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Radiomics signature based on robust 
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Abstract 

Background  Classifying and characterizing pulmonary lesions are critical for clinical decision-making process 
to identify optimal therapeutic strategies. The purpose of this study was to develop and validate a radiomics nomo-
gram for distinguishing between benign and malignant pulmonary lesions based on robust features derived from dif-
fusion images.

Material and methods  The study was conducted in two phases. In the first phase, we prospectively collected 
30 patients with pulmonary nodule/mass who underwent twice EPI-DWI scans. The robustness of features 
between the two scans was evaluated using the concordance correlation coefficient (CCC) and dynamic range (DR). 
In the second phase, 139 patients who underwent pulmonary DWI were randomly divided into training and test sets 
in a 7:3 ratio. Maximum relevance minimum redundancy, least absolute shrinkage and selection operator, and logistic 
regression were used for feature selection and construction of radiomics signatures. Nomograms were established 
incorporating clinical features, radiomics signatures, and ADC(0, 800). The diagnostic efficiency of different models 
was evaluated using the area under the curve (AUC) and decision curve analysis.

Results  Among the features extracted from DWI and ADC images, 42.7% and 37.4% were stable (both CCC 
and DR ≥ 0.85). The AUCs for distinguishing pulmonary lesions in the test set for clinical model, ADC, ADC radiomics 
signatures, and DWI radiomics signatures were 0.694, 0.802, 0.885, and 0.767, respectively. The nomogram exhibited 
the best differentiation performance (AUC = 0.923). The decision curve showed that the nomogram consistently out-
performed ADC value and clinical model in lesion differentiation.

Conclusion  Our study demonstrates the robustness of radiomics features derived from lung DWI. The ADC radiomics 
nomogram shows superior clinical net benefits compared to conventional clinical models or ADC values alone in dis-
tinguishing solitary pulmonary lesions, offering a promising tool for noninvasive, precision diagnosis in lung cancer.
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Introduction
Classifying and characterizing pulmonary lesions are 
critical steps in the clinical decision-making process to 
identify optimal therapeutic strategies. The objective 
of diagnosing and managing pulmonary nodules is to 
promptly facilitate surgical intervention for all operable 
malignant lesions, while simultaneously avoiding unnec-
essary invasive treatment for benign ones. Therefore, 
accurately distinguishing between benign and malignant 
nodules in the least invasive manner possible is of para-
mount importance.

Pulmonary magnetic resonance imaging (MRI) holds 
significant clinical potential for assessing pulmonary 
nodules, due to its lack of ionizing radiation and its abil-
ity to provide both morphological and functional infor-
mation [1]. Diffusion weighted imaging (DWI) facilitates 
the qualitative assessment of tumor cellularity through 
changes in signal, while also offering quantitative analy-
sis at a cellular level by measuring the apparent diffu-
sion coefficient (ADC). In the context of differentiating 
between benign and malignant lesions, the conventional 
single-exponential model ADC has been shown to be 
comparable to advanced diffusion models, such as intra-
voxel incoherent motion and diffusion kurtosis imaging 
[2], and has a similar diagnostic value to PET/CT [3]. 
Therefore, DWI and ADC show promise as potential bio-
markers for the evaluation of pulmonary tumors.

Radiomics has gained traction in recent years for its 
ability to quantitatively describe tumor phenotypes 
through the extraction of numerous features from medi-
cal images. Its applications have expanded to include 
lung nodule diagnosis [4] and treatment response evalu-
ation [5]. DWI/ADC imaging, in particular, provides a 
more nuanced understanding of lesion biological charac-
teristics compared to CT or conventional MR sequences. 
Previous studies have shown that DWI-based radiomics 
effectively differentiates between lesion types in regions 
like the breast [6] and salivary glands [7]. Despite these 
advancements, there is a current gap in the literature 
concerning the efficacy of DWI and ADC-based radiom-
ics in distinguishing benign from malignant pulmonary 
lesions. Specifically, it remains to be determined whether 
a radiomics model outperforms traditional ADC values 
alone or if a combination of both offers enhanced diag-
nostic accuracy.

To address this gap, our study employed DWI and ADC 
radiomics to differentiate between benign and malig-
nant pulmonary lesions. We began by identifying stable 

DWI radiomics features through test–retest scanning. 
This was followed by feature selection and subsequent 
modeling analysis. Ultimately, we developed a predictive 
nomogram that integrates radiomics signatures with clin-
ical variables and conventional ADC parameters, aiming 
to improve the diagnostic differentiation of benign and 
malignant pulmonary lesions.

Materials and methods
Patients
This study was performed in line with the principles of 
the Declaration of Helsinki. Approval was granted by 
the Ethics Committee of the First Affiliated Hospital of 
Guangzhou Medical University (2018–19). To illustrate 
the patient inclusion process, a flow chart depicting the 
stages of patient recruitment and selection is provided 
in Fig. 1. A checklist for artificial intelligence in medical 
imaging (CLAIM) [8] were provided in the Supplemen-
tary file 1.

In the first phase, we prospectively gathered data from 
30 patients undergoing concurrent chest CT and MRI 
examinations at our institution from January 4 to May 
5, 2019. Informed written consent was obtained from all 
patients who were prospectively enrolled. The inclusion 
criteria were: (1) the presence of solid nodules or masses 
in the lungs detected by chest CT, with lesions size meas-
urable on CT images; (2) no contraindications for MR 
examination. The exclusion criteria was poor MR image 
quality which hindered image segmentation.

In the second phase, we retrospectively analyzed 139 
patients with pulmonary lesions who underwent MR 
examination at our hospital from June 2015 to June 
2018. The following inclusion criteria were applied: (a) 
pulmonary MRI conducted within two weeks prior to 
biopsy or surgery; (b) solid solitary pulmonary lesion 
measurable on T2WI without cavitation; (c) The lesions 
remained unchanged after remaining untreated or two 
weeks following anti-inflammatory treatment. The exclu-
sion criteria were: (a) no available pathological results; 
(b) poor image quality preventing image segmentation; 
(c) incomplete clinical data. A total of 139 patients were 
included in the study. There were 97 cases of malignant 
lesions and 42 cases of benign lesions. The pathology 
results for malignant lesions included 74 cases of lung 
adenocarcinoma and 23 cases of lung squamous cell car-
cinoma. For benign lesions, the results were 13 cases of 
pulmonary tuberculosis, 7 of infectious granuloma, 7 of 
organizing pneumonia, 4 of hamartoma, 4 of pulmonary 
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aspergillosis, 3 of pulmonary cryptococcosis, 2 of scleros-
ing pneumocytoma, 1 of pulmonary sequestration, and 1 
of pulmonary glandular fibroma.

Image data collection
All patients underwent 3.0  T MRI (Achieva, Philips 
Healthcare, Best, The Netherlands) examination using a 
body coil array. DWI was performed with a single-shot 
EPI sequence under free-breathing conditions. In the 
first phase, DWI was repeated twice, with approximately 
a 5-min interval, with a repositioning scan conducted 
prior to the second scan. The b-value was set within the 
range of 0 to 800 s/mm2 with five specific b-values (0, 20, 
50, 200, and 800 s/mm2). The parameters were as follows: 
repetition time (TR) = 1195 ms, echo time (TE) = 54 ms, 
field of view (FOV) 375  mm × 305  mm, slice thickness 
5 mm, acquisition voxel size 3 mm × 3 mm × 5 mm, aver-
age signal number (NSA) 3, scan time 1 min 5 s. The sec-
ond phase was a retrospective study, EPI-DWI scanning 
parameters were TR/TE = 1111  ms/55  ms, NSA 4, FOV 
300  mm × 375  mm, matrix 256 × 256, slice thickness/

interval = 3.0  mm/0.3  mm, b-value = 0, 5, 10, 15, 20, 25, 
50, 80, 150, 300, 500, 800, 1000 s/mm2.

Post‑processing of quantitative DWI data
The original EPI-DWI images were transferred to a 
Philips workstation (Extended MR Workspace 2.6.3.5). 
The ADC images (ADC(0, 800)) were generated by selecting 
b-values of 0 and 800 s/mm2, which were analyzed by two 
radiologists with 3 and 8 years of thoracic imaging expe-
rience respectively. On the ADC images, the solid part of 
the lesion at its largest plane was selected as the region of 
interest (ROI), while avoiding areas of liquefactive necro-
sis, to measure the ADC value. The DWI (b = 800 s/mm2) 
and corresponding ADC(0, 800) maps were exported in 
DICOM format for image segmentation.

Lesion segmentation
Lesion segmentation was performed separately on DWI 
and ADC maps. The open-source software ITK-SNAP 
(v.3.6.0, http://​www.​itksn​ap.​org) was used for tumor seg-
mentation (Fig.  2). The ROI covered the entire tumor, 
excluding visible cavities. Each radiologist independently 

Fig. 1  Flow chart for patient recruitment and selection

http://www.itksnap.org
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segmented images from the first scan to assess inter-
observer reproducibility. One radiologist segmented the 
images from the second scan immediately to assess fea-
ture stability between scans, while the other radiologist 
repeated the segmentation on the images from the first 
scan after 2 months to assess intra-observer consistency.

ADC value and clinical diagnostic model
A univariate logistic regression model was built to predict 
the performance of ADC. Multivariate logistic regres-
sion was used on clinical factors (including age, sex, site 

of lesion, lesion size, and smoking history), applying an 
automated backward elimination method. Stepwise 
regression iteration identified significant clinical factors 
to construct the clinical model.

Radiomics analysis
The DWI(b=800 s/mm2) and ADC(0, 800) maps and their cor-
responding ROIs were imported into AK software (GE 
Healthcare), which calculated a total of 396 radiomics 
features across six categories, including 42 Histogram 
features, 144 Gy-level co-occurrence matrix features, 10 

Fig. 2  Illustration of the segmentation for a pulmonary nodule located in the upper right lobe on DWI
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Haralick features, 180 run-length matrix features, 9 form 
factor features, and 11 Gy level size zone matrix features.

For the first phase, reproducibility between two scans 
was assessed using concordance correlation coefficients 
(CCC) and dynamic range (DR). The intraclass correla-
tion coefficients (ICCs) were used to assess intraobserver 
and interobserver reproducibility. DR and CCC calcula-
tions followed the reference [9]. A DR value close to 1 
implies that the feature has a wide biological range and 
good reproducibility. Increasing differences between 
repeated scans will lead to a lower DR value. The CCC 
ranges from 1 to -1, with a value closer to 1 indicat-
ing better consistency between the two repeated tests. 
Robust features for repeated scans were defined as CCC 
and DR both ≥ 0.85 [10, 11].

For the second phase, the patient dataset was randomly 
divided into training and test sets at a 7:3 ratio. Z-score 
was used for feature normalization. The synthetic minor-
ity over-sampling technique was used for sample bal-
ance in the training set. Stable features (Intra-observer 
& Inter-observer ICC ≥ 0.75 and DR & CCC ≥ 0.85) 
were selected. The z-score was then used to normalize 
the stable features. The maximum relevance minimum 
redundancy (MRMR) method was used to rank the sta-
ble radiomics features. This process allowed us to identify 
features that were highly relevant to our target outcome 
while ensuring minimal overlap in the information they 
provided. The top 30 features were selected and incor-
porated into the Least Absolute Shrinkage and Selection 
Operator (Lasso) regression analysis. LASSO was instru-
mental in refining our feature selection by penalizing less 
important features, thereby reducing the risk of overfit-
ting and enhancing model robustness. Optimal hyper-
parameters lambda values were selected for the Lasso 

regression model via tenfold cross-validation, after which 
features with P ≥ 0.05 were removed using multivariate 
logistic regression. The selected radiomics features were 
input into a multivariate logistic regression analysis, and 
the regression coefficients of the significant features were 
weighted to construct the Radscore based on DWI, ADC, 
and the combined radiomics models.

Statistical analysis
Quantitative data were expressed as mean ± standard 
deviation (x ± s). Group comparisons were made using 
the Mann–Whitney U test for continuous variables and 
the chi-square test for categorical variables. To account 
for multiple comparisons, we applied the Bonferroni 
correction. The significance level was adjusted to 0.005 
(0.05/10). The discriminatory ability of each model was 
assessed by the area under the receiver operating charac-
teristic curve (AUC). Different model comparisons used 
the DeLong test. The clinical utility of each model was 
assessed using decision curve analysis (DCA). Radiom-
ics nomograms were constructed based on multivariate 
analysis results. Statistical analyses were performed using 
R statistical software (version 3.4.0; R Foundation for Sta-
tistical Computing, Vienna, Austria) and Rstudio (version 
1.2.1335; RStudio, Boston, MA).

Results
Patients characteristics
Subjects with malignant lesions were older than subjects 
with benign lesions (p < 0.005). However, no statistically 
significant differences were observed in factors such 
as gender, lesion diameter, location, and smoking his-
tory (all p > 0.05). There was a similar data distribution 
between the training and test groups (Table 1).

Table 1  Clinical characteristics of patients in the training and test groups

Training Test

Benign Malignant P-value Benign Malignant P-value

N 26 72 16 25

Age 48.6 ± 13.6 56.8 ± 10.6 0.002 48.6 ± 13.7 60.4 ± 10.9 0.004

Diameter(cm) 3.6 ± 2.5 3.9 ± 1.9 0.579 3.6 ± 2.6 4.8 ± 2.9 0.197

Gender 0.368 0.901

  Male 14 (53.8%) 46 (63.9%) 8 (50.0%) 12 (48.0%)

  Female 12 (46.2%) 26 (36.1%) 8 (50.0%) 13 (52.0%)

Location 0.684 0.236

  Upper lobes 10 (38.5%) 31 (43.1%) 3 (18.8%) 9 (36.0%)

  Other lobes 16 (61.5%) 41 (56.9%) 13 (81.2%) 16 (64.0%)

Smoke 0.733 0.354

  Nonsmokers 16 (61.5%) 47 (65.3%) 10 (62.5%) 19 (76.0%)

  Smokers 10 (38.5%) 25 (34.7%) 6 (37.5%) 6 (24.0%)
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Repeatability and reproducibility of radiomics features
In repeated scanning, the proportion of repeatable fea-
tures was slightly higher for DWI (n = 169/396, 42.7%) 
than for ADC (n = 148/396, 37.4%) (Table  2). Intra-
observer reproducibility was superior to inter-observer 
reproducibility, and the ICC of DWI radiomics features 
was superior to that of ADC (Fig. 3).

Diagnostic performance of multiple models
After multivariate logistic regression screening, 
the clinical model included age as an analytical fac-
tor. The area under the curve in the training and test 
groups were 0.696 (95% CI, 0.575–0.818) and 0.694 
(0.524–0.864) respectively. The ADC(0, 800) for malig-
nant tumors was 1.154 ± 0.286 × 10–3 mm2/s, and it was 
1.576 ± 0.409 × 10–3 mm2/s for benign lesions. The differ-
ence was statistically significant (P < 0.001). The AUC of 
ADC in the training group was 0.785 (0.680–0.890), and 
in the test group, it was 0.802 (0.666–0.937).

The ADC radiomics model included a total of 6 fea-
tures, with an AUC of 0.902 (0.860–0.943) in the train-
ing group and 0.885 (0.774–0.997) in the test group. The 

DWI radiomics model included a total of 5 features, with 
an AUC of 0.850 (0.796–0.904) in the training group and 
0.767 (0.578–0.957) in the test group. The combined 
ADC + DWI radiomics model included 7 features, with 
an AUC of 0.812 (0.752–0.871) in the training group and 
0.670 (0.467–0.873) in the test group (Table 3). The fea-
ture selection and model construction for ADC, DWI, 
and combined radiomics analysis were detailed in the 
Supplementary file 2.

The results of the multivariate logistic regression anal-
ysis showed that in the training samples, age, ADC800, 

Table 2  Robust features of different sequences and their proportions in corresponding feature classes

CCC&DR Formfactor (n = 9) GLCM (n = 144) GLSZM (n = 11) Haralick (n = 10) RLM (n = 180) Histogram (n = 42) Total (n = 396)

EPI ADC  ≥ 0.85 5 (55.5%) 32 (22.2%) 3 (27.2%) 2 (20%) 90 (50%) 8 (19.0%) 148 (37.4%)

 ≥ 0.90 5 (55.5%) 19 (13.1%) 3 (27.2%) 2 (20%) 59 (32.7%) 5 (11.9%) 93 (23.5%)

 ≥ 0.95 5 (55.5%) 3 (2.0%) 2 (18.1%) 0 (0%) 33 (18.3%) 5 (11.9%) 47 (11.9%)

EPI DWI  ≥ 0.85 9 (100%) 58 (40.2%) 3 (27.2%) 8 (80%) 83 (46.1%) 16 (38.0%) 169 (42.7%)

 ≥ 0.90 9 (100%) 50 (34.7%) 3 (27.2%) 7 (70%) 36 (20.0%) 5 (11.9%) 110 (27.8%)

 ≥ 0.95 5 (55.5%) 27 (18.7%) 2 (18.1%) 4 (40%) 31 (17.2%) 4 (9.5%) 74 (18.7%)

Fig. 3  Box and whisker plot depicting the intraobserver A and interobserver B reproducibility of radiomic features extracted from DWI and ADC 
images. The plot shows the distribution of intraclass correlation coefficients (ICCs), including the upper extreme, upper quartile, median, lower 
quartile, and lower extreme

Table 3  Diagnostic performance of different models

95% confidence interval are in parentheses

Train-AUC​ Test-AUC​

Radiomics(ADC) 0.901(0.860–0.943) 0.885(0.774–0.996)

Radiomics(DWI) 0.850(0.796–0.903) 0.767(0.578–0.956)

Radiomics(ADC + DWI) 0.812(0.752–0.871) 0.670(0.467–0.873)

Clinical model 0.696(0.575–0.818) 0.694(0.524–0.864)

ADC 0.785(0.680–0.890) 0.802(0.666–0.937)

Nomogram 0.858(0.780–0.936) 0.923(0.842–1)
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and Radscore (ADC) were independent risk factors for 
predicting the benignity or malignancy of lung lesions. 
A radiomics nomogram was constructed based on the 
results of the multivariate analysis (Fig. 4). The diagnostic 
performance of multiple models was shown in Fig. 5.

The Delong test showed that there was no statistically 
significant difference in performance between the ADC 
radiomics model, the DWI radiomics model, and the 
combined model (p > 0.05 for all) (Table 4). The decision 
curve showed the combined model (nomogram) consist-
ently show a higher net benefit compared to ADC and 
clinical models. (Fig. 6).

Discussion
To the best of our knowledge, this is the first study to 
develop and validate a radiomics model for differenti-
ating benign and malignant pulmonary lesions based 
on the robust test–retest features in DWI and ADC 
images. Our findings indicate that radiomics signature 
can effectively differentiate between benign and malig-
nant pulmonary lesions, and a nomogram that com-
bines radiomics, clinical information, and ADC values 
offers a significantly better clinical net benefit, outper-
forming both ADC and clinical models alone.

Fig. 4  A constructed radiomics nomogram incorporating three variables: patient age, ADC value at b = 800 s/mm2 (ADC800), and radiomics 
score (Radscore). The ’Total Points’ represent each patient’s score computed based on the three variables, while ’Probability’ signifies the malignant 
probability of the lesion
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Fig. 5  Comparative analysis of the diagnostic efficacy between the developed nomogram (combined all) and clinical, ADC800, and ADC radiomics 
models in both the training (A) and test (B) groups

Table 4  Delong test results of different models

Radiomic (ADC) Radiomic(DWI) Radiomic 
(ADC + DWI)

Clinical model ADC Nomogram

Radiomic(ADC) 1 0.36 0.060 0.076 0.343 0.449

Radiomic(DWI) 0.360 1 0.477 0.556 0.741 0.160

Radiomic(ADC + DWI) 0.060 0.477 1 0.864 0.253 0.016

Clinical model 0.076 0.556 0.864 1 0.377 0.007

ADC800 0.343 0.741 0.253 0.377 1 0.060

Nomogram 0.449 0.160 0.016 0.007 0.060 1

Fig. 6  Decision curve analysis for the developed nomogram (combined all), clinical, ADC(0, 800) value, and ADC radiomics model in both the training 
A and test B groups
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Clinical features including age, gender, lesion location 
of the upper lobe, and smoking history were collected 
due to their documented relevance in lung cancer occur-
rence [9, 10]. Our findings indicated that patients with 
malignant lesions were significantly older than those 
with benign lesions, yet no significant differences were 
observed for gender, smoking history, or lesion size. This 
may be indicative of the growing prevalence of lung can-
cer among non-smoking women, potentially influenced 
by factors such as environmental tobacco smoke, cooking 
fumes [11], and air pollution exposure [12, 13]. Of note, 
the benign group in our study predominantly consisted 
of mass-like inflammatory lesions, which are clinically 
challenging to distinguish from malignant lesions. Con-
sequently, the utility of a diagnostic model based solely 
on clinical features or lesion size may have limitations.

ADC values, serving as a crucial parameter for differ-
entiating benign and malignant pulmonary lesions, were 
calculated in this study using b = 0 and 800  s/mm2, as 
suggested by previous research [2]. Notably, both train-
ing and test groups revealed significant ADC differences 
between benign and malignant lesions. Typically, the 
malignant display lower ADC values due to dense cellu-
lar structures limiting water molecular diffusion, whereas 
benign lesions are more likely to demonstrate higher 
ADC [14].

Previous studies have demonstrated that breath-
ing states significantly impact the reproducibility of CT 
image features acquired through repeated scans of lung 
cancer patients [15]. In this study, DWI was acquired dur-
ing free breathing, a methodology commonly employed 
in most current lung DWI studies; The proportion of 
stable features in DWI was slightly higher than in ADC, 
which is consistent with a previous phantom study [16]. 
Our results showed 42.7% of EPI-DWI features remained 
stable (CCC and DR ≥ 0.85) upon repeated scanning, 
with features presenting CCC and DR ≥ 0.9 accounting 
for 27.8% of the total. This is comparable to a previous 
study assessing the reproducibility of lung CT radiomic 
features using scan-rescan images, where 30.14% of the 
features were considered stable (CCC ≥ 0.9) [17]. This 
indicates the feasibility of conducting a radiomics analy-
sis based on free-breathing lung DWI.

This study established stable features in a prospective 
cohort and validated the value of these stable features 
for pulmonary lesion differentiation in another inde-
pendent cohort. Surprisingly, despite the disparity of 
scanning parameters between the two cohorts, the radi-
omics model based on stable features still demonstrated 
excellent performance. This robustness in performance 
could suggest the stability of the ADC radiomics, consist-
ing with a previous study demonstrating the stability of 
ADC-based radiomics features across multiple centers, 

field strengths (1.5 T—3 T) and MRI vendors [18]. How-
ever, a recent study on bone marrow using T1WI and 
T2WI in a multi-MRI-scanner test–retest scenario indi-
cated that only a limited number of radiomics features 
are reproducible with different MRI sequences or scan-
ners [19]; this might raise concerns for the generaliz-
ability of single-scanner studies; however, it’s important 
to note that the sequences and imaging locations in this 
study [19] differ from those in our research. In addition, 
although some prior studies have shown that ADC exhib-
its good repeatability across different institutions and 
MRI vendors [20, 21], some other studies on bone mar-
row and prostate [22, 23], have shown significant vari-
ability in ADC reproducibility. These contrasting findings 
highlight the intricacies of ADC analysis and suggest that 
factors such as different anatomic locations or tissues 
[24] and the measurement methods (2D or 3D) may con-
tribute significantly to the variability of ADC reproduci-
bility. This underscores the importance of reproducibility 
studies that incorporate multiple measurement and test–
retest methods when conducting ADC or ADC radiom-
ics research across various anatomical sites.

Our study achieved promising results by utilizing radi-
omics features that exhibited high reproducibility across 
different scans and observers, with both intra- and inter-
observer ICCs of ≥ 0.75 and CCC and DR values of ≥ 0.85. 
This provided a degree of confidence in the stability and 
reliability of our results. Notably, the ADC radiomics 
model outperformed ADC values alone in diagnostic effi-
ciency, also yielding a higher clinical net benefit in most 
cases. The enhanced performance can be attributed to 
the comprehensive information extracted from whole-
tumor segmentation, which provides a nuanced evalu-
ation of lesions by capturing tumor heterogeneity, cell 
density, and microenvironmental factors. However, the 
combined radiomics model, incorporating both ADC 
and DWI features, did not demonstrate superior perfor-
mance over models based on individual sequences. This 
lack of additive benefit may be due to the inherent rela-
tionship between ADC maps and DWI; their textural fea-
tures could contain redundant information that dilutes 
the efficacy of the combined model.

We employed MRMR followed by LASSO for feature 
selection, capitalizing on MRMR’s ability to identify rel-
evant, non-redundant features and LASSO’s strength in 
refining and regularizing the feature set. This sequen-
tial approach aligns with recent radiomics research 
[25], which effectively balances the need for predictive 
accuracy and avoiding overfitting in our model devel-
opment. In the construction of the nomogram, we 
opted for the ADC radiomics signature, which showed 
superior performance among the three radiomics sig-
natures, to eliminate redundancy. We included both 
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ADC values and the ADC radscore in the nomogram to 
provide a more comprehensive assessment. While man-
ually measured ADC values capture localized cellular 
density, ADC radiomics offer insights into the overall 
tumor morphology and heterogeneity, thus comple-
menting each other. A breast cancer study [6] also dem-
onstrated that incorporating manually measured ADC 
values could enhance the predictive capability of a radi-
omics nomogram for distinguishing between benign 
and malignant lesions.

Some limitations exist in this study. First, our radi-
omics model was built upon features that demonstrated 
stability across different observers and repeated scan 
sequences, potentially enhancing the model’s gener-
alizability. However, it is important to acknowledge 
that the investigation of feature stability through a 
single-scanner test–retest approach might primar-
ily ensures model reliability for the specific scanner 
used. The generalizability of this model in a multicen-
tric context remains to be validated. Therefore, further 
research involving multicenter studies is necessary to 
confirm the model’s reliability in diverse clinical set-
tings. Second, we only included DWI at b = 800 s/mm2 
and ADC(0, 800) in our analysis, excluding the Intra-
voxel incoherent motion (IVIM)-derived parameter 
maps. This is because ADC values are more accessible 
and clinically relevant. Future research could consider 
incorporating IVIM parameters into radiomics analy-
ses. Thirdly, while our model demonstrated efficacy in 
larger pulmonary tumors, its applicability to smaller 
pulmonary nodules, particularly those under 1  cm as 
outlined in the Fleischner Guidelines [10], might be 
compromised.

Conclusion
In summary, our study demonstrated the robustness of 
lung DWI radiomics features which signals a promis-
ing direction for clinical implementation of ADC-based 
radiomics in pulmonary lesion assessment. The ADC 
radiomics nomogram has superior clinical net benefits 
compared to conventional clinical models or ADC val-
ues alone in distinguishing solitary pulmonary lesions, 
offering a promising tool for noninvasive and precision 
diagnosis of lung cancer.
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