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Abstract 

Background To investigate the association between Kirsten rat sarcoma viral oncogene homolog (KRAS) / neuroblas-
toma rat sarcoma viral oncogene homolog (NRAS) /v-raf murine sarcoma viral oncogene homolog B (BRAF) muta-
tions and the tumor habitat-derived radiomic features obtained during pretreatment 18F-fluorodeoxyglucose (FDG) 
positron emission tomography (PET) in patients with colorectal cancer (CRC).

Methods We retrospectively enrolled 62 patients with CRC who had undergone 18F-FDG PET/computed tomog-
raphy from January 2017 to July 2022 before the initiation of therapy. The patients were randomly split into train-
ing and validation cohorts with a ratio of 6:4. The whole tumor region radiomic features, habitat-derived radiomic 
features, and metabolic parameters were extracted from 18F-FDG PET images. After reducing the feature dimension 
and selecting meaningful features, we constructed a hierarchical model of KRAS/NRAS/BRAF mutations by using 
the support vector machine. The convergence of the model was evaluated by using learning curve, and its perfor-
mance was assessed based on the area under the receiver operating characteristic curve (AUC), calibration curve, 
and decision curve analysis. The SHapley Additive exPlanation was used to interpret the contributions of various 
features to predictions of the model.

Results The model constructed by using habitat-derived radiomic features had adequate predictive power 
with respect to KRAS/NRAS/BRAF mutations, with an AUC of 0.759 (95% CI: 0.585–0.909) on the training cohort 
and that of 0.701 (95% CI: 0.468–0.916) on the validation cohort. The model exhibited good convergence, suitable 
calibration, and clinical application value. The results of the SHapley Additive explanation showed that the peritumoral 
habitat and a high_metabolism habitat had the greatest impact on predictions of the model. No meaningful whole 
tumor region radiomic features or metabolic parameters were retained during feature selection.
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Conclusion The habitat-derived radiomic features were found to be helpful in stratifying the status of KRAS/NRAS/
BRAF in CRC patients. The approach proposed here has significant implications for adjuvant treatment decisions 
in patients with CRC, and needs to be further validated on a larger prospective cohort.

Keywords Colorectal cancer, KRAS/NRAS/BRAF, Habitat, Radiomic, 18F-FDG PET

Introduction
Around 800,000 people across the world succumb to 
colorectal cancer (CRC) every year. It is the third most 
common type of cancer, after lung and breast cancers 
[1]. Epidermal growth factor receptor (EGFR) signal-
ing is a frequent event in cancer development [2]. The 
gene-encoding downstream effectors of the EGFR path-
way in CRC include Kirsten rat sarcoma viral oncogene 
homolog (KRAS), neuroblastoma rat sarcoma viral onco-
gene homolog (NRAS) and v-raf murine sarcoma viral 
oncogene homolog B (BRAF) [3]. The KRAS and NRAS 
genes are both part of the rat sarcoma viral oncogene 
(Ras) family of small GTPases. KRAS mutations occur 
in the early stage of CRC, with an incidence of 30%–50%, 
while NRAS has an incidence of 3% of all cases [4, 5]. 
The BRAF gene, which belongs to the serine/threonine 
kinase family, is a proto-oncogene, and mutations in it 
occur in about 10% of CRC patients [4, 5]. The activation 
of oncogenic mutations in KRAS/NRAS/BRAF can result 
in constitutive Ras/Raf/MEK/ERK activation, where are 
key drivers of cancer growth in humans and indicate 
poor survival poor survival [6, 7]. In other words, muta-
tions in Ras genes (such as KRAS and NRAS) or BRAF 
genes can activate downstream signaling pathways with-
out EGFR inhibition, leading to tumor proliferation [8]. 
Accordingly, the National Comprehensive Cancer Net-
work recommends that the KRAS/NRAS/BRAF geno-
types in metastatic CRC patients be determined [9], 
and has approved both panitumumab and cetuximab as 
anti-EGFR monoclonal antibodies for the treatment of 
metastatic CRC caused by KRAS/NRAS/BRAF wild-type 
tumors [10, 11].

Previous studies have explored the mechanisms 
underlying the relationship between glucose accumula-
tion and the status of KRAS/NRAS/BRAF mutation in 
CRC cells [12]. However, studies on the predictive value 
of the metabolic parameters have yielded different con-
clusions [4, 13]. The accumulation of 18F-fluorodeoxy-
glucose (FDG) in cancer tissues is a complex process that 
is influenced by various mechanisms, such as mutated 
TP53, HIF-1α expression, and local inflammation, that 
can interfere with 18F-FDG uptake by CRC cells [12, 
14, 15]. Therefore, simple metabolic parameters strug-
gle to identify the metabolic heterogeneity in different 
regions within the tumor. Moreover, the values of the 

most commonly used metabolic parameters in positron 
emission tomography (PET) vary with different factors, 
including the type of PET scanner used, metabolic dif-
ferences between patients, and their blood glucose lev-
els after fasting [4]. The recent emergence of radiomics 
technology, which can be used to extract microscale 
imaging-related information from standard medical 
images to predict complex genomic events, provides an 
alternative mechanism [16]. Nevertheless, a retrospec-
tive study of 151 patients with rectal cancer showed 
that textural features based on 18F-FDG PET/computed 
tomography (CT) have limited value in terms of predict-
ing KRAS/NRAS/BRAF mutations [17]. Furthermore, 
the use of radiomics based on  magnetic resonance to 
assess KRAS mutations does not always yield accurate 
results [18, 19]. Most radiomics studies usually analyze 
the tumor as a whole. However, this approach assumes 
that the tumor is heterogeneous but well mixed, thus, 
ignoring local phenotypic differences within the tumor 
[20]. In contrast to previously proposed methods, par-
titioning groups of voxels with a similar tumor biology 
into subregions for analysis—namely, habitat imaging—
allows for better quantification of heterogeneity within 
tumors [21, 22]. Habitat-derived radiomics analysis in 
particular provides a better insight into the tumor heter-
ogeneity than traditional radiomics analysis, in terms of 
the prognosis and predictions of the survival of patients 
of esophageal cancer who have been treated with con-
current chemoradiotherapy [23]. Hence, we hypothesize 
that this technique can be used to predict KRAS/NRAS/
BRAF mutations in CRC patients and contribute to the 
development of modalities of non-invasive genomic 
detection.

Although mutation analysis using tissues of the 
tumor remains the standard of care [24], overcoming 
the limitations of spatial and temporal heterogene-
ity in the tumor based on the information provided by 
imaging-based studies has profound implications for 
adjunctive personalized molecular therapy. In this pilot 
study, we aim to determine whether habitat-derived 
radiomics analysis is an effective means to distinguish 
between mutant genomes and wild-type genomes in 
CRC patients, and to compare habitat-derived radiom-
ics analysis with whole tumor region radiomics analysis 
and the metabolic parameters.
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Materials and methods
Patients
The experimental protocols were approved by the Insti-
tutional Ethics Committee of the First Affiliated Hospi-
tal of Harbin Medical University, and the requirement of 
written informed consent from the patients was waived 
owing to the retrospective nature of this study. We col-
lected data on patients with CRC who had undergone 
18F-FDG PET/CT imaging and surgical treatment in the 
hospital from January 2017 to July 2022, for a total of 245 
cases. As part of the analysis, we gathered clinical infor-
mation on the patients and their pathological character-
istics from medical records, including age, sex, tumor 
location, tumor differentiation, TNM stage, carcinoem-
bryonic antigen (CEA), and KRAS/NRAS/BRAF status. 
The mutation analysis of KRAS (exons 2, 3, and 4), NRAS 
(exons 2, 3, and 4), and BRAF (V600E) was performed by 
using the amplification refractory mutation system–PCR 
methods in formalin-fixed and paraffin-embedded tumor 
samples. The criteria of exclusion were as follows: (1) 
patients who had received antineoplastic therapy (such 
as surgery, radiotherapy, and chemotherapy) before PET/
CT examination, (2) no PET/CT scan or incomplete 
clinical information, (3) the interval between PET/CT 
imaging and genetic testing was longer than four weeks, 
(4) negative 18F-FDG uptake or volume of interest (VOI) 
measuring was smaller than 64 voxels, and (5) patients 
with other malignant tumors. A total of 62 CRC patients 
were finally considered for the analysis. They consisted of 
41 males and 21 females, with a mean age of 63.06 years 
(range, 32–83  years). The cases were then randomly 
included in either a training cohort (n = 37) or a valida-
tion cohort (n = 25) by using stratified sampling with a 6:4 
ratio.

PET/CT imaging
Each patient had undergone 18F-FDG PET/CT examina-
tion on a Gemini GXL PET/CT scanner (Philips, Amster-
dam, Netherlands) that was equipped with a 16-slice 
CT. An HM-12 cyclotron (Sumitomo Heavy Industries 
Ltd., Tokyo, Japan) was used for the production of 18F-
FDG with a high radiochemical purity (≥ 95%). The 
patients were made to fast for at least 6  h before the 
intravenous injection of 18F-FDG (3.7 ~ 7.4  MBq/kg), 
and their intravenous blood glucose was controlled to 
below 8.0 mmol/L. Images were acquired 60 ± 5 min after 
the injection of the 18F-FDG tracer. The patients were 
scanned from the middle of the thigh to the top of the 
skull according to the standard institutional clinical pro-
tocols. Whole-body scanning with a low-dose CT (tube 
current: 50  mA, tube voltage: 120  kV, slice thickness: 
5 mm) was performed without an oral or an intravenous 
contrast agent, followed by PET imaging (1.5  min/bed 

position, six to seven PET bed positions, 50% overlap 
between bed positions) in the same range. The data were 
reconstructed using the 3D-line of response RAMLA 
reconstruction algorithm that corrected for attenuation, 
attenuation decay, scatter, and dead time. The PET/CT 
images were fused using Syntegra V2.1 J software (Philip 
Medical Systems, Netherlands). Each reconstructed PET 
image had a matrix size of 114 × 114 × 129, and a voxel 
size of 4 × 4 × 4 mm, while each reconstructed CT image 
had a matrix size of 512 × 512 × 211, and a voxel size of 
1.172 × 1.172 × 5.000 mm.

Tumor segmentation and habitat generation
The acquired PET/CT images were anonymized. The PET 
images were normalized to injection doses of 18F-FDG 
and the body weight of the patients after decay correction 
to transform them into standardized uptake value (SUV) 
units. All images were observed in a range of threshold 
of SUV from 0 to 6, and the two-dimensional region of 
interest was manually segmented based on the boundary 
of the tumor lesion on each horizontal axial PET image 
with tumor to form a three-dimensional VOI. The VOI of 
the tumor was segmented by a physician experienced in 
nuclear medicine (Z.L.; 8 years of experience), who had 
been unaware of the status of mutation, by using LIFEx 
software (version 7.2.0; www. lifex soft. org) [25]. The Otsu 
threshold algorithm was implemented in Python (version 
3.9.7; www. python. org). It can be used to count the num-
ber of pixels of each gray level in the VOI and identify 
an “optimal” threshold to maximize the inter-class vari-
ance [26, 27]. The corresponding VOI of the tumor in the 
PET images was divided into two significantly different 
hypermetabolic and hypometabolic regions represent-
ing different tumor habitats. We defined them as “low_
metabolism_habitat” and “high_metabolism_habitat,” 
respectively. In addition, a ring-shaped peritumoral VOI 
was generated by expanding the margin of the lesion by 
2 mm according to the outline of the segmented tumor, 
and special care was taken to avoid including other struc-
tures, especially the bladder and adjacent lymph nodes, 
by making additional modifications to the peritumoral 
VOI as needed. We explicitly considered the peritumoral 
tissue as a unique region of the tumor habitat to account 
for the relationship between mutations of genes of the 
tumor and the peritumoral regions. In this way, three 
subregions—low_metabolism_habitat, high_ metabo-
lism_habitat, and peritumoral—were obtained from the 
PET images, as shown in Fig. 1.

Feature extraction
The data on each raw image were resampled to an iso-
tropic resolution of 1 × 1 × 1  mm3 by using the B-Spline 
interpolation method, and all VOIs defined in the raw 

http://www.lifexsoft.org
http://www.python.org


Page 4 of 15Zhao et al. Cancer Imaging           (2024) 24:26 

imaging data were resampled by using the Nearest 
Neighbor interpolation on the data on isotropic reso-
lution. The radiomic features were extracted by using 
PyRadiomics (version 3.0.1; https:// github. com/ Radio 
mics/ pyrad iomics), an open source radiomics toolkit 
[28]. A fixed bin width of 0.25 SUV was applied to 
discretize the continuous scale of SUV intensity and 
calculate the textural features [29, 30]. The extracted 
radiomic features (n = 107) were divided into seven 
categories: 14 shape features, 18 first-order statis-
tics, 24  Gray-level co-occurrence matrix (glcm) fea-
tures, 16  Gray-level size zone matrix (glszm) features, 
16  Gray-level run length matrix (glrlm) features, 5 
neighboring gray tone difference matrix (ngtdm) fea-
tures, and 14  Gray-level dependence matrix (gldm) 
features. In addition, we applied a wavelet filter (wave-
let-LHL, wavelet-LHH, wavelet-HLL, wavelet-LLH, 
wavelet-HLH, wavelet-HHH, wavelet-HHL, and wave-
let-LLL) to the original images to obtain the corre-
sponding derivative images in order to extract detailed 
high-dimensional radiomic features (n = 744) [31]. 
More interpretations are available from: https:// www. 
radio mics. io/ pyrad iomics. html. A total of 851 fea-
tures were thus calculated for each habitat, for a total 
of 2,553 (n = 851 × 3) radiomic features across the three 
habitats. We repeated the above procedure to extract 
851 radiomic features from the entire region of the 
tumor in each patient for the sake of comparison.

To assess the robustness and stability of the obtained 
radiomic features, the nuclear medicine physician (Z.L.) 
and another experienced radiologist (W.G.; 8  years of 
experience) independently performed repeated segmen-
tation on 20 randomly selected cases after a one-month 
interval. This was done to calculate the intra-observer 
and inter-observer correlation coefficients (ICCs). Higher 
values of the ICCs reflected a higher degree of reproduc-
ibility, and features with ICCs below 0.75 were excluded 
from subsequent analyses.

For a comparison of predictive performance, eight 
metabolic parameters—minimal standardized uptake 
value (SUVmin), average standardized uptake value 
(SUVmean), maximal standardized uptake value (SUV-
max), standard deviation of standardized uptake value 
(SUVstd), metabolic tumor volume  (MTV), standard-
ized metabolic tumor volume (sMTV), total lesion gly-
colysis (TLG), standardized total lesion glycolysis (sTLG) 
were also calculated by using voxels larger than the set 
threshold of 40% of SUVmax in the VOI of the tumor. The 
detailed formula has been provided on the relevant web-
site (www. lifex soft. org).

Correlation analysis of features
Prior to feature selection and model construction, we 
performed the unsupervised clustering of the habitat-
derived radiomic features, the whole tumor region radi-
omic features, and the metabolic parameters by using 

Fig. 1 Schematic diagram of habitat generation. a Three subregions, low_metabolism_habitat (green area), hight_metabolism_habitat (red area) 
and peritumoral (blue area) were obtained from the PET images. b A three-dimensional volume-rendered image of the three subregions. PET, 
positron emission tomography

https://github.com/Radiomics/pyradiomics
https://github.com/Radiomics/pyradiomics
https://www.radiomics.io/pyradiomics.html
https://www.radiomics.io/pyradiomics.html
http://www.lifexsoft.org
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the Euclidean distance. This allowed us to determine the 
differences between the patterns of global expression of 
features of the images in the presence and absence of 
KRAS/NRAS/BRAF mutations. Moreover, we visualized 
the correlation between the habitat-derived radiomic fea-
tures and whole tumor region radiomic features, as well 
as that between the habitat-derived radiomic features 
and the metabolic parameters by using pairwise Pearson 
correlation coefficients to create correlation heatmaps. 
This enabled us to link different features of the images.

Feature selection and prediction model development
To begin with, each feature was z-score normalized by 
using the mean and standard deviation of the training 
cohort features. The addition of a feature-ranking proce-
dure beforehand can help improve the final performance 
[32]. We thus used the entropy-based maximum rele-
vance minimum redundancy (mRMR) technique of fea-
ture selection in the supervised stage of feature selection. 
Entropy-based mRMR algorithms use mutual informa-
tion and conditional entropy to measure the correlation 
and redundancy between features. Specifically, the algo-
rithm first calculates the mutual information between 
each feature and the target variable, and then calculates 
the conditional entropy between the selected feature and 
other features, to select the optimal feature that has the 
maximum correlation with the target variable and the 
minimum redundancy with other features. The top 30 
radiomic features were then fed into the least absolute 
shrinkage and selection operator (LASSO) algorithm for 
more refined feature selection. The optimal coefficient 
of lambda shrinkage within one standard error of this 
value was determined using ten-fold cross-validation. 
By penalizing the loss function with the L1 norm of the 
feature coefficients, LASSO forced those coefficients cor-
responding to weak features to become zero, thus pre-
venting overfitting to produce a sparse matrix [33]. The 
underlying relationship between the radiomic phenotypic 
features and the genetic status is complex, and may even 
be non-linear. Moreover, the sample size in this study was 
small. Therefore, we used the support vector machine 
(SVM) to build a model of the classifier. The SVM is a sta-
tistical classifier model based on the principle of struc-
tural risk minimization that has been used to solve a 
range of non-linear problems involving a small number 
of samples [34, 35]. Five-fold cross-validation and ran-
dom search with 1,000 iterations were used to determine 
the best parameter configuration during model training. 
The numbers of iterations and folds of cross-validation 
were determined based on factors such as the trade-off 
of bias and variance, as well as the actual computational 
resources. The same workflow was used for the habitat-
derived radiomic features and the whole tumor region 

radiomic features. However, owing to the small number 
of dimensions of their features, we used univariate anal-
ysis to input features of the metabolic parameters that 
were significantly different into the SVM classifier, with a 
value of P smaller than 0.05 as the threshold.

Model evaluation and validation
The predictive performance of the model was evaluated 
on the entire training cohort and validated by using the 
validation cohort. We applied the receiver operating 
characteristic (ROC)  curve, calibration curve, and deci-
sion curve analysis (DCA) to evaluate the predictive 
accuracy and clinical feasibility of the model. We also cal-
culated the area under the receiver operating character-
istic curve (AUC), sensitivity, specificity, accuracy, recall, 
precision, the F1-score, and area under the precision–
recall curve (AUPR) as indicators of performance. The 
learning curve of the model was used to determine its 
convergence. It is a visualization tool to identify whether 
the number of training samples of a given model is suf-
ficient for its convergence by showing how the errors 
or accuracies of the training and validation sets change 
as the number of training samples increases [36]. We 
used the SHapley Additive explanation (SHAP) method, 
which is a visual tool that can calculate the contribution 
of each input variable to the decision of a machine learn-
ing model [37], to interpret the output of the machine 
learning model, and reveal the relationship between the 
radiomic features of the image and KRAS/NRAS/BRAF 
mutations.

Statistical analysis
The Python programming language (version 3.9.7; 
www. python. org) was used for statistical analysis, visu-
alization, and machine learning. The Student t-test was 
used to determine whether the continuous variables 
were normally distributed (the results are reported as 
mean ± standard deviation), and the Mann–Whitney U 
test was used if they were not normally distributed (pre-
sented as the median with an interquartile range). The 
Chi-square test or Fisher’s exact test was used for the cat-
egorical variables (presented as numbers or percentages). 
Two-tailed P-values of < 0.05 were considered to be sta-
tistically significant.

Results
Clinical characteristics
The patients were divided into a mutant group and a wild 
group according to the results of the status of KRAS/
NRAS/BRAF mutations. Table  1 lists the demograph-
ics of the patients and the clinical characteristics of the 
tumors in both groups. No statistical differences were 
observed between the wild and mutant groups in terms 

http://www.python.org
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of sex, age, tumor location, and differentiation (P > 0.05). 
However, statistically significant differences were noted 
between the wild and mutant groups in terms of the 
TNM stage and the CEA (P < 0.05). Table  2 lists the 
demographics of the patients and the clinical character-
istics of the tumor in the training and validation groups. 
The results show that although there were differences 
between them in terms of sex, age, tumor location, TNM 
stage, and CEA, they were not statistically significant 
(P > 0.05).

Unsupervised cluster analysis and correlation analysis
After excluding features with low reproducibility 
(ICCs < 0.75), the number of habitat-derived radi-
omic features were reduced from 2553 to 2426, and the 
number of whole tumor region radiomic features were 
reduced from 851 to 803. We then separately analyzed 
their clustering. The cluster map of the habitat-derived 
radiomic features had a clear contrast in shape with the 
cluster maps of the whole tumor region radiomic features 
and the metabolic parameters (Supplementary Informa-
tion Fig. S1). This indicates that the habitat-derived radi-
omic features were more representative and compact. 
Notably, the heatmap of correlation (Supplementary 
Information Fig. S2) showed that habitat-driven radi-
omics features with potential relevance could be found 
for almost all whole tumor region radiomic features or 

metabolic parameters (dark-blue color). However, the 
presence of partial habitat-derived radiomic features 
exhibited a low correlation with the whole tumor region 
radiomic features or the metabolic parameters (light-
blue and red colors, respectively). This may correspond 
to additional deep information and be more suggestive 
for the status of KRAS/NRAS/BRAF mutations during 
model construction.

Feature selection
The habitat-derived radiomic features were ranked 
according to mRMR, and the top 30 features were then 
selected for further analysis. The top features included 
seven features from low_metabolism_habitat, 12 from 
high_metabolism_habitat, and 11 from the peritumoral 
region. Following this, we used the LASSO method to 
select five subregional radiomic features with non-zero 
coefficients under the best value of lambda, as illustrated 
in Fig.  2. We finally retained two features from high_
metabolism_habitat, three from the peritumoral region, 
and no feature from low_metabolism_habitat. The rule 
of thumb to avoid overfitting is that the number of pre-
dictors should be kept within 1/10–1/3 of the sample 
size in each group of the main cohort [38]. Therefore, the 
number of features screened here was considered reason-
able. However, when mRMR and LASSO analyses were 
performed on the whole tumor region radiomic features, 

Table 1 Comparison of patient demographic and clinical tumor characteristics between KRAS/NRAS/BRAF mutation group and wild 
type group

CEA carcinoembryonic antigen, KRAS Kirsten rat sarcoma viral oncogene homolog, NRAS neuroblastoma rat sarcoma viral oncogene homolog, BRAF v-raf murine 
sarcoma viral oncogene homolog B
a Chi-square test
b Student t-tests

Characteristics Wild type (n = 27) Mutant type (n = 35) P

Sex 0.644a

 Male 17(63.0) 24(68.6)

 Female 10(37.0) 11(31.4)

Age(year) 61.11 ± 11.40 64.57 ± 10.21 0.213b

Tumor location 0.636a

 Colon or sigmoid colon 20(74.1) 24(68.6)

 Rectum or rectosigmoid junction 7(25.9) 11(31.4)

Differentiation 0.420a

 Well/moderate 21(77.8) 24(68.6)

 Poor 6(22.2) 11(31.4)

TNM stage 0.044a

 I-II 17(63.0) 13(37.1)

 III-IV 10(37.0) 22(62.9)

CEA 0.001a

 < 5.0 ng/ml 21(77.8) 12(34.3)

 ≥ 5.0 ng/ml 6(22.2) 23(65.7)
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no feature was retained (Supplementary Information 
Fig. S3). We also did not find a significant difference in 
the metabolic parameters between the wild type group 
and the mutant group of KRAS/NRAS/BRAF, although 
all metabolic parameters exhibited a tendency to have 
larger values in the mutant group than in the wild type 
group (Supplementary Information Fig. S4). Therefore, 
no whole tumor region radiomic features and metabolic 
parameters were available for the subsequent examina-
tion of model construction.

Model evaluation
We constructed an SVM model to predict KRAS/NRAS/
BRAF mutations based on the selected habitat-derived 
radiomic features, and determined the optimal val-
ues of the parameters as C = 2.815, gamma = 0.364, and 
kernel = sigmoid. The predictive performance of the 
model was subsequently tested on the training and vali-
dation sets. Table  3 and Fig.  3 show the performance 
of the model of classification and its ROC curves. The 
model had an AUC of 0.759 (95% CI: 0.585–0.909) on 
the training set, with a sensitivity of 0.810, specificity 
of 0.688, accuracy of 0.757, recall of 0.810, precision of 
0.773, F1-score of 0.791, and AUPR of 0.808. The model 
in the validation group had an AUC of 0.701 (95% CI: 

0.468–0.916), sensitivity of 0.786, specificity of 0.545, 
accuracy of 0.680, recall of 0.786, precision of 0.688, 
F1-score of 0.733, and AUPR of 0.682. These results 
reflect the acceptable predictive performance of the pro-
posed model. In addition, its curve of calibration in Fig. 4 
shows good agreement between the probability of KRAS/
NRAS/BRAF mutations predicted by the model and their 
actual probability on both the training and validation 
datasets. Furthermore, the DCA plots verified the clinical 
utility of the SVM model based on habitat-derived radi-
omic features for the training group (Fig. 5a) and the vali-
dation group (Fig. 5b).

The learning curve provides a visual insight into the 
predictive performance of a model. The learning curve 
in Fig.  6 shows that values of the AUC of the proposed 
model on the training and validation groups tended to 
be stable and close to each other, and conformed to our 
expectations. Therefore, the proposed model converged 
and achieved stable performance even with a small sam-
ple size.

Analysis of model interpretability
SHAP analysis was conducted on the validation cohort. 
We calculated the importance of each feature based on 
the SHAP values (Fig. 7a). The graph shows the results 

Table 2 Comparison of patient demographic and clinical tumor characteristics between the training cohort and validation cohort

CEA carcinoembryonic antigen, KRAS Kirsten rat sarcoma viral oncogene homolog, NRAS neuroblastoma rat sarcoma viral oncogene homolog, BRAF v-raf murine 
sarcoma viral oncogene homolog B
a Chi-square test
b Student t-tests

Characteristics Training cohort (n = 37) Validation cohort (n = 25) P

Sex 0.402a

 Male 26(70.3) 15(60.0)

 Female 11(29.7) 10(40.0)

Age(year) 64.35 ± 10.71 61.16 ± 10.85 0.257b

Tumor location 0.473a

 Colon or sigmoid colon 25(67.6) 19(76.0)

 Rectum or rectosigmoid junction 12(32.4) 6(24.0)

Differentiation 0.933a

 Well/moderate 27(73.0) 18(72.0)

 Poor 10(27.0) 7(28.0)

TNM stage 0.640a

 I-II 17(45.9) 13(52.0)

 III-IV 20(54.1) 12(48.0)

CEA 0.498a

 < 5.0 ng/ml 21(56.8) 12(48.0)

 ≥ 5.0 ng/ml 16(43.2) 13(52.0)

Mutational status 0.953a

 KRAS/NRAS/BRAF mutated 21(56.8) 14(56.0)

 Wild type 16(43.2) 11(44.0)
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of the analysis of the importance of features in the SVM 
model by SHAP method. Each point in Fig.  7a repre-
sents the SHAP value of a feature in one instance. Its 
position on the Y-axis was determined based on the 
importance of the feature and its position on the X-axis 
was determined by its SHAP value. The colors indi-
cate values of the features ranging from small to large 
to better represent the distribution of the SHAP val-
ues for each feature. We also used SHAP to account 
for a typical prediction of the presence and absence 
of KRAS/NRAS/BRAF mutations (Fig.  7b and c). The 
predictions were made starting with a baseline value 

derived from the average of all predictions. Each band 
showed the effect of its feature in pushing the value of 
the target variable further from or closer to the baseline 
value, and the likelihood of increasing (positive value) 
or decreasing (negative value) KRAS/NRAS/BRAF 
mutations.

Discussion
With advances in precision medicine, the status of 
KRAS/NRAS/BRAF mutations has been applied to 
clinical decision-making in case of CRC [39]. Histopa-
thology remains the gold standard for the diagnosis and 

Fig. 2 Feature selection of habitat-derived radiomic features using the LASSO algorithm. a Tuning parameter lambda selection in the LASSO 
algorithm used ten-fold cross-validation. b LASSO coefficient profiles of the features. LASSO, least absolute shrinkage and selection operator

Table 3 Performance evaluation of SVM model based on habitat-derived radiomic features in training cohort and validation cohort. 
SVM, support vector machine; AUC, area under the receiver operating characteristic curve; AUPR, area under the precision‐recall curve

Cohort AUC (95%CI) Sensitivity Specificity Accuracy Recall Precision F1-score AUPR

Training cohort 0.759 (0.585–0.909) 0.810 0.688 0.757 0.810 0.773 0.791 0.808

Validation cohort 0.701 (0.468–0.916) 0.786 0.545 0.680 0.786 0.688 0.733 0.682
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classification of tumors. However, there is increasing 
recognition of the limitations of tissue-based genetic 
testing, including intra-tumor heterogeneity, clonal evo-
lution, and poor DNA quality, especially in biopsy sam-
ples [40]. This can lead to a suboptimal profile of the 
genetic signature of the tumor. Therefore, we sought to 
determine the most effective way to image phenotypes 

by using habitat-derived quantitative radiomic measure-
ments to distinguish between CRC mutants and wild 
type genomes in this pilot study. The AUC of our SVM 
model was 0.759 on the training group and 0.701 on the 
validation group. It exhibited sound calibration and clini-
cal utility, and achieved good convergence even with a 
small sample size. This suggests that it can complement 

Fig. 3 The ROC curves of the SVM model based on habitat-derived radiomic features in the training group (a) and the validation group (b). ROC, 
receiver operating characteristic; SVM, support vector machine; AUC, area under the receiver operating characteristic curve

Fig. 4 The calibration curves of the SVM model based on habitat-derived radiomic features in the training group (a) and the validation group (b). 
SVM, support vector machine
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the status of mutation of genes to enhance the optimal 
treatment strategy for patients with CRC.

Data from basic studies suggest that mutated KRAS 
may lead to increased 18F-FDG accumulation through the 
upregulation of GLUT1 under normoxic conditions, and 
that HIF-1α increases 18F-FDG accumulation in hypoxic 
lesions [12]. Therefore, it is theoretically feasible to char-
acterize the phenotype of the mutants of tumors by using 

metabolic parameters. However, like previous studies 
[13], the results of ours showed that although the meta-
bolic parameters of KRAS/NRAS/BRAF mutants tended 
to have larger values than in wild type genomes, none 
of these was statistical significance. Several parameters 
based on SUV (SUVmin, SUVmean, SUVmax, SUVstd) 
reflect the metabolic activity of a certain part or a certain 
point of the tumor tissue, but cannot reflect the overall 

Fig. 5 The DCA of the SVM model based on habitat-derived radiomic features for the training (a), and validation (b) groups. SVM, support vector 
machine; DCA, decision curve analysis

Fig. 6 Learning curve of the SVM model based on habitat-derived radiomic features. SVM, support vector machine; AUC, area under the receiver 
operating characteristic curve
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metabolism of the tumor. The derived parameters (MTV, 
sMTV, TLG, sTLG) make up for this deficiency. For 
example, MTV and TLG can reflect the metabolic activ-
ity and the tumor burden. However, these parameters 
cannot distinguish the heterogeneity of different regions 
within the tumor [41]. We also observed that all whole 
tumor region radiomic features were removed during 
feature selection. Some previous studies have reported 
the same results, whereby whole tumor region textural 
features obtained by using 18F-FDG PET/CT are not 

associated with the presence of Ras mutations in patients 
of rectal cancer [17]. Fortunately, our SVM model based 
on habitat-derived radiomic features yielded good per-
formance in predicting the presence of KRAS/NRAS/
BRAF mutations, where this further demonstrates the 
value of techniques of habitat analysis in characterizing 
the complex microenvironment of tumors. It is impor-
tant to note that different regions within the tumor may 
have different biological characteristics. Habitat-based 
methods deliver better performance, possibly due to the 

Fig. 7 a SHAP summary graph and distribution of SHAP values for trained SVM model based on habitat-derived radiomic features. Characteristic 
SHAP value influence diagram of individual KRAS/NRAS/BRAF mutant (b) and wild type (c) samples. SHAP, SHapley Additive explanation; SVM, 
support vector machine; KRAS, Kirsten rat sarcoma viral oncogene homolog; NRAS, neuroblastoma rat sarcoma viral oncogene homolog; BRAF, v-raf 
murine sarcoma viral oncogene homolog B; glrlm, gray-level run length matrix; glcm, gray-level co-occurrence matrix; glszm, gray-level size zone 
matrix
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clustering of similar voxels through habitat quantifica-
tion, which allows for the delineation of metabolic het-
erogeneity driven by genetic heterogeneity through a 
more fine-grained characterization of the microenviron-
ment of the tumor [42]. The advantage of this promising 
approach to describing tumor heterogeneity has been 
demonstrated in several previous studies. For example, 
in their comparison of the performance of 18F-FDG PET/
CT whole tumor region radiomics with habitat-derived 
radiomics in determining Ki-67 expression in case of 
high-grade serous ovarian cancer, Wang et al. found that 
the habitat-based method was significantly better than 
the whole tumor region radiomics analysis (Delong test, 
P < 0.05) [26]. In another study, Xie et  al. used habitat-
derived radiomic features in CT images to construct a 
model to assess the prognosis of esophageal squamous 
cell carcinoma treated by definitive concurrent chemo-
radiotherapy. The concordance index of the model was 
0.729 on the training cohort and 0.705 on the validation 
cohort. This is superior to that of the whole tumor region 
radiomics analysis, although it was not statistically sig-
nificant [23].

We also explored reasons for the poor performance of 
the metabolic parameters and the whole tumor region 
radiomics in comparison with that of habitat-derived 
radiomics by using unsupervised clustering analysis. 
The results showed that the unsupervised clustering of 
habitat-derived radiomics led to a better match with the 
semantic labels (mutant/wild type genomes). Moreo-
ver, the analysis of correlations between features showed 
that almost all whole tumor region radiomics features 
and metabolic parameters could find the corresponding 
habitat-derived radiomic features with correlation, and 
some habitat-derived radiomic features had a low corre-
lation with the whole tumor region radiomic features and 
the metabolic parameters. Considering that our approach 
based on habitat-derived radiomics delivered better per-
formance, it is reasonable to conclude that the relevant 
features not only cover almost all information on the 
metabolic parameters and the whole tumor region radi-
omic features, but also contain key discriminating infor-
mation that is not found in these two sets of features of 
images. This also nicely explains the higher classification-
related performance of habitat-derived radiomics.

We used SHAP analysis to interpret the “black-box 
model” at both the global and the local levels [43]. 
The SHAP method enhances the interpretability of a 
machine learning model, and can estimate the positive 
and negative contributions of each feature to its predic-
tion [44]. The SHAP results showed that the ranking of 
the features according to importance was peritumoral_
wavelet-LLH_glrlm_LowGrayLevelRunEmphasis , 
peritumoral_wavelet-LLH_glcm_Correlation, peritu-

moral_wavelet-LHH_firstorder_Skewness, high_metab-
olism_wavelet-LLH_glszm_SizeZoneNonUniformity, 
and high_metabolism_wavelet-HLH_firstorder_Skew-
ness. The radiomic features obtained from the peritu-
moral regions were the three most important features, 
followed by those from the hypermetabolic regions, 
while none of the features from the hypometabolic 
regions was included in the final model. Tumor inva-
sion is a complex biological process at the microscopic 
level, in which tumor cells tend to separate from the 
primary tumor and invade the surrounding tissues [45]. 
Tumors with gene mutations in particular are likely 
to invade and exhibit metastasized phenotypes [46]. 
Therefore, it may be beneficial to capture information 
on KRAS/NRAS/BRAF mutations from a macroscopic 
perspective by using radiomics in the peritumoral 
region. Multiple circular peritumoral regions were not 
observed in this study. According to a recent report, the 
closer the peritumoral area is to the intra-tumoral area, 
the greater is the amount of information that it con-
tains [47]. The excessive expansion of information on 
the surrounding edges may introduce noise to impair 
the capability of classification of the model [48]. At the 
same time, the high_metabolism features also helped 
facilitate the stratification of the mutations. Similar 
to the work in this study, Mu et  al. selected the main 
habitat-related features for a model of the prognostic 
assessment of locally advanced cervical cancer based 
on 18F-FDG PET/CT images from the hypermetabolic 
regions [27]. Moreover, Wu et al. showed that the vol-
ume of most metabolically active and metabolically 
heterogeneous tumor solid components can be used 
as a predictor of overall survival and out-of-field pro-
gression in patients of lung cancer [49]. Based on this 
result, we hypothesize that the hypermetabolic habi-
tats of tumors in PET images, which generally reflect 
the metabolism of active tumor cells, may harbor more 
information about mutations in tumors than hypomet-
abolic habitat. It is evident from the results, that using 
40% of SUVmax as the threshold to generate hyper-
metabolic VOI is a more convenient method to extract 
radiomics features from hypermetabolic tumor regions. 
Therefore, to further validate the effectiveness of the 
habitat-derived radiomic analysis, we generated a VOI 
with the SUVmax of 40% as the threshold based on the 
VOI of the whole tumor region obtained in this study, 
and carried out the same feature screening and mod-
eling process. However, the model was severely overfit-
ted during training (not shown in the results). Tumor 
heterogeneity refers not only to the heterogeneity 
within a tumor, but also to the heterogeneity between 
tumors. Therefore, using a fixed threshold to evaluate 
the degree of metabolism of all tumors interferes with 
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the quantification of tumor heterogeneity based on radi-
omics features. Moreover, all  the features considered 
here were wavelet features, which indicates the impor-
tance of wavelet decomposition for radiomics analysis. 
The wavelet features characterize heterogeneity at mul-
tiple spatial scales, and may be an important radiomic 
feature to quantify KRAS/NRAS/BRAF mutations [32].

Our analysis of clinicopathological factors showed that 
patients with high CEA levels and high TNM stages had 
a higher probability of KRAS/NRAS/BRAF mutations. 
KRAS/NRAS/BRAF mutations are associated with poor 
prognosis of patients with CRC [50, 51], while TNM 
staging prediction systems and markers such as CEA play 
an important role in monitoring the prognosis of gastro-
intestinal cancer [52, 53]. Therefore, there are potential 
associations between KRAS/NRAS/BRAF mutations and 
CEA level as well as TNM stage.

Deep learning has exhibited significant value in oncol-
ogy [54, 55]. In particular, Wu et  al. have reported that 
adding deep learning features to manual radiomic fea-
tures can improve the ability to predict the KRAS muta-
tion in case of CRC [56]. However, because of the small 
sample size used in this study, and given that deep learn-
ing is a data-intensive technique, we did not use it here. 
Its appropriate use in this domain is another important 
area that warrants further research.

This study has certain limitations. First, this was a pre-
liminary exploration of a small sample collected from a 
single hospital. Our model delivered good predictive per-
formance, and the results of its learning curve showed 
that it achieved convergence even with a small number 
of samples. However, using a larger sample size and pro-
viding external validation will further verify its clinical 
significance. Second, even though it is the mainstream 
method in radiomics research, manual segmentation 
may introduce uncertainty due to human participation. 
Automatic segmentation can further optimize research 
on the radiomics-based prediction of mutations in the 
CRC gene. Finally, the probability of KRAS/NRAS/BRAF 
mutations obtained in this study was higher than that 
reported in the literature, and the impact of this outcome 
on our model needs to be further evaluated.

Conclusion
In this study, we showed that habitat-derived radiomic 
features are superior to conventional metabolic param-
eters and whole tumor region radiomic features in pre-
dicting KRAS/NRAS/BRAF mutations in CRC patients. 
In addition, the SVM model based on habitat-derived 
radiomic features has the potential to assist in decision-
making regarding the treatment of CRC patients in clini-
cal practice, but its performance needs to be validated on 
a larger prospective cohort than was considered here.
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