 for validation(36 patients with and 113 without a gBRCA  mutation). Factors associated with gBRCA  mutations 
were identified to establish a clinicopathological model. Radiomics features were extracted from the intratumoral 
and peritumoral regions (3 mm and 5 mm) of each image. The least absolute shrinkage and selection operator regres-
sion algorithm was used to select the features and logistic regression analysis was used to construct three imaging 
models. Finally, a nomogram that combined clinicopathological and radiomics features was developed. The models 
were evaluated based on the area under the receiver operating characteristic curve (AUC), calibration, and clinical 
usefulness.

Results Age at diagnosis, family history of BC, personal history of other BRCA -related cancers, and human epidermal 
growth factor receptor 2 status were independent predictors of the clinicopathological model. The AUC of the imag-
ing radiomics model combining intratumoral and peritumoral 3 mm areas in the validation set was 0.783 (95% con-
fidence interval [CI]: 0.702—0.862), which showed the best performance among three imaging models. The nomo-
gram yielded better performance than the clinicopathological model in validation sets (AUC: 0.824 [0.755—0.894] 
versus 0.659 [0.563—0.755], p = 0.007).

Conclusion The nomogram based on ultrasound images and clinicopathological factors performs well in predicting 
gBRCA  mutations in BC patients and may help to improve clinical decisions about genetic testing.

†Tingting Deng and Jianwen Liang contributed equally to this work.

*Correspondence:
Yi Gao
gaoyi@szu.edu.cn
Xi Lin
linxi@sysucc.org.cn
Full list of author information is available at the end of the article

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://crossmark.crossref.org/dialog/?doi=10.1186/s40644-024-00676-w&domain=pdf
http://orcid.org/0000-0003-2984-1703


Page 2 of 11Deng et al. Cancer Imaging           (2024) 24:31 

Keywords Breast cancer, BRCA , Ultrasound, Radiomics, Nomogram

Introduction
Breast cancer (BC) is the most common cancer and one 
of the leading causes of death from cancer among women 
globally [1]. The most prevalent and significant suscepti-
bility gene of BC is the breast cancer susceptibility gene 
(BRCA ), which includes BRCA1 and BRCA2 [2]. Knowl-
edge of one’s germline BRCA  (gBRCA ) status has value 
for both the patient and her family. A therapeutic benefit 
exists for BC patients, because contralateral BC or ovar-
ian cancer can be prevented by risk-reducing mastec-
tomy and salpingo-oophorectomy [3]. Furthermore, with 
the advent of poly (ADP-ribose) polymerase inhibitor 
treatment, enabled treatment selection with improved 
outcomes [4]. For her family, it is possible to strengthen 
the gene screening of her close relatives.

Due to the increasing influence of gene mutations on 
BC surveillance, prevention, and treatment decisions, 
genetic testing is rapidly expanding in clinical practice 
[5]. However, the criteria for germline testing for BC 
remain controversial. The National Comprehensive Can-
cer Network guildline recommends genetic testing only 
for high-risk patients, which may exclude half of the cases 
that do not fit this criterion [6, 7]. In addition, genetic 
testing is time-consuming and expensive, routine genetic 
testing for the majority of or all BC patients may result 
in a large financial burden, ethical dilemmas, and other 
obstacles [8–10]. Therefore, before performing genetic 
testing, an accurate estimation of the probability of BC 
patients carrying a gBRCA  mutation is crucial.

Recent studies [11–13] have demonstrated the viability 
and potential utility of radiomics as a technique for pre-
dicting the gBRCA  status of cancer patients by utilizing 
demographic and clinicopathological features, pathology 
images, or magnetic resonance imaging (MRI) images. 
Biomedical images can contain information that reflects 
the underlying pathophysiology [14]. Over the last few 
years, radiomics has been used by oncologists and radi-
ologists for diagnosis, therapy response assessment, 
and survival prediction in BC patients [15–17]. In addi-
tion, some studies [15, 18–20] have shown that com-
bined intratumoral and peritumoral radiomics models 
have superior performance compared to intratumoral 
radiomics models alone. The peritumoral region refers 
to the adjacent parenchyma immediately surrounding 
the tumor. It may be considered to represent the tumor 
microenvironment and has biological importance in 
defining tumor behavior [21–23].

However, due to insufficient accuracy of clinical criteria 
or the limited number of cases included in some studies 

[11–13], and the higher costs and lower availability of 
MRI than other imaging modalities [24, 25], the exist-
ing risk prediction models for genetic testing do not ful-
fill the requirements of clinical practice. Therefore, there 
is an urgent need for a valid, accurate, and cost-effective 
model to predict gBRCA  mutations. Ultrasound (US) is 
widely used to characterize breast lesions, because of 
its low cost, wide availability, real-time image analysis 
capabilities, and lack of ionizing radiation emission [26]. 
In addition, due to the high proportion of young Asian 
women with hereditary BC, given their relatively dense 
breasts, information obtained from US images may pro-
vide a reference for the subsequent genetic testing of this 
population. Several reports comparing morphological 
characteristics from US images between sporadic and 
BRCA1/2-related BC have been published [27–29]. How-
ever, to date, no studies have been published on the use 
of US images to predict the gBRCA  mutation status of BC 
patients.

Hence, the purpose of this study was to develop a 
nomogram based on intratumoral and peritumoral US 
features, combined with clinicopathological factors, to 
predict the gBRCA  mutation status of patients with BC.

Methods
Study population
The study protocol was approved by the Academic Eth-
ics Committee of Sun Yat-sen University Cancer Center. 
Because of the retrospective nature of this study, the 
need for informed consent was waived.

The study participants were women diagnosed with BC 
who were recruited from the Sun Yat-sen University Can-
cer Center from March 2013 to May 2022. The follow-
ing were the criteria for inclusion: (I) clear gBRCA  gene 
test results, (II) patients who underwent breast ultra-
sound, and (III) pathologically confirmed BC. The exclu-
sion criteria were (I) clinicopathological information was 
incomplete, (II) preoperative therapy (chemotherapy, 
radiotherapy, or incomplete resection), and (III) poor 
picture quality. There were 497 patients finally enrolled 
after the application of these criteria. The patients were 
divided into two sets at a ratio of 7:3. The training set 
included 348 women (84 with and 264 without a gBRCA  
mutation), while the validation set included 149 women 
(36 patients with and 113 without a gBRCA  mutation).

US image acquisition
All lesions underwent examination by breast US before 
the operation. US examinations were performed using 
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high-frequency (7–18  MHz) linear array probes and a 
real-time US system. US was performed in two orthogo-
nal planes, and the lesions’ characteristics were recorded. 
The US systems used included Logiq 9, Logiq E9, and 
Logiq S8 (GE Medical Systems, Waukesha, WI, USA); 
IU22 and EPIQ 7 (Philips Healthcare, Amsterdam, Neth-
erlands); ACUSON Juniper, Sequoia, and S2000 (Siemens 
Healthineers, Erlangen, Germany); Aixplorer (Supersonic 
Imagine, Aix-en-Provence, France); Aplio 400 (Toshiba 
Medical Systems Corp, Tochigi, Japan); Aloka ProSound 
ALPHA 10 (Hitachi-Aloka Medical, Wallingford, CT, 
USA); Resona 7 T and DC-8 (Mindray Medical Interna-
tional, Shenzhen, China); and MyLab 70 (Esaote, Genoa, 
Italy) systems.

gBRCA mutation status
Genomic DNA was extracted from patients’ peripheral 
blood. BRCA1/2 gene fragments were sequenced by next-
generation sequencing. Searches for mutations were lim-
ited to known deleterious mutations. To prevent possible 
dataset contamination [30], variants of uncertain signif-
cance (VUS) were excluded from the analysis. gBRCA  
genetic testing results were used as the gold standard.

Image pre‑processing, region of interest segmentation, 
and feature extraction
The BC lesions located in US B-mode images were 
manually delineated along the tumor edge by a radiolo-
gist (with 3 years of experience in breast imaging) as the 
region of interest (ROI-1). Another radiologist (with 
10 years of experience in breast imaging) examined all of 
the ROIs. If the readings were discordant, agreement was 
arrived at by a joint review of the images. Neither physi-
cian was aware of the patient’s gBRCA  mutation status. 
When there were multiple lesions in the image, the larg-
est lesion was selected as the target lesion. Based on other 
previous imaging studies of the peri-tumor area of breast 
cancer [15, 19, 20], we decided to externally expand the 
peri-tumor area to 3 mm and 5 mm. The Opencv package 
of the Python program was used to semi-automatically 
segment the peritumoral area (ROI-2 and ROI-3, includ-
ing the peritumoral parenchyma representing 3 mm and 
5 mm extensions outward, respectively) (Fig. 1).

This study used Z-score normalization to standardize 
features, aligning them to a mean of zero and a stand-
ard deviation of one, in order to remove the inherent 
bias introduced by multiple ultrasound systems before 
feature selection. There were 1,359 radiomic features, 
including first-order statistics, shape, gray-level co-
occurrence matrix (GLCM), gray-level size zone matrix 
(GLSZM), gray-level dependence matrix (GLDM), 
Gy-level run length matrix (GLRLM), and neighbor-
hood gray-tone difference matrix (NGTDM), that were 

extracted from three segmented regions (ROI-1, ROI-2, 
and ROI-3). These features were used for further analysis 
and regression modeling. More information about the 
standard radiomics workflow and model construction is 
shown in Fig. 2.

Radiomics score
Imaging data were featured from the three ROIs using 
the t-test followed by the least absolute shrinkage and 
selection operator (LASSO) algorithm (Supplemen-
tary eFig.  1). The t-test was cited first to find the most 
discriminated features and the most useful predictive 
combination of data was used to create three radiom-
ics signatures (RS1 for ROI-1, RS2 for ROI-1 and ROI-
2, and RS3 for ROI-1 and ROI-3) by linear combination. 
Selection bias of LASSO may introduced due to the lim-
ited samples. To choose more robust features, the most 
suitable coefficient λ was selected through tenfold cross-
validation. The final radiomics signature was obtained by 
logistic regression. Based on the combined radiomics sig-
nature, a radiomics score was calculated and presented in 
the training and validation sets. We calculated the area 
under the curve (AUC) for three models in the training 
and validation sets, and selected the model with the high-
est AUC as the final radiomics model.

Development of the clinicopathological model
Baseline clinicopathological data were obtained from the 
medical records. Univariate logistic regression analysis 
was used to screen candidate variables in the training set, 
and variables with p < 0.200 were entered into a multivari-
ate logistic regression analysis. Variables with p < 0.050 in 
the multivariate analysis were then included as independ-
ent predictors in the final clinicopathology model. After 
selecting clinicopathological features, a logistic regres-
sion model based on these features was constructed as 
the clinicopathological model.

Fig. 1 The regions of interest. ROI = region of interest; 
ROI-1 = intratumoral area; ROI-2 = 3 mm peritumoral region; 
ROI-3 = 5 mm peritumoral region
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Development of the clinicopathology–radiomics signature 
and nomogram
To integrate radiomics and clinicopathological features, 
we constructed a combined clinicopathology-radiomics 
model. The t-test was also cited to select radiomics 
features first, and then we selected all radiomics fea-
tures and all clinicopathological features identified by 
LASSO in the training set, and the penalty coefficient, 
λ, was also determined using ten-fold cross-validation. 
To prevent overfitting, we used a ridge regression 
model with a penalty coefficient of 0.05 and intuitively 
represented the model as a nomogram. In the nomo-
gram, the threshold probability of a gBRCA  mutation 
was determined based on the cutoff index. The likeli-
hood that a patient would be projected to have a gBRCA  
mutation increased when it exceeded the threshold 
probability.

Statistical analysis
Normalization was performed on radiomics features 
using z-score transformation. To assess the equivalence 
of patient demographic data between cohorts, normally 

distributed data were analyzed using an independ-
ent Student’s t-test, and non-normally distributed data 
expressed as medians were analyzed using the Mann–
Whitney U test. Categorical variables were analyzed 
using a chi-square test. The predictive performance of 
the different models was evaluated using receiver operat-
ing characteristic (ROC) curves. The area under the ROC 
curve (AUC) and balanced sensitivity and specificity at 
the cutoff value were calculated. DeLong’s test was used 
to compare the AUCs between the models. Calibration 
curves and the Hosmer–Lemeshow (H–L) test were used 
to assess the calibration performance of the nomogram 
[31]. Decision curve analysis (DCA) was implemented to 
determine the clinical utility of the nomogram by quanti-
fying the net benefits at different threshold probabilities 
[32]. Statistical analyses were performed using R software 
(version 4.0.4; R Foundation for Statistical Computing, 
Vienna, Austria). To address the issue of multicollin-
earity, the variance inflation factor (VIF) was calculated 
for each feature, and features with a VIF of > 10 were 
excluded. Statistical significance was defined as a two-
sided p-value of < 0.050.

Fig. 2 Overview of the radiomics modeling process. ROI = region of interest, LASSO = least absolute shrinkage and selection operator, 
ROC = receiver operating characteristics
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Results
Patient characteristics
Table  1 shows the clinicopathological characteristics 
of the 497 patients. The patients were divided into the 
gBRCA  mutation group (n = 120, including 59 patients 
with a BRCA1 mutation and 61 patients with a BRCA2 
mutation) and the non-gBRCA  mutation group (n = 377). 
The prevalence of bilateral BC, a personal history of BC, 
a personal history of other BRCA -related cancers (ovar-
ian cancer and pancreatic cancer), a family history of 
BC, and a family history of other BRCA -related cancers 
(ovarian cancer, pancreatic cancer, and prostate cancer); 
estrogen receptor (ER) status; and Ki67 and human epi-
dermal growth factor receptor 2 (HER-2) status were 
significantly different between the gBRCA  mutation 
group and the non-gBRCA  mutation group (all p < 0.050). 
There were no statistically significant differences in age 
at diagnosis, menopausal status, the prevalence of mul-
tiple lesions, histological subtype, BC grade, lymph node 
status, or ER status between the BRCA  mutation and 
non-BRCA  mutation groups (all p > 0.050). No signifi-
cant differences in patient characteristics were observed 
between the training and validation sets (Supplementary 
Table 1).

Development and validation of radiomics signatures
In total, 1,359 radiomics features were extracted from 
three ROIs and were selected by the LASSO algorithm. 
Moreover, radiomics signatures (RS1, RS2, and RS3) 
were constructed by logistic regression. The radiomics 
score calculation formula is presented in Supplementary 
Table 2.

The AUC for RS1 was 0.754 (95% confidence interval 
[CI], 0.695—0.812) in the training set, and 0.718 (95% CI, 
0.619—0.817) in the validation set. The AUC for RS2 was 
0.783 (95% CI, 0.727—0.839) in the training set and 0.782 
(95% CI, 0.702—0.862) in the validation set. The AUC 
for RS3 was 0.779 (95% CI, 0.723—0.835) in the training 
set and 0.745 (95% CI, 0.650—0.840) in the validation set 
(Table 2).

There were no statistically significant differences 
between different  RSs (p > 0.05) according to DeLong’s 
test (Supplementary eFig.  2). As RS2 showed the best 
performance in the training and validation sets, with an 
AUC of 0.783 (95% CI, 0.727—0.839) in the training set 
and an AUC of 0.782 (95% CI, 0.702—0.862) in the vali-
dation set, it was selected as the final radiomics model for 
subsequent analyses.

Development and validation of a clinicopathological 
model and nomogram
The clinicopathological characteristics were analyzed 
by univariate and multivariate logistics (Table 3). After 

multivariate logistic regression analysis, age at diagno-
sis, a personal history of other BRCA -related cancers, a 
family history of BC, and HER-2 status remained signif-
icant factors for BRCA  mutations (p < 0.050). The AUCs 
of the training and validation sets were 0.708 (95% 
CI, 0.642—0.774) and 0.659 (95% CI, 0.563—0.755), 
respectively (Table 4; Fig. 3A, B). The AUC of radiom-
ics model is higher than the clinicopathological model 
(0.782  vs 0.659), of borderline statistical significance 
(p = 0.056).

A nomogram was developed based on all of the radi-
omics features and clinicopathologic predictors (Fig.  4). 
In the nomogram, age at diagnosis, menopausal status, 
tumor size, personal history of BC, personal history of 
other BRCA -related cancers, family history of BC, his-
tological type, lymph node status, ER status, Ki67 sta-
tus, and HER-2 status were all independent predictors of 
BRCA  mutations in BC patients (Fig. 4). The thresholding 
of the nomogram output probabilities at a value of 0.250. 
The selection of the optimal threshold is detailed in Sup-
plementary Table  3. As shown in   Table  4  and    Fig.  3, 
the AUCs of the nomogram were significantly larger 
than those of the clinicopathological model in both the 
training set (0.850 vs. 0.708, p < 0.001) and the validation 
set (0.824 vs. 0.659, p = 0.007). In addition, the nomo-
gram had better predictive accuracy than the radiomics 
score (training set: 0.850 vs. 0.783, p = 0.009; validation 
set: 0.824 vs. 0.782, p = 0.316). As shown in Fig. 3C, the 
majority of the calibration curves followed a diagonal 
line for both the training set (H–L test p = 0.134) and 
the validation set (H–L test p = 0.627), indicating reliable 
risk estimates of the nomogram. The DCA curves also 
revealed an improvement of the nomogram than clinico-
pathological model in the validation set (Fig. 3D).

Discussion
As germline BRCA1/2 testing has an established role in 
risk management, it is increasingly important in ther-
apy selection [4]. For more precise individualized treat-
ment, it is necessary to identify whether a BC patient 
has a gBRCA  mutation. Therefore, in this retrospective 
study, we developed and internally validated a US-based 
nomogram integrating clinicopathological variables. The 
nomogram showed an AUC of 0.824 in the validation 
set for predicting the gBRCA  mutation status of patients 
with BC. It may be used as pre-screening tool to improve 
the cost-effectiveness of genetic testing before it is per-
formed, thus contributing to precision medicine.

Although the methodology for detecting genetic vari-
ants has greatly improved, genetic testing is usually time-
consuming, has a high cost, and may be limited by the 
availability of suitable samples. US has the advantage of 
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Table 1 Patient characteristics

BRCA  Breast cancer susceptibility gene, ER Estrogen receptor, PR Progesterone receptor, HER-2 human epidermal growth factor receptor 2

Data are the mean ± standard deviation for continuous variables and patient numbers for categorical variables
* Significance at p < 0.050

Characteristics gBRCA  Mutation
(n = 120)

Non‑gBRCA  Mutation
(n = 377)

p

Age at diagnosis, year 41.96 ± 8.58 43.60 ± 10.1 0.107

Tumor size, mm 26.98 ± 11.0 25.86 ± 11.3 0.342

Menopausal status 0.743

 Postmenopausal 95 (79.2) 291 (77.4)

 Premenopausal 25 (20.8) 86 (22.8)

Multiple lesions 0.225

 Yes 10 (8.3) 49 (13.0)

 No 110 (91.7) 328 (87.0)

Bilateral breast cancer 0.038*

 Yes 20 (16.7) 35 (9.3)

 No 100 (83.3) 342 (90.7)

Personal history of breast cancer 0.009*

 Yes 12 (10.0) 13 (3.4)

 No 108 (90.0) 364 (96.6)

Personal history of other BRCA -related cancers 0.001*

 Yes 9 (7.5) 5 (1.3)

 No 111 (92.5) 372 (98.7)

Family history of breast cancer  < 0.001*

 Yes 47 (39.2) 73 (19.4)

 No 73 (60.8) 304 (80.6)

Family history of other BRCA -related cancers 0.021*

 Yes 12 (10.0) 15 (4.0)

 No 108 (90.0) 362 (96.0)

Histological subtype 0.110

 Invasive 119 (99.2) 360 (95.5)

 Non-invasive 1(0.8) 17 (4.5) 

Grade 0.756

 1 or 2 55 (45.8) 181 (48.0)

 3 65 (54.2) 196 (52.0)

Lymph node status 0.862

 Positive 60 (50.0) 194 (51.5)

 Negative 60 (50.0) 183 (48.5)

ER status 0.035*

 Positive 73 (60.8) 270 (71.6)

 Negative 47 (39.2) 107 (28.4)

PR status 0.611

 Positive 72 (60.0) 238 (63.1)

 Negative 48 (40.0) 139 (36.9)

Ki67 0.011*

  ≥ 14% 115 (95.8) 328 (87.0)

  < 14% 5 (4.2) 49 (13.0)

HER-2 status 0.005*

 Positive 14 (11.7) 91 (24.1)

 Negative 106 (88.3) 286 (75.9)
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Table 2 Prediction performance of three imaging radiomics models in the training and validation sets

AUC  Area under the receiver operating characteristic curve, CI Confidence interval, combined 3 mm, 3 mm intratumor and peritumor region; combined 5 mm, 5 mm 
intratumor and peritumor region

Model Accuracy (%) Sensitivity (%) Specificity (%) AUC (95% CI)

Training set

 Intratumor 66.4 77.4 62.9 0.754 (0.695, 0.812)

 Combined 3 mm 67.2 77.4 64.0 0.783 (0.727, 0.839)

 Combined 5 mm 66.7 77.4 63.3 0.779 (0.723, 0.835)

Validation set

 Intratumor 57.0 72.2 52.2 0.718 (0.619, 0.817)

 Combined 3 mm 65.1 80.6 60.2 0.782 (0.702, 0.862)

 Combined 5 mm 67.1 75.0 64.6 0.745 (0.650, 0.840)

Table 3 Univariate and multivariable logistic regression models for the prediction of gBRCA  mutations in patients with breast cancer

BRCA  Breast cancer susceptibility gene, ER Estrogen receptor, PR Progesterone receptor, HER-2 Human epidermal growth factor receptor 2
* Significance at p < 0.050

Variables Univariate Multivariate

OR (95% CI) p OR (95% CI) p

Age at diagnosis 0.98 (0.95, 1.00) 0.093 0.97 (0.94, 0.99) 0.021*

Tumor size 1.00 (0.98, 1.03) 0.687

Menopausal status 0.95 (0.52, 1.69) 0.870

Multiple lesions 0.62 (0.24, 1.37) 0.264

Bilateral breast cancer 1.68 (0.80, 3.38) 0.158 1.13 (0.36, 3.32) 0.826

Personal history of breast cancer 2.31 (0.81, 6.22) 0.101 3.38 (0.76, 15.23) 0.108

Personal history of other BRCA -related cancers 16.65 (2.63, 321.40) 0.011* 48.10 (5.51, 1143.00) 0.002*

Family history of breast cancer 3.37 (1.98, 5.73)  < 0.001* 4.44 (2.47, 8.09)  < 0.001*

Family history of other BRCA -related cancers 1.33 (0.41, 3.70) 0.603

Histological subtype 4.65 (0.91, 84.87) 0.141 4.46 (0.72, 88.37) 0.182

Grade 1.04 (0.64, 1.70) 0.883

Lymph node status 0.93 (0.57, 1.52) 0.762

ER status 1.71 (1.02, 2.85) 0.039* 1.59 (0.90, 2.82) 0.112

PR status 1.00 (0.60, 1.64) 0.986

Ki67 3.06 (1.18, 10.46) 0.040* 3.60 (1.14, 16.20) 0.051

HER-2 status 2.00 (1.05, 4.08) 0.043* 2.15 (1.08, 4.61) 0.038*

Table 4 Predictive performance of the three models in the training and validation sets

AUC  Area under the receiver operating characteristic curve, CI Confidence interval

Model Accuracy (%) Sensitivity (%) Specificity (%) AUC (95% CI)

Training set

 Clinicopathological model 62.4 69.0 60.2 0.708 (0.642, 0.774)

 Radiomics score 67.2 77.4 64.0 0.783 (0.727, 0.839)

 Nomogram 74.7 81.0 72.7 0.850 (0.803, 0.898)

Validation set

 Clinicopathological model 53.7 69.4 48.7 0.659 (0.563, 0.755)

 Radiomics score 65.1 80.6 60.2 0.782 (0.702, 0.862)

 Nomogram 72.5 83.3 69.0 0.824 (0.755, 0.894)
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low cost, widespread availability, real-time image analy-
sis capabilities, and lack of ionizing radiation, particularly 
adapt to women with dense breasts [26]. Thus, a method to 
predict gene mutations quickly and inexpensively from US 
images may be beneficial for the treatment of patients with 
BC, given the importance and impact of these mutations.

Radiomics is a method that extracts large amounts 
of data through high-throughput medical imaging. It is 
able to transform images into measurable features for 
further objective and quantitative analysis of the bio-
logical characteristics of diseases [14]. Previous stud-
ies have shown that image-feature-based radiomics has 
great value for diagnosis, therapy response assessment, 
and survival prediction in BC patients [15–17]. Fur-
thermore, some studies have revealed that combined 
intratumoral and peritumoral radiomics models have 

superior efficacy compared to intratumoral radiomics 
models alone [15, 18, 33]. Our findings revealed that a 
combined intratumoral and peritumoral 3  mm region 
radiomics signature was the most optimal model for 
predicting the gBRCA  mutation status of BC patients, 
as it showed the highest AUCs of 0.783 and 0.782 
in the training and validation sets, respectively, and 
which is consistent with previous results [18, 33]. Our 
results suggested that radiomics signatures from the 
peritumoral area provide a reference for the accurate 
prediction of gBRCA  mutation in breast lesions. But 
the biological mechanism underlying the peritumoral 
imaging features and their association with gene muta-
tion remains unclear. Further studies are warranted to 
determine how the underlying biological changes were 
reflected by peritumor imaging features.

Fig. 3 Results of the multivariate logistic regression model. A ROC curves of the training set. B ROC curves of the validation set. C Calibration 
curve of the combined model. D DCA figure of the three models of the validation set. ROC = receiver operating characteristics, H–L test = Hosmer–
Lemeshow test; DCA = decision curve analysis
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In multivariate regression analyses, we found that the risk 
factors significantly associated with gBRCA  mutation sta-
tus identified in this study were consistent with previously 
published findings from Asian countries [34–38]. These 
factors included younger age at diagnosis, ER-negative sta-
tus, HER-2 negative status, and the presence of a family 
member with BC or ovarian cancer. Compared to women 
from Western nations, Asian women are diagnosed with 
BC much earlier in life [39, 40]. Furthermore, previous 
studies have shown that BC grade is also a significant risk 
factor for gBRCA  mutations in high-risk BC patients [41, 
42], but it was not significant in our study. This discrepancy 
may have been caused by the sample, as there was a small 
number of patients with mutations in our study.

In our study, the nomogram developed for gBRCA  
mutation prediction demonstrated favorable prediction 

and yielded AUCs of 0.850 and 0.824 in the training and 
validation sets, respectively. The nomogram had bet-
ter predictive performance than the clinicopathological 
model for gBRCA  mutations (p < 0.050). The findings of 
the present study indicated that radiomics can be used to 
assist gBRCA  mutation prediction based on ultrasound in 
BC. Radiomics models based on MRI and histopathology 
images have previously been developed to predict gBRCA  
mutations in patients with BC [11, 43], but the sample 
sizes of these studies were small, only 16 or 22 patients 
with BRCA  mutation. To our knowledge, the nomogram 
in this study is the first available ultrasound  radiomics 
model based on intratumoral and peritumoral features 
for gBRCA  prediction in BC patients.

However, there are some limitations of this study. First, 
this study was a single-center retrospective study, and the 

Fig. 4 Nomogram constructed based on the combined model. Each point that corresponds to each variable is on the uppermost point scale. 
The sum of all points is referred to as the total points. The point total projected on the bottom scale indicates the probability of a gBRCA  mutation 
in breast cancer patients. BRCA  = breast cancer susceptibility gene, ER = estrogen receptor, PR = progesterone receptor, HER2 = human epidermal 
growth factor receptor 2
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sample size was relatively small. Second, precise mod-
eling depends upon the implementation of accurate and 
rapid segmentation of tumor. However, manual segmen-
tation employed in this study is experience-dependent, 
time- and energy-consuming. In addition, to ensure 
data integrity and cleanness, patients with VUSs were 
excluded from model construction in our study. This 
could affect the applicability of the model to real-world 
scenarios, we will focus on this group of patients and 
optimise the existing models in the future study. Further-
more, the examination of gene mutations in BC patients 
in this study was restricted to the BRCA  mutations. 
BRCA1 or BRCA2 mutations that were not examined, 
and mutations in additional relevant susceptibility genes 
(e.g., PALB2) were not included in this study. Future pro-
spective, multimodal US imaging, multicenter studies 
with larger populations are needed to further improve 
the performance of the model.

Conclusion
In conclusion, we have developed and compared the per-
formance of clinicopathological, radiomics, and nomo-
gram models for predicting gBRCA  mutations in patients 
with BC. The nomogram based on US images and clin-
icopathological information outperformed the clinico-
pathological and radiomics models in predicting gBRCA  
mutations in patients with BC, providing valuable infor-
mation for gBRCA  mutation in BC and clinical decisions 
about genetic testing.
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