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Abstract
Background The detection of local recurrence for prostate cancer (PCa) patients following radical prostatectomy (RP) 
is challenging and can influence the treatment plan. Our aim was to construct and verify machine learning models 
with three different algorithms based on post-operative mpMRI for predicting local recurrence of PCa after RP and 
explore their potential clinical value compared with the Prostate Imaging for Recurrence Reporting (PI-RR) score of 
expert-level radiologists.

Methods A total of 176 patients were retrospectively enrolled and randomly divided into training (n = 123) and 
testing (n = 53) sets. The PI-RR assessments were performed by two expert-level radiologists with access to the 
operative histopathological and pre-surgical clinical results. The radiomics models to predict local recurrence were 
built by utilizing three different algorithms (i.e., support vector machine [SVM], linear discriminant analysis [LDA], and 
logistic regression-least absolute shrinkage and selection operator [LR-LASSO]). The combined model integrating 
radiomics features and PI-RR score was developed using the most effective classifier. The classification performances 
of the proposed models were assessed by receiver operating characteristic (ROC) curve analysis.

Results There were no significant differences between the training and testing sets concerning age, prostate-specific 
antigen (PSA), Gleason score, T-stage, seminal vesicle invasion (SVI), perineural invasion (PNI), and positive surgical 
margins (PSM). The radiomics model based on LR-LASSO exhibited superior performance than other radiomics 
models, with an AUC of 0.858 in the testing set; the PI-RR yielded an AUC of 0.833, and there was no significant 
difference between the best radiomics model and the PI-RR score. The combined model achieved the best predictive 
performance with an AUC of 0.924, and a significant difference was observed between the combined model and 
PI-RR score.
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Background
Radical prostatectomy (RP) is a common primary treat-
ment choice for patients with low- and intermediate-risk 
prostate cancer (PCa) [1], while monitoring prostate-
specific antigen (PSA) levels after surgery has been a 
standard approach for detecting any possible biochemi-
cal recurrence (BCR) [2]. Yet, the natural history of BCR 
after a surgical procedure is highly variable, and only a 
particular subset demonstrating specific clinicopatho-
logic characteristics might be at higher risk of recurrence 
and benefit from salvage therapy [3]. Thus, BCR has 
become a well-established indication for choline or pros-
tate-specific membrane antigen (PSMA) positron emis-
sion tomography/computed tomography (PET/CT) and 
multi-parametric magnetic resonance imaging (mpMRI), 
which is essential for detecting potential local recurrence 
or metastasis and deciding local salvage treatment [4–8]. 
However, studies have also shown that mpMRI can out-
perform choline or PSMA PET/CT in predicting local 
recurrence [9–11]. Thus, it is vital for patients experi-
encing BCR after RP to precisely assess post-operative 
mpMRI to detect any possible local recurrence lesion, 
which can significantly improve their clinical outcomes 
by tailoring the treatment plan.

A group of experts proposed the Prostate Imaging 
for Recurrence Reporting (PI-RR) assessment system 
to provide guidelines for standardizing image acquisi-
tion, interpretation, and scoring of mpMRI to detect 
local recurrence in PCa patients following RP or radia-
tion therapy [12]. PI-RR scoring system aims to precisely 
locate and evaluate suspicious local recurrence lesions, 
which ultimately helps to personalize treatment plans 
[13, 14]. However, due to the subjectivity of radiologists 
and the ambiguity of some lesion criteria, the inter-
observer agreement of the PI-RR assessment across dif-
ferent levels of readers remains questionable, requiring 
further evaluations for its predictive accuracy and clini-
cal value [15]. In addition, the criteria employed to define 
different scores of each sequence have not yet gained uni-
versal acceptance, and the actual recurrence frequency 
of each PI-RR category remains uncertain, contributing 
to the potential requirement for clarification and adjust-
ment of these criteria after prospective studies and ran-
domized trials like Prostate Imaging Reporting and Data 
System (PI-RADS) [16]. It is also worth mentioning 
that the experience and accumulation of different radi-
ologists significantly influence the score’s accuracy. The 

above-mentioned limitations have prompted a growing 
demand for innovative auxiliary techniques for analyzing 
post-RP mpMRI.

As a robust and relatively accurate image analysis tech-
nique, radiomics could create appropriate diagnosis and 
prognosis prediction models by extracting and analyzing 
high-dimensional features not seen by the naked eye [17]. 
Compared to qualitative imaging assessments conducted 
by radiologists, radiomics has some advantages, includ-
ing stable calculation, moderate repeatability, and relative 
objectivity. Recent studies have shown radiomics analy-
sis may be useful for PCa diagnosis, Gleason score clas-
sification, and biochemical recurrence prediction based 
on pre-operative MRI images [18–21]. Nevertheless, no 
study has explored the potential value of post-surgical 
mpMRI radiomics in detecting local recurrence of PCa 
patients, neglecting the importance of post-RP pros-
tatic MRI for local recurrence evaluation. Thus, in this 
study, we developed and validated radiomics models with 
three algorithms based on post-operative mpMRI for 
local recurrence prediction in PCa patients who under-
went RP. We further constructed a combined model by 
integrating radiomics features with the PI-RR score and 
compared the performance of machine learning models 
with the PI-RR assessment of expert-level radiologists to 
assess the potential value of these models in real-world 
clinical practice.

Methods
Patients
We comprehensively searched our institutional elec-
tronic database to identify PCa patients who underwent 
post-operative prostate mpMRI for clinically suspected 
local recurrence following RP between November 2015 
and October 2022. Inclusion criteria were: (1) those who 
experienced BCR or PSA persistence following RP (two 
consecutive serum PSA values > 0.2 ng/mL following RP) 
[22]; (2) those who underwent standard prostate mpMRI 
for suspected local recurrence after RP. The exclusion cri-
teria were the following: (1) androgen deprivation ther-
apy (ADT) or radiotherapy (RT) before post-operative 
MRI assessment; (2) poor imaging quality or inappro-
priate MRI protocol; (3) insufficient follow-up data. The 
study flow chart is shown in Fig. 1.

Clinical data, including age, pre-operative PSA, follow-
up PET-CT results, and PI-RADS score, were also col-
lected from the electronic database of our institution. 

Conclusions Our radiomics model is an effective tool to predict PCa local recurrence after RP. By integrating 
radiomics features with the PI-RR score, our combined model exhibited significantly better predictive performance of 
local recurrence than expert-level radiologists’ PI-RR assessment.

Keywords Multiparametric Magnetic Resonance Imaging, Prostate Cancer, Local recurrence, Radiomics, Machine 
learning
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Histopathologic data were obtained from the surgical 
pathology reports, including the International Society of 
Urological Pathology Gleason scores (GS), pathologic T 
stage, perineural invasion (PNI), seminal vesicle invasion 
(SVI), and positive surgical margins (PSM).

The Institutional Ethics Review Board approved this 
retrospective study and waived the requirement for writ-
ten informed consent due to the retrospective study 
design.

MRI acquisition and analysis
The prostatic mpMRI examinations were performed 
using a 3.0T MRI scanner (Skyra; Siemens, Munich, Ger-
many) with a pelvic phased-array surface coil without an 
endorectal coil. The prostate mpMRI protocol, includ-
ing T1-weighted (T1WI), T2-weighted (T2WI) in three 
planes, diffusion-weighted imaging (DWI) and dynamic 
contrast-enhanced (DCE) T1WI, conformed to the 
PI-RR recommendations [13]. ADC images were calcu-
lated based on the DWI images of 50 and 1000 b-values 
using an extended single exponential fitting model. Next, 
the early enhancement phase (E2) of DCE images was 
selected for radiomics analysis following Nie K’s method 
[23], which specifically identifies this phase as occurring 
within 10  s of the appearance of contrast agents in the 

femoral arteries. The specific details of the examination 
protocol are displayed in Table 1.

All post-operative mpMRI were independently assessed 
by two expert-level radiologists (reader 1 with 10 years of 
professional experience, reader 2 with 15 years of pro-
fessional experience in prostate MRI diagnosis) in com-
pliance with PI-RR criteria [13]. All readers were aware 
of pre-operative clinical and surgical pathological data, 
including primary tumor location. Cases with indeter-
minate lesions or scores were assessed by a third expe-
rienced radiologist (reader 3 with more than 20 years 
of professional experience in prostate cancer imaging). 
In the present study, the lesion scored with the highest 
PI-RR in mpMRI was assessed if a case contained mul-
tiple lesions.

According to the PI-RR guidelines [13], the three-
dimensional entire volume of interest (VOI) encompass-
ing the whole suspicious lesion was manually contoured 
on axial slices of T2WI, DWI, ADC and early enhance-
ment phase of DCE by reader 2, who participated in the 
PI-RR evaluation, using ITK-SNAP software (version 
3.6.0). For individuals with a PI-RR score of 1, both DWI 
and DCE sequences showed no abnormal signal, and 
we delineated normal vesicourethral anastomosis. For 
patients with a PI-RR score of 2, the suspicious lesion was 
defined as the focus showing diffuse or heterogeneous 
enhancement in DCE images. For patients scoring 3–5, 
the lesion with the highest PI-RR score was delineated. 
The largest lesion was segmented if two or more lesions 
exhibited equally high PI-RR scores. Reader 3, with more 
than 20 years of professional experience, reviewed all 
annotations. The radiologists had access to the opera-
tive histopathological and pre-surgical clinical results 
while segmenting VOIs. To guarantee the intra-observer 
consistency of annotations, the segmentation procedure 
was repeated by reader 2 after an 8-week interval. Reader 
1 also segmented all VOIs to evaluate inter-observer 
repeatability.

Table 1 MRI sequences and parameters for radiomics analysis
Parameters T2WI DWI DCE
Repetition time (ms) 6980.0 6540.0 4.2
Echo time (ms) 104.00 64.00 1.34
Layer thickness (mm) 3 3 3
Interlayer spacing (mm) 0 0 0
Field of view (mm × mm) 200 × 200 220 × 220 240 × 240
Imaging matrix 384 × 384 130 × 130 224 × 224
B-value (s/mm2) / 50, 1000, 1500 /
FlipAngle 120 180 12
PixelSpacing (mm) 0.52 × 0.52 1.69 × 1.69 1.07 × 1.07
After T2WI, T1WI and DWI acquisitions, we administered a dose of gddiethylenetriaminepenta-acetic acid (0.05 mmol/kg; 3mL/sec; Magnevist, Bayer, Berlin, 
Germany) through a 20G antecubital intravenous line by using an MR-compatible injector (Spectris; Medrad, Pittsburgh, PA) to acquire DCE images. T2WI = T2-
weighted imaging; T1WI = T1-weighted imaging; DWI = diffusion-weighted imaging; DCE = dynamic contrast-enhanced

Fig. 1 Study flow chart. mpMRI = multiparametric magnetic resonance 
imaging; BCR = biochemical recurrence; RP = Radical prostatectomy; 
ADT = androgen deprivation therapy; RT = radiotherapy
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Gold standard of reference
Based on previously reported reference standards [14], 
the criteria to define a post-operative mpMRI assess-
ment as true-positive consisted of (1) a histologically 
confirmed positive result from biopsy specimens of the 
prostate or prostatectomy bed; (2) a volume enlargement 
detected by imaging modalities (including pelvic MRI, 
choline or gallium PSMA PET/CT) after more than 1 
year of follow-up; (3) a volume shrinkage of a previously 
observed recurrent lesion at various imaging modali-
ties or a reduction of PSA values following treatments 
(including ADT or salvage therapy) with a follow-up of 
> 2 years, restricted to patients with no signs of regional 
or distant metastasis on nuclear imaging (including bone 
scan, choline or gallium PSMA PET/CT).

The criteria for defining a post-operative mpMRI eval-
uation as true-negative consisted of [14]: (1) a biopsy-
proven negative histopathological result obtained from 
prostatectomy bed or residual prostate; (2) a negative 
finding without tumor progression at various imaging 
modalities (including choline or gallium PSMA PET/CT 
or pelvic MRI) for more than 1 year of follow-up, accom-
panied by no rise of PSA levels for > 2 years.

Radiomics feature extraction and selection
We respectively extracted 1781 radiomics features from 
each sequence, including T2WI, DWI, ADC and early 
enhancement phase of DCE, using the pyradiomics 
package in Python [24]. The extracted radiomics fea-
tures contained shape, first-order and texture features 
from original and filtered images. We calculated texture 
features utilizing the gray-level co-occurrence matrix 
(GLCM), gray-level run length matrix (GLRLM), gray-
level size zone matrix (GLSZM), gray-level dependence 
matrix (GLDM), and neighboring gray-tone difference 
matrix (NGTDM). The image transformation types 
included Wavelet, Laplacian of Gaussian (LOG), square, 
square root, logarithm, exponential, gradient, local 
binary pattern (2D), and local binary pattern (3D). The 
intra-observer and inter-observer consistency of lesion 
delineation were estimated with the intraclass correlation 
coefficient (ICC), and only radiomics features exhibiting 
both intra-observer and inter-observer ICC values > 0.80 
were preserved for the following study.

We utilized FeAture Explorer (FAE) software (0.5.5) 
[25] to pre-process radiomics features and develop 
machine learning models. FAE is an open-source plat-
form capable of extracting features, selecting features, 
constructing models, and visualizing results. First, the 
synthetic minority oversampling technique (SMOTE) 
was used to balance positive and negative samples of the 
training cohort. Second, we standardized the radiomics 
features by Z-score normalization, subtracting and divid-
ing the mean value by the standard deviation for each 

feature. Third, the Pearson correction coefficient (PCC) 
analysis was utilized to reduce dimensionality. If the PCC 
of a feature pair surpassed 0.9, which means a high corre-
lation between these two features, one of them was ran-
domly eliminated. Finally, to filter significant radiomics 
features, we employed recursive feature elimination 
(RFE), which selects the best (or worst) features by iter-
atively constructing machine learning models for each 
feature. The feature selection procedure was carried out 
in the training set, with the number of selected features 
limited to a range of 1 to 20.

Model development and validation
Employing the selected radiomics features, three preva-
lent machine learning models, based on support vector 
machine (SVM), linear discriminant analysis (LDA), and 
logistic regression-least absolute shrinkage and selection 
operator (LR-LASSO), were built to identify the classifier 
with the best prognostic prediction capability. Five-fold 
cross-validation was employed in the training cohort to 
determine the hyper-parameters of radiomics models. 
The hyper-parameters were adjusted in accordance with 
the model performance in the validation set. The area 
under the curve (AUC) obtained from the receiver oper-
ating characteristic (ROC) curve, sensitivity, specificity, 
accuracy, positive prediction value (PPV), and negative 
prediction value (NPV) of the three models were calcu-
lated to select the best radiomics model for the following 
analysis.

First, we compared the predictive performance of 
the best radiomics model with the PI-RR assessment of 
expert-level radiologists to evaluate their ability to pre-
dict PCa local recurrence. Then, clinicopathologic fea-
tures were entered into univariate and multivariable 
logistic regression analyses to estimate their predictive 
capability. The radiomics features obtained through RFE 
and clinicopathologic features selected through logis-
tic regression analyses were evaluated for correlation. 
We removed features demonstrating high correlation 
(PCC > 0.9) to acquire the final features for combined 
model construction. To uniformly and objectively com-
pare the predictive performance of all models, the 
machine learning algorithm that performed best in the 
radiomics models was chosen to construct the combined 
model by integrating significant clinicopathologic and 
radiomics features. Finally, we compared the combined 
model with the PI-RR score assessed by expert-level radi-
ologists to explore if the combined model could further 
improve the predictive level. Figure 2 displays the entire 
workflow of this study.

Statistical analysis
SPSS 26.0 software, Python software (version 3.5.6) 
and R software (version 3.6.3) were used for statistical 
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analysis. Continuous variables were represented as the 
mean ± standard deviation or median with interquartile 
range (IQR) in accordance with the normality test, while 
categorical variables were reported as frequency and pro-
portions. We employed the Shapiro–Wilk test to verify 
the normality of features. The independent-sample t-test 
or Mann–Whitney U test was applied to compare quanti-
tative parameters, and the chi-square test was utilized to 
compare qualitative parameters.

ROC curves and corresponding AUC values assessed 
all models. In accordance with previous findings [14, 26], 
PI-RR ≥ 3 was used to define a positive post-operative 
mpMRI assessment. The best cutoff values of machine 
learning models were determined according to the maxi-
mization of the Youden Index in the training cohort. 
The sensitivity, specificity, accuracy, PPV, and NPV of 
all models were calculated for predictive performance 
comparison. The DeLong test was employed to compare 
the AUCs of all models. Decision curve analysis (DCA), 
which estimated the net benefits at varying threshold 
probabilities, was used to evaluate the clinical applica-
bility of the PI-RR system, radiomics, and combined 
models. The calibration curve was plotted to assess the 
calibration ability of the combined model. A two-tailed 
p-value < 0.05 represented statistical significance.

Results
Clinical characteristics
A total of 176 eligible patients were included and were 
randomly allocated to the training (n = 123) and testing 
(n = 53) sets using a 7:3 ratio. There was no significant dif-
ference between the training and testing sets concerning 
age, PSA, Gleason score, T stage, SVI, PNI and PSM (all 

p > 0.05). A comprehensive overview of clinical character-
istics for the entire study cohort is provided in Table 2.

PI-RR Assessment of mpMRI after RP
The univariate logistic regression analysis revealed that 
the PI-RR score, PI-RADS category and surgical Glea-
son score were significantly associated with PCa local 
recurrence. Yet, the multivariate logistic regression 
analysis showed that only the PI-RR score (odds ratio 
[OR] = 3.283; 95% confidence interval [CI]: 2.175–4.956; 
p < 0.001) was the independent risk factor for predicting 
local recurrence (Table 3). The performance of the PI-RR 
score in predicting local recurrence following RP is pre-
sented in Fig. 3. In the testing set, PI-RR yielded an AUC 
of 0.833 (95%CI: 0.708–0.958); the sensitivity and speci-
ficity in predicting local recurrence were 0.625 (10/16) 
and 0.892 (33/37), respectively.

Construction and validation of radiomics models
The mean intra-observer and inter-observer ICCs were 
separately 0.896 and 0.841, suggesting good reliability of 
lesion delineation and feature extraction. Following fea-
ture reduction and selection, 14 radiomics features were 
preserved and employed for subsequent model con-
struction (Table  4). The performances of three different 
radiomics models, based on LR-LASSO, SVM, and LDA 
algorithms, are displayed in Fig. 4 and Table 5. The per-
formance of the radiomics model based on LR-LASSO 
was the best among all radiomics models in the testing 
set. LR-LASSO model yielded an AUC of 0.858 (95% 
CI: 0.746–0.971) with a sensitivity of 0.750 (12/16) and 
specificity of 0.892 (33/37) in the testing set. The AUC 
of the LR-LASSO model was numerically higher than 

Fig. 2 Imaging analysis and data flow of the research. VOI = volume of interest; PI-RR = Prostate Imaging for Recurrence Reporting system; ICC = intraclass 
correlation coefficient; PCC = Pearson correction coefficient; RFE = recursive feature elimination; ROC = receiver operating characteristic; DCA = decision 
curve analysis
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SVM and LDA models (all p > 0.05). Consequently, we 
chose the radiomics model based on the LR-LASSO algo-
rithm, which yielded the highest AUC for the following 
application.

Notably, the AUC of the radiomics model based on LR-
LASSO was numerically higher than the PI-RR score, but 
there was no statistically significant difference between 
the LR-LASSO model and PI-RR score in the testing set 
(p = 0.701). This suggested that the performance of the 

Table 2 Patient characteristics
Characteristics Training set n = 123 Testing set n = 53 P value
Age (years, mean ± SD) 69.4 ± 6.7 70.1 ± 6.6 0.938
Pre-operative PSA level [ng/mL, median (IQR)] 19.5 (6.5–32.5) 24.8 (7.4–42.2) 0.835
The time between RP and MRI [months, median (IQR)] 10.3 (2.5–18.1) 12.3 (3.6–21.1) 0.896
Follow-up time [months, median (IQR)] 59.0 (35.5–82.5) 46.0 (30.0–61.0) 0.343
Surgical Gleason score [n, (%)] 0.816

6 6 (4.9%) 3 (5.7%)
7 (3 + 4) 29 (23.6%) 9 (17.0%)
7 (4 + 3) 35 (28.5%) 18 (34.0%)
8 19 (15.4%) 10 (18.9%)
9–10 34 (27.6%) 13 (24.5%)

Pathologic T stage [n, (%)] 0.168
T2a/b 8 (6.5%) 9 (17.0%)
T2c 42 (34.1%) 16 (30.2%)
T3a 35 (28.5%) 12 (22.6%)

T3b 19 (15.4%) 11 (20.8%)
T4 19 (15.4%) 5 (9.4%)

SVI [n, (%)] 29 (23.6%) 13 (24.5%) 0.892
PNI [n, (%)] 60 (48.8%) 19 (35.8%) 0.114
PSM [n, (%)] 59 (48.0%) 29 (54.7%) 0.411
Local recurrence evident [n, (%)] 38 (30.9%) 16 (30.2%) 0.926
Pre-operative PI-RADS score [n, (%)] 0.622

1–2 7 (5.7%) 1 (1.9%)
3 13 (10.6%) 5 (9.4%)
4 34 (27.6%) 13 (24.5%)
5 69 (56.1%) 34 (64.2%)

Post-operative PI-RR score [n, (%)] 0.473
1 76 (61.8%) 31 (58.5%)
2 10 (8.1%) 8 (15.1%)
3 10 (8.1%) 5 (9.4%)
4 15 (12.2%) 3 (5.7%)
5 12 (9.8%) 6 (11.3%)

SD = standard deviation; IQR = interquartile range; PSA = prostate specific antigen; RP = radical prostatectomy; SVI = seminal vesicle invasion; PNI = perineural invasion; 
PSM = positive surgical margins; PI-RADS = Prostate Imaging Reporting and Data System; PI-RR = Prostate Imaging for Recurrence Reporting

Table 3 Univariate and multivariate logistic regression analyses of clinical features
Variable Univariate analysis Multivariate analysis

Odds ratio (95% CI) P-value Odds ratio (95% CI) P-value
Age 1.040 (0.980–1.103) 0.199
Pre-operative PSA 1.004 (0.996–1.011) 0.342
Surgical Gleason score 1.583 (1.137–2.203) 0.006 1.503 (0.923–2.448) 0.102
Pathological T stage 1.066 (0.770–1.475) 0.701
SVI 1.846 (0.776–4.390) 0.165
PNI 0.921 (0.428–1.982) 0.834
PSM 1.311 (0.609–2.821) 0.489
PI-RADS 2.542 (1.354–4.771) 0.004 2.116 (0.901–4.970) 0.085
PI-RR 3.283 (2.232–4.831) < 0.001 3.283 (2.175–4.956) < 0.001
95% CI = 95% confidence interval; PSA = prostate specific antigen; SVI = seminal vesicle invasion; PNI = perineural invasion; PSM = positive surgical margins; PI-
RADS = Prostate Imaging Reporting and Data System; PI-RR = Prostate Imaging for Recurrence Reporting
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radiomics model is comparable to that of the PI-RR score 
assessed by expert-level radiologists and may be useful 
for predicting PCa local recurrence.

Development and verification of combined model
We further developed a combined model by integrat-
ing radiomics features and PI-RR score to evaluate its 
potential value in predicting the local recurrence of PCa 
(Table  4). The predictive performances of the PI-RR 
score, radiomic model based on LR-LASSO, and com-
bined model are displayed in Fig.  3; Table  5. The com-
bined model achieved the highest AUC in predicting 

local recurrence in the testing cohort (AUC = 0.924, 
95%CI: 0.851–0.997). In the testing set, the sensitivity 
and specificity in predicting local recurrence were 0.875 
(14/16) and 0.865 (32/37), respectively. Notably, the AUC 
of the combined model was significantly higher than 
the PI-RR score (AUC: 0.924 vs. 0.833) (p = 0.017) in the 
testing set, but no significant difference was observed 
between the combined model and radiomics model 
(AUC: 0.924 vs. 0.858) (p = 0.153). In addition, the com-
bined model exhibited a substantial increase in sensitiv-
ity at a slight cost of specificity in comparison with the 

Table 4 Selected features of radiomics model and combined model
Radiomic model Combined model
T2WI_log-sigma-1-mm-3D_ngtdm_Contrast T2WI_log-sigma-1-mm-3D_ngtdm_Contrast
ADC_exponential_glrlm_LongRunLowGrayLevelEmphasis ADC_exponential_glrlm_LongRunLowGrayLevelEmphasis
ADC_exponential_glszm_SmallAreaEmphasis ADC_exponential_glszm_SmallAreaEmphasis
DWI_exponential_glszm_SmallAreaLowGrayLevelEmphasis DWI_exponential_glszm_Zone%
DWI_exponential_glszm_Zone% DWI_gradient_glrlm_LongRunHighGrayLevelEmphasis
DWI_gradient_glrlm_LongRunHighGrayLevelEmphasis DWI_gradient_glrlm_LongRunLowGrayLevelEmphasis
DWI_gradient_glrlm_LongRunLowGrayLevelEmphasis DWI_square_glrlm_RunVariance
DWI_square_glrlm_RunVariance DCE_lbp-3D-m1_firstorder_RootMeanSquared
DWI_wavelet-HHL_firstorder_Mean DCE_lbp-3D-m2_firstorder_Median
DCE_lbp-3D-m1_firstorder_RootMeanSquared DCE_wavelet-LHL_firstorder_Median
DCE_lbp-3D-m2_firstorder_Median PI-RR
DCE_lbp-3D-m2_firstorder_Skewness
DCE_wavelet-LHL_firstorder_Mean
DCE_wavelet-LHL_firstorder_Median
T2WI = T2-weighted imaging; DWI = diffusion-weighted imaging; ADC = apparent diffusion coefficient; DCE = dynamic contrast-enhanced; PI-RR = Prostate Imaging 
for Recurrence Reporting

Fig. 3 The comparison of PI-RR score, LR-LASSO model, and combined model in predicting PCa local recurrence in the training and testing sets. LR-
LASSO = logistic regression-least absolute shrinkage and selection operator; PI-RR = Prostate Imaging for Recurrence Reporting system; AUC = area under 
the curve
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PI-RR score (sensitivity: 0.875 vs. 0.625; specificity: 0.865 
vs. 0.892).

The calibration curve revealed that the combined 
model demonstrated good concordance between pre-
diction and observation (Fig.  5), and the Hosmer–Lem-
eshow test indicated good calibration for the combined 
model in both training (p = 0.330) and testing (p = 0.671) 
sets. The DCAs of the PI-RR score, radiomic model and 
combined model in the testing set are displayed in Fig. 6. 
While all models achieved higher net benefits than the 
treat-all or treat-none protocol across most range of 
threshold probabilities, the combined model demon-
strated the most substantial net benefit, highlighting the 
clinical utility of the model.

Discussion
Assessment of post-operative mpMRI can accurately 
detect PCa local recurrence after RP, which is of essen-
tial importance for estimating long-term prognosis and 
directing post-operative administration of PCa patients 
[14, 27]. PI-RR score obtained by mpMRI is a promis-
ing tool for the standardization of the assessment of 
patients who underwent RP (PI-RR scores of 1 and 2 
are assigned to lesions with a very low and low likeli-
hood of recurrence, respectively; PI-RR 3 is assigned if 
the presence of recurrence is uncertain; PI-RR 4 and 5 
are assigned for a high and very high likelihood of recur-
rence) [13]. Recently, PI-RR preliminarily displayed its 
ability to improve the detection and characterization of 
suspicious PCa local recurrence lesions. Pecoraro et al. 

Table 5 Predictive performance of different models in training and testing sets
Models AUC (95% CI) Accuracy Sensitivity Specificity PPV NPV
LR-LASSO Training 0.873 (0.807–0.938) 0.789 0.763 0.800 0.630 0.883

Testing 0.858 (0.746–0.971) 0.849 0.750 0.892 0.750 0.892
SVM Training 0.875 (0.808–0.942) 0.813 0.737 0.847 0.683 0.878

Testing 0.829 (0.708–0.951) 0.755 0.500 0.865 0.615 0.800
LDA Training 0.885 (0.824–0.946) 0.821 0.737 0.859 0.700 0.880

Testing 0.845 (0.742–0.948) 0.717 0.500 0.811 0.533 0.790
PI-RR Training 0.849 (0.770–0.929) 0.829 0.710 0.882 0.730 0.872

Testing 0.833 (0.708–0.958) 0.811 0.625 0.892 0.714 0.846
Combined Training 0.907 (0.853–0.961) 0.805 0.895 0.765 0.630 0.942

Testing 0.924 (0.851–0.997) 0.868 0.875 0.865 0.737 0.941
AUC = area under the curve; CI = confidence interval; PPV = positive predictive value; NPV = negative predictive value;

LR-LASSO = logistic regression-least absolute shrinkage and selection operator; SVM = support vector machine; LDA = linear discriminant analysis; PI-RR = Prostate 
Imaging for Recurrence Reporting

Fig. 4 The comparison of the predictive performances of radiomics models using three different machine learning algorithms in predicting PCa local 
recurrence in the training and testing sets. SVM = support vector machine; LDA = linear discriminant analysis; LR-LASSO = logistic regression-least absolute 
shrinkage and selection operator; AUC = area under the curve
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[14] reported that the PI-RR assessment system provides 
structured, reliable, and precise evaluation of suspicious 
local recurrence foci, with an AUC of 0.80–0.88, sen-
sitivity of 0.59–0.83, and specificity of 0.87–1.00. Cic-
carese et al. [26] found that the predictive ability of the 
PI-RR system was generally better than PET/CT scans 
for PCa local recurrence. The accuracy reached 0.68 but 
was influenced by the PSA values. Park et al. [28] proved 
that the PI-RR DCE score is associated with adverse 
clinic-pathologic characteristics and could predict 1-year 
BCR after RP. In this study, we retrospectively enrolled 
176 patients and randomly divided them into training 
and testing sets, and two expert-level radiologists per-
formed the PI-RR assessments. Our research findings 
about PI-RR were consistent with previous studies. The 
PI-RR yielded an AUC of 0.833 (95%CI: 0.708–0.958) 

in the testing set. In the testing set, its sensitivity and 
specificity in predicting local recurrence were 0.625 
(10/16) and 0.892 (33/37), respectively. These findings 
suggested that the PI-RR system may optimize post-
operative management by improving evaluation preci-
sion and customizing treatments. However, the PI-RR 
assessment system has the following limitations: first, 
the inter-reader reproducibility and practical value of 
the PI-RR system are still uncertain, lacking validations 
from prospective and multi-center research. Second, 
as demonstrated by our data and Pecoraro’s study [14], 
PI-RR had excellent specificity but only moderate sen-
sitivity in predicting local recurrence, suggesting that a 
negative assessment could not completely exclude local 
recurrence and these patients still require monitoring. 
Third, the criteria employed to define different scores for 

Fig. 6 Decision curve analysis (DCA) for the PI-RR score, radiomics model and combined models in the testing set. PI-RR = Prostate Imaging for Recur-
rence Reporting system; LR-LASSO = logistic regression-least absolute shrinkage and selection operator

 

Fig. 5 The calibration curve of combined model in the training (a) and testing (b) sets
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each sequence have not yet been universally accepted, 
contributing to the potential requirement for clarifi-
cation and adjustment of these criteria after prospec-
tive studies and randomized trials like Prostate Imaging 
Reporting and Data System (PI-RADS) [16]. Fourth, the 
accuracy of the scoring system is significantly influenced 
by the experience and expertise of the individual radiolo-
gist involved. Lastly, the PI-RR evaluation algorithm was 
established through professional consensus, and the real 
recurrence frequency of each PI-RR category remained 
uncertain [13]. Hence, despite the great progress made by 
the PI-RR system, thse limitations highlight the need for 
novel methodologies to be developed for assessing post-
operative mpMRI.

In this study, we first constructed and validated 
machine learning models using three different classifi-
ers for local recurrence evaluation and compared them 
with the PI-RR score obtained by expert-level radiolo-
gists. Unlike previous studies [14, 26, 28], which focused 
on the predictive efficacy of radiologists, radiomics, a 
semi-automatic quantitative image analysis method, was 
employed to predict PCa local recurrence. In our study, 
the features of the radiomics model and combined model 
were mainly composed of first-order features from DCE 
images and texture features from DWI and ADC images, 
indicating the intensity statistics from DCE images and 
the lesion heterogeneity information from DWI and 
ADC images have a key role in assessing suspicious 
local recurrence lesion. This finding is consistent with 
the PI-RR proposal, of which the final score is mainly 
generated with DWI and DCE images [13]. Besides, the 
radiomics and combined models did not utilize any fea-
ture extracted from original images, suggesting radiomics 
features from transformed images were more stable than 
those from original images in the evaluation of post-
operative mpMRI.

Radiomics has been proven as an effective and valu-
able tool for diagnosis, risk stratification, and progno-
sis prediction in the field of prostatic MRI. Zheng et al. 
[29] argued that bpMRI-based radiomics is an accurate 
and stable tool to predict pelvic lymph node invasion of 
PCa patients. Shiradkar et al. [30] successfully employed 
radiomics features and clinical characteristics to predict 
BCR after RP. While most of the prior studies explored 
radiomics for assessing pre-operative MRI images, this is 
the first study that focused on the radiomics analyses of 
post-operative mpMRI sequences and further compared 
the predictive performance of radiomics models and 
radiologists for PCa local recurrence [31]. Our research 
evaluated local recurrence using three machine-learning 
algorithms, including LR-LASSO, SVM and LDA classifi-
ers. The LR-LASSO algorithm showed the best predictive 
performance and demonstrated similar predictive ability 
with the PI-RR assessment of experts. To the best of our 

knowledge, this is the first study that explored the value 
of different radiomics models for predicting PCa local 
recurrence based on post-operative mpMRI.

By integrating the PI-RR score with radiomics features, 
the combined model exhibited a significantly higher 
AUC value than expert-level radiologists’ PI-RR assess-
ment. In addition, compared to the PI-RR score, the com-
bined model showed substantially higher sensitivity at a 
slight cost of specificity. Thus, it could be inferred that 
by combining qualitative manual evaluations and quan-
titative radiomics analyses together, we could achieve 
a more precise prediction of PCa local recurrence. The 
combined model may be a promising tool for predict-
ing PCa local recurrence after RP and assisting clinical 
decision-making.

In this study, an assessment of various clinicopatho-
logical variables was conducted to identify potential 
predictors of local recurrence. Although the univariate 
logistic regression analysis showed that surgical Gleason 
score, PI-RADS, and PI-RR score were associated with 
local recurrence, the PI-RR score was the only risk factor 
remaining significant in the multivariate logistic regres-
sion analysis. Other clinical variables, such as pre-oper-
ative PSA, SVI, and PSM, were excluded from the model 
construction, which is consistent with the work of Pec-
oraro et al. [14]. This explains why an innovative clinical 
model was missing in our study, and the poor predictive 
performances of traditional clinical variables made it nec-
essary to invent new tools for local recurrence prediction.

The present study has several limitations. First, as a 
single-center and retrospective study, future multi-center 
and prospective studies are needed to validate the gen-
eralizability and accuracy of our model. Second, we only 
utilized the early enhancement phase of DCE in our 
work, neglecting other phases of DCE images. Further 
studies are needed to investigate whether the radiomics 
features of other DCE phases could improve model per-
formance. Third, the accuracy and subjectivity problems 
associated with manual VOI delineation highlight the 
need for automated segmentation based on deep learning 
techniques.

Conclusions
The performance of the radiomics model based on LR-
LASSO was comparable to PI-RR scoring of expert-level 
radiologists in predicting PCa local recurrence after RP. 
Most notably, by integrating radiomics features with 
PI-RR score, our combined model exhibited better per-
formance in predicting local recurrence compared to 
PI-RR scored by expert-level radiologists. Hence, this 
new combined model can potentially improve the pre-
dictive performance of PI-RR assessed by expert-level 
radiologists and help clinicians tailor treatments for post-
operative patients.
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