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Abstract
Background To build machine learning predictive models for surgical risk assessment of extracapsular extension 
(ECE) in patients with prostate cancer (PCa) before radical prostatectomy; and to compare the use of decision curve 
analysis (DCA) and receiver operating characteristic (ROC) metrics for selecting input feature combinations in models.

Methods This retrospective observational study included two independent data sets: 139 participants from a 
single institution (training), and 55 from 15 other institutions (external validation), both treated with Robotic Assisted 
Radical Prostatectomy (RARP). Five ML models, based on different combinations of clinical, semantic (interpreted by a 
radiologist) and radiomics features computed from T2W-MRI images, were built to predict extracapsular extension in 
the prostatectomy specimen (pECE+). DCA plots were used to rank the models’ net benefit when assigning patients 
to prostatectomy with non-nerve-sparing surgery (NNSS) or nerve-sparing surgery (NSS), depending on the predicted 
ECE status. DCA model rankings were compared with those drived from ROC area under the curve (AUC).

Results In the training data, the model using clinical, semantic, and radiomics features gave the highest net benefit 
values across relevant threshold probabilities, and similar decision curve was observed in the external validation 
data. The model ranking using the AUC was different in the discovery group and favoured the model using 
clinical + semantic features only.

Conclusions The combined model based on clinical, semantic and radiomic features may be used to predict 
pECE + in patients with PCa and results in a positive net benefit when used to choose between prostatectomy with 
NNS or NNSS.
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Background
Prostate cancer (PCa) is the second most commonly 
diagnosed malignancy in men and is the second leading 
cause of mortality from cancer [1]. Radical prostatectomy 
is a well-established treatment for managing localized 
PCa, and the goal is to achieve a negative surgical margin 
while preserving urinary continence and erectile func-
tion. As such, accurate preoperative staging is of great 
importance for guiding treatment [2].

Multiparametric magnetic resonance imaging 
(mpMRI), is the recommended imaging method for 
tumour detection and for differentiating advanced can-
cers with extracapsular extension (ECE) from localized 
disease [3, 4]. The use of mpMRI combined with tradi-
tional clinicopathological-based risk nomograms is rec-
ommended before prostatectomy to determinate the 
need for nerve-sparing surgery (NSS) and pelvic lymph-
adenectomy [2, 5, 6].

The MRI-based assessment of ECE reported in the lit-
erature by Mehralivand et al. [7], the European Society 
of Urogenital Radiology (ESUR) score [8], a subjectively 
measured Likert scale [9], and measurement of TCCL 
(tumour capsular contact length) were recently compared 
by Park et al. [10], in a group of 301 patients (43% with 
pathologic ECE). The study showed sensitivity between 
68 and 82% for extraprostatic extension detection [10]. 
These MRI scoring schemes demonstrated fair diagnostic 
performance, substantial agreement and association with 
histopathologic tumour extension [11], however, con-
siderable observer variabilities remain a significant chal-
lenge in utilising these mpMRI-based scores [10], [11].

Machine learning (ML) applications in patients with 
prostate cancer remain an active research area focus-
ing primarily on automatic segmentation, detection and 
localization, and assessment of disease aggressiveness 
using mpMRI [12], [13]. At present, only a few studies 
have introduced ML models to predict pECE+ (pres-
ence of ECE in pathology specimens) in PCa staging by 
mpMRI. Most used combinations of radiomic features 
were extracted from MRI T2 weighted images with 
semantic and clinical features to predict ECE [14–20]. To 
the best of our knowledge, clinically accepted and vali-
dated algorithms to predict pECE + obtained from MRI 
features for use in preoperative PCa surgical decision-
making have not been developed to date. The metric usu-
ally used to guide model selection is area under the curve 
(AUC), which does not account for the specific use case. 
Decision curve analysis (DCA) [21] is a method of assess-
ing the clinical utility of ML predictive models because 
it enables assessment of the net benefit achieved when a 
predictive model is used in a specified scenario.

The objective of this study was to develop ML predic-
tive models for use in PCa surgical decision-making for 
a specific clinical use-case: to choose between the use of 

nerve-sparing surgery (NSS) and non-nerve sparing sur-
gery (NNSS) when performing prostatectomy in patients 
with PCa (Fig. 1).

Methods
Participants characteristics
Two independent data sets were available: a) discovery–
single institution, Hospital da Luz (HdL), N = 139, used 
for training (underwent the institutional MRI protocol-
Supplements Table S1; b) validation–multi-centre (15 
external institutions), N = 55, used for testing. This cohort 
was part of a previously published predictive model [22] 
without radiomics analysis (Fig. 2).

All participants included in this study (discovery and 
validation groups) underwent Robotic Assisted Radical 
Prostatectomy (RARP) with pathologically confirmed 
PCa on prostate biopsy and index lesion PIRADS > 2 
(PI-RADS v2) on MRI. A uropathologist (JC) with 10 
years’ experience analysed all surgically resected prostate 
gland specimens using the same protocol, including the 
determination of ECE status. Matched cases, correlated 
pathology and radiology results from the pathologist (JC) 
and radiologist (AG) were included.

Data upload and curation
MRI DICOM images were pseudonymized and trans-
ferred to a research PACS based on the extensible Neu-
roimaging Archive Toolkit (XNAT) platform [23], which 
served as the principal repository for image curation and 
analysis.

Segmentation
One radiologist (AG, ten years’ experience) manually seg-
mented the region of interest (index lesion) for all cases 
in both data sets. A second radiologist (MK, three years’ 
experience) independently segmented a randomized 
selection of 30 cases from the discovery dataset (stratified 
on lesion size) to enable radiomic feature reproducibility 
to be determined.

Radiomics extraction
T2W MR images were interpolated to standard voxel 
size (0.5 × 0.5 × 3  mm) and z-score image normaliza-
tion was applied. The normalized image intensities were 
quantized to 64 bins using the built-in uniform quantiza-
tion method in Pyradiomics [24] and 107 features were 
calculated.

Semantic and clinical features
The first radiologist (AG) classified the index lesion for 
both data sets using eight semantic features (Fig.  3). 
The second radiologist (MK) independently classi-
fied the semantic features for the whole discovery set to 
enable feature reproducibility to be determined. Both 
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radiologists also classified each lesion as having measur-
able ECE (mECE), i.e., the presence of a clear peripros-
tatic extension.

Three clinical features were obtained from the elec-
tronic patient record (EPR): Gleason score, prostate 
volume and PSA. AG classified the index lesion in accor-
dance with PIRADS-v2 [25]. Due to the small sample 
size, Gleason score was grouped into two classes based 
on tumour aggressiveness: low = with Gleason score of 
6(3 + 3) or 7(3 + 4); high = including cases with a Gleason 
score of 7(4 + 3) or above. The PIRADS score was treated 

as a categorical variable to enable the predictive model to 
fit a non-proportional effect to this feature.

Feature reproducibility
Inter-observer variability was assessed using the intra-
class correlation coefficient (ICC) [26], for radiomics and 
continuous semantic features (lesion size and tumour 
capsular contact length (TCCL), and Cohen’s kappa for 
the binary semantic features. Radiomic features with 
ICC > 0.75 were used for model building and the remain-
ing features were discarded. All semantic features were 
used for model building, and their reproducibility esti-
mates were used to identify features which are most likely 
to adversely impact the stability of the ECE status predic-
tions, and therefore which features would benefit most 
from further standardization efforts.

Model discovery and validation
Models were built from the discovery data using the fol-
lowing four combinations of the three feature sets: i)clini-
cal; ii) CS:clinical + semantic; iii) CR:clinical + radiomics; 
iv) CSR:clinical + semantic + radiomics. All combinations 
include the clinical features because they are routinely 
obtained for all participants as part of their standard of 
care.

For the two models that include radiomics fea-
tures, a hierarchical feature reduction scheme [27] was 

Fig. 2 Flowchart of study cohort selection

 

Fig. 1 Schema of prostatectomy types
Peri-prostatic nerves (arrow) near the prostate capsule are not dissected (blue line) and only the prostate and capsule are removed in NSS (nerve-sparing 
surgery) prostatectomy. In the NNSS (non-nerve-sparing surgery) the peri-prostatic nerves and some extracapsular area are removed (dashed line)
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used to remove correlated features with Spearman’s 
correlation > 0.9.

Models were built using logistic regression (LR), and 
LASSO regularization was used for feature selection in 
the three models that included semantic or radiomic fea-
tures. The LASSO regularization parameter was tuned 
using 10-fold cross-validation (CV) over a log-spaced 
grid (20 values, 10− 4–104), and each input feature was 
z-score normalized. A fifth model (univariate LR) was 
built using the mECE feature, which enabled baseline 
ROC and DCA curves to be constructed.

Performance metrics for the discovery data set were 
estimated using a 10-fold CV repeated 100x, such that 
the parameter tuning CV was nested inside the perfor-
mance estimation CV. Performance indicators included 
accuracy, F1-score, AUC, the ROC curve, and the DCA 
net-benefit curve [21], and these were computed for each 
of the outer CV splits and averaged to generate the final 
values and plots. The DCA net-benefit curves were used 
to select the final model that was tested in the validation 
data. An interpretation of this model was obtained using 
SHAP [28] analysis (SHapley Additive exPlanations), 
which explains the model predictions by computing the 
contribution of each feature to the overall risk predic-
tion for each patient. The DCA and ROC curves were 

calculated for the validation data using the final model. 
The model development pipeline is shown in Fig. 4.

Results
Participants characteristics
Table 1 summarizes the clinical and semantic feature dis-
tributions of both data sets. There were no statistically 
significant differences between the discovery and valida-
tion data sets (p > 0.05), except smooth capsular bulging 
(p = 0.03). However, this feature was not selected in any of 
the models evaluated in the validation data. A majority of 
participants did not have ECE detected in their surgical 
specimens (74.1% and 65.5% in the discovery and valida-
tion groups), and we conclude that the populations and 
MRI examinations in the two data sets are comparable.

Model performance comparisons
Model performance metrics (AUC, accuracy and F1 
score) are given in Table  2 and the ROC and DCA 
curves are shown in Fig. 5. for the discovery and valida-
tion data. As previously mentioned, model selection was 
determined based on the DCA curves in the discovery 
data (Fig. 5b). Up to a threshold of 0.3, the net benefit of 
the CSR model (red line) is higher than the three other 
multivariate models and the univariate model derived 

Fig. 3 MRI Semantic features for detection of ECE+
This figure illustrates the eight semantic features, interpreted by radiologists, used in semantic model to predict pECE+, on axial T2WI. The measurable ECE 
was not used in semantic model and it is considered alone in another model as explained in the text
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from mECE. This selection of the CSR model as the 
final model is different from what would be obtained 
by using the performance metrics in Table 2, where the 
clinical + semantic model has higher values for all perfor-
mance metrics compared to the other three multivari-
ate models. The baseline univariate model derived from 
mECE had higher accuracy and F1 score, but this was at 
the expense of a lower AUC.

Table  2 shows that the accuracy and F1 scores of the 
CSR model are somewhat lower in the validation data. In 
contrast, the AUC is in fact higher for the validation data. 
Whilst this elevation is unusual, it is reasonable since the 
performance metrics are derived from two patient sam-
ples and are therefore influenced by random fluctuations 
related to patient variability. Although the validation 
AUC for the CSR model (0.928) is higher than the aver-
age AUC in the discovery data (0.880), it is smaller than 
37% of the values from the 1000 cross-validation splits 
used to obtain the discovery mean AUC estimate.

Model explanation via SHAP analysis
Figure  6 shows the SHAP beeswarm plot for the CSR 
model, where the most influential features (based on the 
average SHAP value across all participants) are at the 
top of the plot. For the top five features in this plot, high 
positive SHAP values are associated with high feature 
values, which indictes an increased risk of pECE + for 
participants with high Gleason scores, longer TCCL 
and positive findings for Irregular contour, retoprostatic 
angle obliteration and capsular disruption. TCCL was 
the reproducible semantic feature (supplements Table 
S2). Prostate volume appeared to have a protective effect 
(larger values are associated with lower ECE risk), and the 
clinical features PSA and PI-RADS score were not pres-
ent in the model. Three radiomics features appeared in 
the model– the two first-order features (10Percentile and 
Minimum) indicated increased pECE + risk for lower val-
ues. In contrast, the shape feature (MeshVolume, i.e. the 
lesion volume) suggested a more significant pECE + risk 

Table 1 Data distributions of the clinical and semantic features in the discovery and validation data sets. Binary semantic features 
have the counts for absent/present, (values in parentheses are percentages), and mean +/ sd is given for continuous features. P-values 
comparing the discovery and test distributions are computed using Fisher’s exact test for binary features (and PIRADS), and unpaired 
t-tests are used for continuous features

Feature Discovery (N = 139) Test (N = 55) p-value
Clinical Gleason (low/high) 97/42 (69.8/30.2) 33/22 (60.0/40.0) 0.24

PIRADS (3/4/5) 6/75/58 (4.3/54.0/41.7) 3/33/19 (5.5/60.0/34.5) 0.68
PSA 7.12 +/- 4.02 6.97 +/- 5.20 0.45
Major Length Index 14.3 +/- 5.7 14.1 +/- 6.8 0.90
Prostate Volume 43.0 +/- 21.3 48.3 +/- 23.8 0.084

Semantic Capsular Contact Length 12.5 +/- 8.8 12.8 +/- 11.2 0.85
Smooth Capsular Bulging 55/84 (39.6/60.4) 32/23 (58.2/41.8) 0.03
Capsular Disruption 71/68 (51.1/48.9) 34/21 (61.8/38.2) 0.20
Unsharp Margin 64/75 (46.0/54.0) 32/23 (58.2/41.8) 0.15
Irregular Contour 80/59 (57.6/42.4) 34/21 (61.8/38.2) 0.63
Black striation Periprostatic Fat 110/29 (79.1/20.9) 44/11 (80.0/20.0) 1.00
Retoprostatic Angle Obliteration 130/9 (93.5/6.5) 49/6 (89.1/10.9) 0.37

Baseline Measurable ECE 119/20 (85.6/14.4) 48/7 (87.3/12.7) 1.00
Target Pathological ECE 103/36 (74.1/25.9) 36/19 (65.5/34.5) 0.29

Fig. 4 Model development pipeline
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for larger lesion volumes, and all three radiomics features 
were highly reproducible (supplements Table S3). None 
of the second-order (texture) radiomics features were 
present in the model.

Discussion
We built five machine learning predictive models to 
detect pECE + and compared them for selecting NNSS 
if ECE + is predicted, as this has a better chance of con-
trolling the disease than NSS. The five models were built 
using clinical tools and semantic features previously 
described by the first author [22], with the addition of 

Fig. 5 ROC and DCA plots for the four multivariate predictive models for ECE+(blue, orange, green, red lines) and the univariate model derived from 
mECE (purple line) in participants with PCa. Panels (a), ROC and (b), DCA are for the discovery data set and panels (c) and (d) are for the validation data set, 
respectively. The DCA plots also include lines for the net benefit when all participants receive non-nerve-sparing surgery (NNSS) and when no participants 
receive NNSS (i.e. when all participants receive nerve-sparing surgery-NSS). The net benefit is equal to or higher than both lines for all models. The x-axis 
of the DCA plots is the threshold of the risk predicted by the model at which NNSS would be indicated. A vital aspect of the DCA concept is that this 
threshold is directly related to the ratio of the cost associated with false negative and false positive predictions– low values of the threshold correspond 
to the use case where failing to give NNSS (with curative intent) is more costly than the complications that may arise from using NNSS
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new radiomics features derived from MRI images: i) clini-
cal; ii) CS:-clinical + semantic; iii) CR-clinical + radiomics; 
iv) CSR-clinical + semantic + radiomics (according to an 
adequate pipeline criterion and with inter-reading agree-
ment) and lastly v) univariate measurable ECE model. 
The CS model achieved the best AUC results in the dis-
covery set and the CSR model was almost as good as CS 
in the discovery set (Table 2). This CSR model maintains 
good performance in the validation data, and has the 
advantage that radiomics features were included which 
were reproducible with ICC agreement > 75% between 
readers. From all festures in the CS, the TCCL achieve 
the best ICC (0,683) reproducible between readers. Our 
results align with previous ones supported in the litera-
ture, which proved that combining radiomics, clinical 
and semantic models to predict pECE + is more accurate 
than individual models [14, 15, 29–31]. This paper follows 
the previously published work by the lead author [22], 
where clinical + semantic features were used to develop 
a predictive model based on a classic logistic regression 

algorithm to predict pECE + with a good performance 
(AUC 90%). Based on ML methdology, the main clini-
cal and semantic predictive features obtained were GS 
> (3 + 4) and TCCL, similar to the previously published 
results [22, 29, 30]. Furthermore, with the addition of a 
radiomics signature, we improved the reproducibility, 
reducing the subjective nature of the previous model, 
which relied on MRI conventional visual interpretation 
by radiologists.

At present, predictive signatures to detect pECE + have 
been published but these have not been considered 
against surgical decision making [29]. , [32] In this study, 
we have gone further to examine how our model could 
perform in real life and quantify the potential impact 
of using it to choose between NSS versus NNSS. Most 
surgeons advocate NSS for patients with pECE- to 
achieve lower morbidity from nerve damage, such as 
incontinence and erectile dysfunction, keeping high 
negative surgical margins (NSM). While patients with 
pECE + would benefit from NNSS to achieve NSM, 

Table 2 Performance metrics for the five predictive models in the discovery and validation data sets. Error limits are +/- 1 standard 
deviation across 1000 CV splits

Metric Measurable
ECE

Clinical Clinical
+ Semantic

Clinical
+ Radiomic

Clinical
+ Semantic
+ Radiomic

Discovery AUC 0.759 0.802 ± 0.149 0.887 ± 0.102 0.845 ± 0.121 0.880 ± 0.101
Accuracy 0.871 0.790 ± 0.102 0.835 ± 0.092 0.811 ± 0.099 0.833 ± 0.092
F1 0.679 0.560 ± 0.232 0.625 ± 0.225 0.602 ± 0.222 0.623 ± 0.228

Validation AUC 0.928
Accuracy 0.782
F1 0.6
p-value 2.3 × 10− 7

Fig. 6 Beeswarm plot of SHAP values for the final model developed using clinical + semantic + radiomic features, which represents the influence of each 
feature when predicting pECE+. Blue dots imply low values for each feature, while red dots indicate high values, and positive SHAP values suggest a risk 
increase of pECE+, and vice versa for negative SHAP values
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despite the increase risk of morbidity from nerve dam-
age and other surgical side-effects. The DCA method 
was used to compare the net benefit of all five predic-
tive models to detect pECE+, also comparing to the 
“treat all” case (i.e., treating all patients with NNSS) and 
“treat none”(i.e., treating no patients with NNSS, mean-
ing treat all patients with NSS as the default treatment), 
see Fig. 5. The threshold probability (x-axis) in this plot 
encapsulates consideration of the potential surgery side-
effects caused by NNSS versus the possibility of having 
positive surgical margins and disease recurrence, which 
ultimately depends on the surgeon and patient prefer-
ence. The net benefit value quantifies the consequences 
of false positives (FP) and false negatives (FN) in relation 
to benefit and harm.

In the DCA analysis the risk of side-effects is increased 
as a consequence of using the model compared to always 
using the NSS strategy, but the success rate of the surgery 
is not affected i.e. NNSS and NSS would both have simi-
lar chances of successful treatment in a patient that does 
not have ECE. The CSR model was considered the best 
model because it achieved the best (or equal) net bene-
fit values for threshold probabilities less than 0.3 on the 
DCA plot. The assumptions behind the DCA methodol-
ogy [21] imply that probability thresholds less than 0.3 
are equivalent to the assertion that the cost of not using 
NNSS when ECE is present (i.e. risking failure to achieve 
curative surgery) is at least 2 1/3 times the cost of causing 
side-effects by the use of NNSS (2 1/3 = (1–0.3)/0.3). In 
real-world cases it is likely that this cost ratio would be 
judged to be larger than 2 1/3 (i.e. the appropriate prob-
ability threshold would be < 0.3), and Fig.  5 shows that 
the CSR model has superior performance over this range.

The mECE variable represents the assessment by radi-
ologist of macroscopic visible extra-prostatic disease 
on the MR images, and by using this (binary) variable 
as input to a logistic regression, a model can be built to 
directly compare the ROC and DCA performance for 
mECE and the other models. The multivariate models 
that include semantic and/or radiomics features outper-
formed the univariate mECE model in terms of AUC 
(Table 2) and net benefit (for thresholds below 0.3, Fig. 5). 
In the case of the CS model, this suggests that guiding 
the radiological assessment by breaking the examination 
down into more specific factors (i.e. the semantic fea-
tures) leverages the radiologist’s knowledge more effec-
tively than cognitively summarizing these factors into an 
overall judgement on the presence of pECE.

Our study has some limitations, the sample size is small 
and the external validation was performed with exter-
nal MRI examinations from other institutions, however, 
interpretated by the same radiologist and operated by the 
same surgeon. The predictive model is of clinical value to 
our institution and serves as pilot project, further work 

will include applying the predictive model to other insti-
tutions as the following step approach.

Conclusion
The combined clinical + semantic + radiomics model 
can be used to predict pECE + in patients with PCa and 
results in a positive net benefit when choosing between 
prostatectomy with NNS or NNSS.

Abbreviations
AUC  Area under the curve
DCA  Decision Curve analysis
ECE  Extracapsular extension
NNSS  Non-nerve-sparing surgery
NSS  Nerve-sparing surgery
pECE+  Extracapsular extension in the prostatectomy specimen
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