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Abstract
Background Surgically resected grade 1–2 (G1-2) pancreatic neuroendocrine tumors (PanNETs) exhibit diverse 
clinical outcomes, highlighting the need for reliable prognostic biomarkers. Our study aimed to develop and validate 
CT-based radiomics model for predicting postsurgical outcome in patients with G1-2 PanNETs, and to compare its 
performance with the current clinical staging system.

Methods This multicenter retrospective study included patients who underwent dynamic CT and subsequent 
curative resection for G1–2 PanNETs. A radiomics-based model (R-score) for predicting recurrence-free survival 
(RFS) was developed from a development set (441 patients from one institution) using least absolute shrinkage and 
selection operator-Cox regression analysis. A clinical model (C-model) consisting of age and tumor stage according 
to the 8th American Joint Committee on Cancer staging system was built, and an integrative model combining the 
C-model and the R-score (CR-model) was developed using multivariable Cox regression analysis. Using an external 
test set (159 patients from another institution), the models’ performance for predicting RFS and overall survival (OS) 
was evaluated using Harrell’s C-index. The incremental value of adding the R-score to the C-model was evaluated 
using net reclassification improvement (NRI) and integrated discrimination improvement (IDI).

Results The median follow-up periods were 68.3 and 59.7 months in the development and test sets, respectively. In 
the development set, 58 patients (13.2%) experienced recurrence and 35 (7.9%) died. In the test set, tumors recurred 
in 14 patients (8.8%) and 12 (7.5%) died. In the test set, the R-score had a C-index of 0.716 for RFS and 0.674 for OS. 
Compared with the C-model, the CR-model showed higher C-index (RFS, 0.734 vs. 0.662, p = 0.012; OS, 0.781 vs. 
0.675, p = 0.043). CR-model also showed improved classification (NRI, 0.330, p < 0.001) and discrimination (IDI, 0.071, 
p < 0.001) for prediction of 3-year RFS.

Conclusions Our CR-model outperformed the current clinical staging system in prediction of the prognosis for 
G1–2 PanNETs and added incremental value for predicting postoperative recurrence. The CR-model enables precise 
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Background
Pancreatic neuroendocrine tumors (PanNETs) comprise 
a heterogeneous group of tumors with diverse biologi-
cal behavior [1]. The 2017 World Health Organization 
(WHO) classification categorized PanNETs into three 
grades (G1, G2, and G3), based on the Ki-67 and mitotic 
count [2]. G3 PanNETs, previously classified as a subset 
of neuroendocrine carcinoma (NEC), are recognized as a 
distinct prognostic entity from G1-2 PanNETs, typically 
associated with poorer outcomes [3]. Conversely, G1–2 
PanNETs exhibit varying disease trajectories, with some 
tumors demonstrating indolent growth even suitable 
for active surveillance without surgery [4], while others 
develop early recurrence after successful tumor removal, 
necessitating additional therapeutic intervention [5]. 
The wide range of reported lymph node metastasis (7.8–
29.9%), distant metastasis (6.7–34.0%) [6–9], and 5-year 
overall survival (OS, 58.4–89.1%) [7, 10] underscores the 
prognostic heterogeneity of these tumors. Hence, accu-
rate individualized risk stratification of surgically treated 
G1–2 PanNETs is important for optimal planning of 
adjuvant treatment and surveillance.

The 8th American Joint Committee on Cancer (AJCC) 
staging system [11] is currently widely used as a prog-
nostic tool for PanNETs. However, its prognostic per-
formance in G1-2 PanNETs is limited, showing modest 
predictive value for OS and discriminative prognos-
tic performance between tumors with different stages 
[12–17]. Given the ongoing debate surrounding the 
prognostic efficacy of the current staging system, the 
identification of additional accurate prognostic bio-
marker may enhance individualized risk stratification.

CT is a commonly used imaging modality for diagnos-
ing and evaluating the extent of PanNETs. The distinct 
imaging characteristics of these tumors can potentially 
reflect their biological aggressiveness [18–22], making 
CT a promising tool for prognostication, which can be 
maximized by applying radiomics analysis [23]. Previ-
ous radiomics studies on PanNETs have mainly focused 
on discriminating the histologic grade [24–27] or dif-
ferentiating PanNETs from other pancreatic tumors [28, 
29], while the prognostic performance of radiomics for 
post-surgical outcomes in G1–2 PanNETs remains unex-
plored. Therefore, the aim of this study was to develop 
and externally validate radiomics-based prognostic 
model, comparing its performance to the current clinical 
staging system in patients with G1–2 PanNETs.

Methods
This study was approved by the institutional review 
boards of the two participating tertiary academic hospi-
tals and the need to obtain informed consent was waived 
because of the retrospective nature of the study. Our 
study complies with the Transparent Reporting of a mul-
tivariable prediction model for Individual Prognosis Or 
Diagnosis guidelines [30].

Study patients
Consecutive patients who underwent curative-intent 
resection for G1–2 PanNETs in one tertiary academic 
hospital (Asan Medical Center) between January 2004 
and May 2020 were used to develop the prognostic mod-
els (development set). The inclusion criteria were: (a) 
surgically confirmed G1 or G2 PanNET, and (b) preop-
erative dynamic CT performed within 30 days prior to 
surgery. The exclusion criteria were: (a) history of local or 
systemic treatment for PanNET prior to surgery, (b) pal-
liative-intent surgery, (c) history of other malignancy, and 
(d) CT examination without arterial phase (AP) or por-
tal venous phase (PVP), and suboptimal CT quality. For 
external validation, patients from a separate tertiary aca-
demic hospital (Seoul National University Hospital) who 
underwent surgery between May 2004 and October 2021 
were enrolled as a test set, following the same inclusion 
and exclusion criteria as used for the development set.

Endpoint
The primary endpoint was recurrence-free survival 
(RFS), defined as the time from surgery to recurrence 
or death, whichever occurred earlier [31]. The second-
ary endpoint was OS, defined as the time from surgery to 
death [31]. Postoperative follow-up was conducted until 
December 2021, and included regular clinical assess-
ment and imaging studies every 3–12 months and when 
clinically indicated. Patients with neither recurrence nor 
death were censored at their last follow-up date.

Clinicopathological data
Patient demographics, clinical data, and pathological 
data, including tumor size, histologic grade, invasion 
of adjacent organs, invasion of major vessels, resection 
margin status, and lymph node status, were collected. 
Pathology slides were reviewed by board-certified pathol-
ogists at each institution. Tumors were classified as G1 
NET (mitotic rate < 2 mitoses per 10 high-power fields 
[HPFs] and Ki-67 index < 3%) or G2 NET (2–20 mitoses 
per 10 HPFs or Ki-67 index of 3–20%) [32]. Staging was 

identification of high-risk patients, guiding personalized treatment planning to improve outcomes in surgically 
resected grade 1–2 PanNETs.
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performed according to the 8th AJCC staging system [11] 
and was based on data including lymph node and distant 
metastasis status and tumor size.

Image acquisition
Dynamic contrast-enhanced CT scans, including AP and 
PVP images, were acquired using scanners with 16 or 
more multidetector rows. The CT parameters are listed 
in Supplementary Table 1. Iodinated contrast medium 
was injected intravenously at a rate of 2–5 mL/s. The total 
volume of iodinated contrast medium was determined 
according to patient body weight (approximate rate, 2 
mL/kg; maximum 150 mL). AP images were obtained 
using a bolus tracking technique with a 10–20  s delay 
after the attenuation of the aorta reached 100 Hounsfield 
units (HU). PVP imaging was performed 70–80  s after 
the intravenous injection of the contrast agent or 30  s 
after the acquisition of AP images.

CT radiomics analysis
Tumor segmentation
Details of the whole radiomics algorithm process is illus-
trated in the Supplementary Figure S1. One abdominal 
radiologist (9 years of experience) performed manual 
segmentation of the entire tumor by drawing a volume 
of interest (VOI) along the tumor margin on both axial 
AP and PVP images using an in-house software package 
(AsanJ; Asan Medical Center, Seoul, Korea), in both the 
development and test sets (Supplementary Figure S2). 
In cases of multiple tumors, the tumor with the highest 
grade or the tumor with the largest size (if the grade of 
all tumors was the same) was chosen. To assess inter-
observer agreement, an independent abdominal radi-
ologist (6 years of experience) drew tumor VOIs in 30 
randomly selected patients. The radiologists were blinded 
to the patients’ clinicopathologic data.

Radiomics feature extraction
Using in-house software (AsanFEx, Asan Medical Cen-
ter, Seoul, Korea) written in Matlab (Matlab R2015a, 
Mathworks), radiomics features were extracted from the 
segmented VOIs of AP and PVP images according to 
the standardized process proposed by the Imaging Bio-
marker Standardization Initiative (IBSI) [33]. Prior to 
feature extraction, CT images were resampled into a uni-
form voxel size of 1 × 1 × 3 mm, and image normalization 
and intensity discretization were performed (Supplemen-
tary Table 2). All extracted feature values were scaled and 
centered to a mean value of 0 and standard deviation of 1. 
A detailed description is provided in the Supplementary 
Material 1.

Radiomics score (R-score) development
A multi-step feature selection process was undertaken 
to overcome the problems of overfitting and multicol-
linearity present when modeling using high-dimensional 
radiomics features. First, unreliable features with inter-
reader concordance correlation coefficients (CCCs) < 0.8 
were removed. Second, using the correlation analysis 
[34], highly correlated features with Pearson correla-
tion coefficients > 0.9 were considered redundant and 
removed. Least absolute shrinkage and selection opera-
tor (LASSO)-Cox regression was then applied to the 
remaining features in order to build the R-score. First, 
the models were trained under three conditions: (1) all 
features extracted from both AP and PVP images; (2) 
features extracted from AP images only; and (3) features 
extracted from PVP images only. The regression model 
using the features extracted from only AP images showed 
the highest predictive performance of the three models. 
Therefore, the R-score was developed using the features 
extracted from AP images.

Development and validation of the predictive models
Two preoperative models were developed to predict the 
RFS of the patients in the development set. First, the 
clinical model (C-model) was built using patient age 
and the 8th AJCC-based tumor stage. Age was included 
because of its potential influence on the prognosis (e.g., 
because of co-morbidities and frailty). Second, the clini-
cal-radiomics model (CR-model) was developed by com-
bining the C-model and the R-score. The prediction of 
RFS and OS was externally validated on the test set for 
all models.

Statistical analysis
Independent sample t-tests and chi-squared tests or Fish-
er’s exact tests were used to compare data, as appropriate. 
Interobserver agreements for the extracted feature values 
from 30 randomly selected patients were evaluated using 
the intraclass correlation coefficient (ICC). In the devel-
opment set, LASSO-Cox regression analysis was used 
to build the R-score for predicting RFS, with the tuning 
parameter λ selected using 10-fold cross validation. The 
C-model and CR-model to predict RFS were developed 
using multivariable Cox regression analysis. The pre-
dictive capabilities of the models for RFS and OS were 
evaluated using Harrell’s concordance index (C-index) 
[35] and time-dependent receiver operating character-
istics (ROC) curve analysis. The calibration capabilities 
of the models were assessed using a calibration plot that 
compared the predicted versus the observed Kaplan-
Meier estimates of 3-year RFS and OS. The incremental 
differences between the C-model and CR-model in the 
prediction of 3-year RFS and OS were calculated using 
net reclassification improvement (NRI) and integrated 
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discrimination improvement (IDI) [36, 37]. Optimal 
cut-off for CR-model was determined as the point with 
highest sum of sensitivity and specificity for 3-year RFS 
and OS, with both sensitivity and specificity exceeding 
60%. All statistical analyses were performed using R ver-
sion 4.2.0 (The R Foundation for Statistical Computing). 
The following R packages were used: “caret” for correla-
tion analysis, “lmtest” for logistic regression, “glmnet” for 
the LASSO Cox regression analysis, the “survival” and 
“timeROC” packages to implement the Kaplan–Meier 

and ROC analysis, respectively, and the “survIDINRI” 
package to evaluate models’ incremental value. P val-
ues < 0.05 were considered statistically significant.

Results
Patient characteristics
The patient recruitment process is shown in Fig.  1. 
The development set included 441 patients (mean age 
53.0 ± 12.3 years, 257 women) and the test set included 
159 patients (mean age 55.9 ± 12.5 years, 83 women). The 
baseline patient characteristics are listed in Table 1. The 
distribution of AJCC stage did not differ significantly 
between the two sets (p = 0.327). The most common 
AJCC stage was stage II in the development set (48.8%; 
215/441) and stage I in the test set (47.8%; 76/159). There 
were 12 (2.7%) stage IV patients in the development 
set and 3 (1.9%) in the test set. 19 patients (4.3%) in the 
development set and 4 patients (2.5%) in the test set had 
multiple tumors. The median follow-up periods were 
68.3 months in the development set and 59.7 months in 
the test set. The median RFS and OS were not reached 
in either dataset. During follow-up, 58 patients (13.2%) 
experienced tumor recurrence and 35 patients (7.9%) 
died in the development set, and 14 patients (8.8%) expe-
rienced tumor recurrence and 12 patients (7.5%) died in 
the test set. Among the patients with tumor recurrence, 
rate of local recurrence, lymph node metastasis, and 
distant metastasis were 17.2%, 10.3%, and 72.4% in the 
development set, and 14.3%, 14.3%, and 71.4% in the test 
set, respectively. The rates of recurrence and death did 
not show any significant differences between the two sets 
(p = 0.463 for recurrence; p = 0.876 for death).

R-score
A total of 692 radiomics features were extracted. After 
removing unreliable and redundant features (347 fea-
tures with CCC < 0.8 and 274 features with pairwise cor-
relation coefficient > 0.9), 71 features were included in the 
R-score development. Fifteen features extracted from the 

Table 1 Baseline clinical characteristics of the study patients
Variable Development set Test set P value
Number of patients 441 159
Age (years)* 53.0 ± 12.3 55.9 ± 12.5 0.011
Sex 0.186
 Men 184 (41.7) 76 (47.8)
 Women 257 (58.3) 83 (52.2)
Tumor size 0.061
 < 2 cm 180 (40.8) 82 (51.6)
 2–4 cm 167 (37.9) 54 (34.0)
 > 4 cm 89 (20.2) 23 (14.5)
2019 WHO grade 0.749
 Grade 1 285 (64.6) 105 (66.0)
 Grade 2 156 (35.4) 54 (34.0)
8th AJCC stage 0.327
 I 175 (39.7) 76 (47.8)
 II 215 (48.8) 61 (38.4)
 III 39 (8.8) 19 (11.9)
 IV 12 (2.7) 3 (1.9)
Follow-up data
 Follow-up 
(months)†

68.3 (38.9, 107.9) 59.7 (32.2, 101.0) 0.017

 Recurrence 58 (13.2) 14 (8.8) 0.148
 Death 35 (7.9) 12 (7.5) 0.876
Note—Unless stated otherwise, data are number of patients with percentages 
in parentheses

*Data are mean ± standard deviation
†Data are median with interquartile range in parentheses

AJCC, American Joint Committee on Cancer; WHO, World Health Organization

Fig. 1 Flowchart of the study population. G1–2, grade 1–2; PanNET, pancreatic neuroendocrine tumor

 



Page 5 of 10Heo et al. Cancer Imaging           (2024) 24:28 

AP images were selected in the LASSO-Cox regression 
and were included in the final R-score: two morphologic 
features, four first-order features, four texture features, 
and five higher-order features (Table  2). Specifically, 
two morphologic features were volume (sum of all vox-
els included in the segmented VOI) and flatness (ratio of 
the major and least axis lengths). Four first-order features 
included intensity-based statistical features (maximum, 
25th percentile, median, and robust mean absolute devia-
tion, reflecting the overall distribution of the grayscale 
intensity of the tumor. Four texture features comprised 
cluster shade (reflecting skewness and uniformity), dif-
ference entropy and joint entropy (both reflecting the 
randomness/variability of grayscale intensity), and large 
zone high gray level emphasis (reflecting higher grayscale 
intensity and coarser textures), emphasizing the spatial 
heterogeneity of intra-tumoral grayscale intensity. Five 
higher-order features were extracted as textural features 
after applying either a Gaussian or Laplacian-of-Gaussian 
filter. These features were cluster shade, contrast (reflect-
ing the dynamic range of gray levels), zone size variance, 
large distance high gray level emphasis, and high depen-
dence high gray level emphasis, also reflecting spatial 
heterogeneity of intra-tumoral grayscale intensity of the 
tumor.

The interobserver agreements for the R-scores 
obtained from the feature values extracted from the 30 

VOIs independently drawn by the two radiologists were 
excellent (ICC, 0.96; 95% CI, 0.890–0.983). The C-index 
of the R-score for predicting RFS was 0.778 (95% CI, 
0.748–0.808) in the development set and 0.716 (95% 
CI, 0.659–0.772) in the test set. For predicting OS, the 
R-score showed a C-index of 0.648 (95% CI, 0.588–0.709) 
in the development set and 0.674 (95% CI, 0.597–0.751) 
in the test set.

Predictive models: C-model and CR-model
The results of the multivariable Cox regression analy-
ses applied to the development set for building the two 
predictive models (C-model and CR-model) are shown 
in Table  3. In the construction of the CR-model, the 
R-score was revealed as a significant predictive factor 
for RFS (hazard ratio [HR], 3.681 [95% CI, 2.353–5.759; 
p < 0.001]). AJCC stage was also a significant predictor for 
RFS in both the C-model and the CR-model.

Comparison of the predictive models’ performance
The performance of each model in the prediction of 
postoperative outcomes is shown in Table  4. On the 
test set, the C-index of the CR-model for predicting 
RFS was 0.734 (95% CI, 0.674–0.793), which was signif-
icantly higher than that of the C-model (0.662 [95% CI, 
0.591–0.733]; p = 0.012). The C-index of the CR-model 
in the prediction of OS was 0.781 (95% CI, 0.721–0.841), 
which was also significantly higher than that of the 
C-model (0.675 [95% CI, 0.605–0.745]; p = 0.043). In the 
prediction of RFS, the CR-model created by adding the 
R-score to the C-model achieved significant NRI (3-year 
NRI, 0.330 [95% CI, 0.163–0.479], p < 0.001) and IDI 
(3-year IDI, 0.071 [95% CI, 0.027–0.126], p < 0.001) over 
the C-model. However, the 3-year NRI (0.083, 95% CI, 
− 0.142–0.415; p = 0.365) and IDI (0.001 (95% CI, − 0.014–
0.018; p = 0.824) for predicting OS were not significant. 
Calibration curves of the CR-model for predicting 3-year 
RFS and OS demonstrated good correlation between 
predicted and observed probability (Fig. 2). Time-depen-
dent areas under the ROC curves (AUC) for each of the 
prediction models are shown in Supplementary Table 3. 
With a cutoff of − 0.23, the CR-model showed sensitivity 
and specificity of 81.4% and 72.3%, respectively, for pre-
dicting 3-year RFS, and 80.1% and 62.1%, respectively, for 
predicting 3-year OS. Representative cases are presented 
in Fig. 3.

To compare the predictive performance of the 
radiomics-based model with the conventional imag-
ing feature-based model, we developed a model based 
on the conventional imaging features including tumor 
margin, tumor heterogeneity, enhancement pattern, and 
tumor-to-parenchymal enhancement ratio on the arte-
rial phase (Supplementary Material). In the test set, the 
conventional imaging feature-based model demonstrated 

Table 2 Radiomics score (R-score)
Feature group Radiomics feature* Coefficient
Morphologic feature Volume –0.047

Flatness –0.075
First-order, intensity-
based statistical feature

Maximum (AP, N) –0.027
25th percentile (AP, N) –0.196
Median (AP, LOG) 0.049
Robust mean absolute devia-
tion (AP, LOG)

–0.069

Texture, GLCM Cluster shade (AP, N) 0.085
Difference entropy (AP, N) –0.106
Joint entropy (AP, N) 0.656

Texture, GLSZM Large zone high gray level 
emphasis (AP, N)

0.104

Higher order, GLCM Cluster shade (AP, LOG) 0.251
Contrast (AP, LOG) 0.028

Higher order, GLSZM Zone size variance (AP, LOG) –0.013
Higher order, GLDZM Large distance high gray level 

emphasis (AP, G)
0.116

Higher order, NGLDM High dependence high gray 
level emphasis (AP, LOG)

–0.112

Note—radiomics score is expressed as the sum of each radiomics feature 
multiplied by its coefficient

*The information within parentheses indicates the scan phases and types of 
images used for radiomics feature extraction

AP, arterial phase; G, Gaussian; GLCM, gray-level co-occurrence matrix; GLDZM, 
gray-level distance-zone matrix; GLSZM, gray-level size-zone matrix; LOG, 
Laplacian-of-Gaussian; N, non-transformed raw image; NGLDM, neighboring 
gray-level dependence matrix
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Table 3 Multivariable Cox proportional hazards models for predicting post-operative outcomes in the development set
Outcome Variable C-model CR-model

HR (95% CI) P value HR (95% CI) P value
Recurrence-free survival

Age 1.005 (0.985–1.025) 0.626 1.004 (0.984–1.024) 0.703
AJCC stage < 0.001 < 0.001
 I 1 (Ref ) 1 (Ref )
 II 2.989 (1.422–6.286) 0.004 0.881 (0.369–2.107) 0.777
 III 9.542 (4.166–21.854) < 0.001 2.947 (1.176–7.386) 0.021
 IV 17.288 (6.602–45.269) < 0.001 4.862 (1.725–13.709) 0.003
R-score – – 3.681 (2.353–5.759) < 0.001

Overall survival
Age 1.054 (1.021–1.088) 0.001 1.057 (1.023–1.092) 0.001
AJCC stage 0.011 0.101
 I 1 (Ref ) 1 (Ref )
 II 1.408 (0.631–3.144) 0.404 0.609 (0.222–1.668) 0.334
 III 3.224 (1.164–8.930) 0.024 1.264 (0.387–4.124) 0.698
 IV 7.509 (2.344–24.058) 0.001 2.564 (0.670–9.814) 0.169
R-score – – 2.296 (1.322–3.989) 0.003

AJCC, American Joint Committee on Cancer; C-model, clinical model; CR-model, clinical-radiomics model; CI, confidence interval; HR, hazard ratio; R-score, radiomics 
score

Table 4 Performance of the R-score, C-model, and CR-model in predicting post-operative outcomes
Outcome Model Development set P value Test set P value

C-index
(95% CI)

C vs. CR model C-index
(95% CI)

C vs. CR model

Recurrence-free survival
R-score 0.778 (0.748–0.808) 0.716 (0.659–0.772)
C-model 0.761 (0.732–0.790) 0.662 (0.591–0.733)
CR-model 0.811 (0.780–0.842) 0.045 0.734 (0.674–0.793) 0.012

Overall survival
R-score 0.648 (0.588–0.709) 0.674 (0.597–0.751)
C-model 0.697 (0.638–0.755) 0.675 (0.605–0.745)
CR-model 0.730 (0.673–0.787) 0.127 0.781 (0.721–0.841) 0.043

C-index, concordance index; CI, confidence interval; C-model, clinical model; CR-model, clinical-radiomics model; R-score, radiomics score

Fig. 2 Calibration plots of the CR model showing the predicted and observed probability of (a) 3-year RFS and (b) 3-year OS in the test set. CR, clinical-
radiomics; OS, overall survival; RFS, recurrence-free survival
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a lower C-index (0.642, 95% CI 0.552–0.732 for RFS 
and 0.480, 95% CI 0.382–0.577 for OS) compared to the 
R-score (0.716, 95% CI 0.659–0.772 for RFS and 0.674, 
95% CI 0.597–0.751 for OS). Additionally, a model com-
bining both conventional imaging features and clinical 
features (age and AJCC) also showed a lower C-index 
(0.643, 95% CI 0.551–0.735 for RFS and 0.748, 95% CI 
0.678–0.818 for OS) compared to the CR-model (0.734, 
95% CI 0.674–0.793 for RFS and 0.781, 95% CI 0.721–
0.841 for OS) in the test set.

Discussion
In this study, we demonstrated the prognostic per-
formance of radiomics-based models in patients who 
underwent resection for G1–2 PanNETs. The prognos-
tic performance of a R-score derived from the preop-
erative dynamic CT images was validated in an external 
cohort, for which it showed a high C-index and signifi-
cant incremental value for predicting RFS when added to 
a C-model. Our study indicates the potential of dynamic 
CT radiomics analysis as a preoperatively-available 
prognostic tool for predicting postsurgical outcomes in 
patients with G1–2 PanNETs.

In our study, G1–2 PanNETs showed variable tumor 
stages and clinical behaviors, consistent with previous 
reports, implying the necessity for more sophisticated 
and accurate prognostic tools than the current staging 
and grading systems. Although PanNETs are known for 
their heterogeneous composition, even within a single 
tumor [38, 39], the WHO grade is based on the high-
est mitotic or Ki-67 index, known as the “hot spot”, 

which reflects only a part of the tumor. To the contrary, 
radiomics analysis incorporates data from all parts of 
the tumor without a sampling bias, and should provide 
more meaningful information for disease prognostication 
than the WHO grading system. Furthermore, the sec-
ond-order and higher-order radiomics features contain 
information about the relationships between neighboring 
pixels, thereby providing information on the complexity 
and spatial heterogeneity of all areas of the tumor [40]. 
Therefore, radiomics analysis should enable better dis-
ease prognostication than tumor grade alone, as we dem-
onstrated in this study.

Among the 15 selected radiomics features, ‘joint 
entropy’ (belonging to texture features) and ‘cluster 
shade’ (belonging to texture and higher order features) 
were the features showing the highest positive coeffi-
cients. Both features reflect the spatial heterogeneity of 
intra-tumoral grayscale intensity, with joint entropy rep-
resenting randomness in neighborhood intensity values, 
and cluster shade representing asymmetry about the 
mean value [40]. Other features reflecting tumor hetero-
geneity, such as ‘large zone high gray level emphasis’ (tex-
ture features) and ‘contrast’ and ‘large distant high gray 
level emphasis’ (higher order features) [40] also showed 
positive coefficients. By contrast, the morphologic and 
first-order features showed smaller coefficients than the 
texture and higher-order features, possibly indicating 
their lesser importance.

The C-model incorporating AJCC stage and age 
yielded a C-index of 0.662 for predicting RFS and 0.675 
for predicting OS in the test set, values slightly higher 

Fig. 3 Representative cases of PanNET patients. (a) Preoperative AP CT images of a 64-year-old woman show a 1.8-cm homogeneously enhancing mass 
at the head of the pancreas (arrows). Regional lymph node metastasis is noted (arrowhead). This tumor was a WHO grade 2 PanNET with AJCC stage III. 
Although the initial tumor stage was high, the patient survived without recurrence until the last follow-up date (85.7 months after surgery). The R-score 
of this tumor was − 1.888. (b) Preoperative AP and PVP CT images of a 67-year-old man show a 1.9-cm mass at the tail of the pancreas. The mass shows 
heterogeneous enhancement, especially on AP images (arrows). This tumor was a WHO grade 2 PanNET with AJCC stage I. Despite the low AJCC stage, 
recurrence occurred at 4.7 months after surgery. The R-score of this tumor was 0.450, obviously higher than that of the patient in (a). AJCC, American Joint 
Committee on Cancer staging system; AP, arterial phase; OS, overall survival; PanNET, pancreatic neuroendocrine tumor; PVP, portal venous phase; RFS, 
recurrence-free survival; R-score, radiomics score; WHO, World Health Organization
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than previously reported (0.65 for predicting OS when 
using the 8th AJCC stage alone) [13]. By combining 
the C-model and the R-score, the CR-model attained 
improved prognostic performance, yielding a C-index of 
0.734 for predicting RFS and 0.781 for predicting OS. In 
addition, we demonstrated the incremental value of add-
ing the R-score to the C-model. Our results suggest that 
AJCC stage and R-score can be used in combination to 
achieve improved pre-surgical prediction of survival out-
comes in patients with G1–2 PanNETs and guide better 
individualized treatment.

Prior radiomics studies on PanNETs focused mainly on 
discriminating tumor grades; radiomics models in prior 
studies reached AUCs of 0.860–0.876 for discriminating 
G1 from G2 PanNETs [25, 27], and AUCs of 0.729–0.902 
for discriminating G1 from G2–3 PanNETs [24, 26]. A 
few studies reported the prognostic value of CT features 
including size, lymph node metastases, hepatic metasta-
ses, enhancement pattern, and tumor-to-parenchymal 
enhancement ratio [22, 41–43]. Among these, the tumor-
to-parenchymal enhancement ratio measured on PVP 
was reported as an independent predictor of RFS and OS 
in PanNENs (including both neuroendocrine tumors and 
carcinomas), and showed better prognostic performance 
than when measured on AP imaging [22]. However, for 
our R-score, only features extracted from AP imaging 
were selected, because model including the PVP features 
showed poor performance with beta-coefficient values of 
near zero. This difference may have stemmed from differ-
ent study population, since G1-2 PanNETs are known to 
be more hypervascular compared to G3 PanNET or NEC 
[19, 42].

There are several limitations to our study. First, the ret-
rospective study design may have introduced biases. We 
validated our results on an independent external test set 
to demonstrate the reproducibility and generalizability of 
our models. However, a prospective study may be needed 
to further validate the study results. Second, the relatively 
small number of patients with G2 PanNETs compared 
with those with G1 PanNETs resulted in a skewed tumor 
grade distribution in both the development and test sets. 
However, this study on the prognostic performance of 
CT-based radiomics in patients with G1–2 PanNETs is 
the largest of its kind to date, and may reflect the unbi-
ased grade distribution encountered in clinical practice. 
Third, because of the long patient recruitment period, 
various CT scanners were used, which may have affected 
the image analysis. However, we believe that the variety 
of CT scanners and techniques used should increase the 
generalizability of our results and their applicability to 
other institutions. Fourth, the manual tumor segmenta-
tion was time-consuming and may limit reproducibil-
ity and clinical utility. With the recent advent of many 
deep learning-based tools for automatic segmentation of 

pancreatic tumors, there is potential for their application 
in our radiomics model. Future studies should actively 
incorporate these deep learning models to enhance the 
optimization and application of the radiomics model.

Conclusions
In conclusion, we suggest the radiomics-based prediction 
of survival outcomes in patients with resected G1-2 Pan-
NETs. The R-score was externally validated as a reliable 
predictor of both RFS and OS, and provided incremental 
value on predicting RFS when combined with a C-model. 
It may serve as a non-invasive prognostic tool for guid-
ing individualized and optimized patient management in 
patients with G1-2 PanNETs.
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