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Abstract 

Background In solid-predominantly invasive lung adenocarcinoma (SPILAC), occult lymph node metastasis (OLNM) 
is pivotal for determining treatment strategies. This study seeks to develop and validate a fusion model combining 
radiomics and deep learning to predict OLNM preoperatively in SPILAC patients across multiple centers.

Methods In this study, 1325 cT1a-bN0M0 SPILAC patients from six hospitals were retrospectively analyzed 
and divided into pathological nodal positive (pN+) and negative (pN-) groups. Three predictive models for OLNM 
were developed: a radiomics model employing decision trees and support vector machines; a deep learning model 
using ResNet-18, ResNet-34, ResNet-50, DenseNet-121, and Swin Transformer, initialized randomly or pre-trained 
on large-scale medical data; and a fusion model integrating both approaches using addition and concatenation tech-
niques. The model performance was evaluated by the area under the receiver operating characteristic (ROC) curve 
(AUC).

Results All patients were assigned to four groups: training set (n = 470), internal validation set (n = 202), and inde-
pendent test set 1 (n = 227) and 2 (n = 426). Among the 1325 patients, 478 (36%) had OLNM (pN+). The fusion model, 
combining radiomics with pre-trained ResNet-18 features via concatenation, outperformed others with an average 
AUC (aAUC) of 0.754 across validation and test sets, compared to aAUCs of 0.715 for the radiomics model and 0.676 
for the deep learning model.

Conclusion The radiomics-deep learning fusion model showed promising ability to generalize in predicting OLNM 
from CT scans, potentially aiding personalized treatment for SPILAC patients across multiple centers.
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Background
Lung cancer remains the leading cause of cancer-
related mortality globally [1]. Surgical resection is 
currently recognized as the primary treatment option 
for early-stage cases. In invasive lung adenocarcinoma, 
the solid predominant subtype serves as a substantial 
prognostic factor for both mortality and recurrence in 
patients undergoing resection. Additionally, it exhibits 
a strong correlation with a higher incidence of lymph 
node involvement [2–4]. Computed tomography (CT) 
scanning and positron emission tomography (PET)/CT 
scanning are the main non-invasive techniques for pre-
surgical lymph node metastasis diagnosis. Yet, patients 
often progress from a clinical N0 (cN0) diagnosis to a 
pathological N1 (pN1) or N2 (pN2) stage after surgery, 
a condition termed occult lymph node metastasis 
(OLNM) [5].

The accurate preoperative identification of OLNM 
in solid-predominantly invasive lung adenocarcinoma 
(SPILAC), particularly for tumors with a solid component 
diameter of 2 cm or smaller, has emerged as a key focus 
and challenge for radiologists and thoracic surgeons. On 
the one hand, the OLNM status can assist in stratifying 
patients and providing therapeutic decision-making. 
High-risk patients may benefit from lobectomy and 
radical lymph node dissection, leading to improved 
survival, while low-risk patients may opt for less invasive 
procedures, such as sublobectomy or wedge resection, 
to enhance their quality of life [6, 7]. On the other hand, 
the interpretation of lymph node short-axis diameter on 
CT has been shown to be unreliable in diagnosing lymph 
node metastasis [8]. A meta-analysis revealed that PET/
CT assessment for OLNM in non-small cell lung cancer 
patients can result in false positives due to inflammation 
and granuloma [9]. Additionally, the high cost associated 
with PET/CT poses a significant challenge to its broad 
clinical implementation [10, 11].

Recent studies [12, 13] have utilized CT-based radiom-
ics for lymph node metastasis prediction. Radiomics fea-
tures possess interpretability but are limited to extracting 
information solely from the tumor region, neglecting 
the relationship with surrounding tissues. Deep learn-
ing, particularly convolutional neural networks (CNNs) 
[14] and Transformers [15], has shown great potential in 
automatically capturing representative information from 
the entire image. A few works [16, 17] developed deep 
learning methods to predict lymph node metastasis for 
lung cancer. However, these studies had limited sample 
sizes or failed to account for lymph node characteristics. 
Furthermore, these models, developed and validated in 
single-center studies, faced challenges in broader clini-
cal applications. Diverging from these approaches, our 
study: (1) amassed a substantial, multi-center dataset of 

SPILAC patients, emphasizing clinical generalizability; 
(2) integrated radiomics and deep learning, enhancing 
the predictive model’s performance; (3) explored vari-
ous model architectures, data initialization methods, 
and feature fusion techniques to bolster generalization 
capabilities.

Thus, the purpose of this study was to develop and 
validate a radiomics-deep learning fusion model for 
OLNM prediction in SPILAC patients across multiple 
centers.

Methods
Patients and images
This multi-center retrospective study was approved 
by the institutional review boards of the six hospi-
tals (Additional file  1: Appendix A), and the require-
ment for obtaining informed consent from the patients 
was waived. A total of 1325 patients with cT1a-bN0M0 
SPILAC who were admitted for treatment between 
August 2011 and August 2022 were selected. Figure  1 
presents the inclusion and exclusion criteria for patient 
screening in this study. The training and internal valida-
tion sets from hospitals 1–4 were generated by randomly 
splitting patients with pN+ and pN- cases in a 7:3 ratio, 
respectively. To select pN- patients, a 1:1 matching ratio 
based on gender, age, density, and nodular location was 
employed with pN+ patients in the training and internal 
validation sets. As for the two independent test sets, all 
eligible patients in hospitals 5–6 with pN+ and pN- cases 
were included.

Preoperative consecutive thin-slice CT images of 
1325 patients were obtained from the picture archiving 
and communication system (PACS). Among the 1325 
CT images, 899 images were non-enhanced, while the 
remaining 426 images were contrast-enhanced. A total of 
70 mL of contrast agent was intravenously injected with 
bolus at a flow rate of 3.5–4 mL/s. The contrast-enhanced 
scans were acquired at 30–35  s. The CT imaging 
protocols were detailed in Additional file 1: Appendix A.

Image preprocessing
Thin-slice CT images (slice thickness ≤  2  mm) of all 
patients were imported into the uAI Research Portal 
(uRP, Shanghai United Imaging Intelligence, Co., Ltd, 
China) in DICOM format for initial automatic tumor 
region segmentation. In the absence of knowledge 
regarding the pathological results, an experienced 
radiologist manually corrected the tumor masks slice-
by-slice on the axial images obtained from the non-
enhanced or contrast-enhanced phase in fixed lung 
window (window level: -600 HU, window width: 2000 
HU), generating the three-dimensional volumes of 
interest (VOIs). Both the images and the masks were 
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isotropically resampled to a voxel size of 1 × 1 × 1  mm3 
using bilinear interpolation and nearest neighbor 
interpolation, respectively, for resolution normalization. 
The VOIs corresponding to the tumor regions served 
as the inputs for the radiomic model. Subsequently, we 
selected images of size 96 × 96 × 96 voxels containing the 
entire tumor regions by padding and cropping, which 
served as inputs to the deep learning model.

Radiomics model development
The workflow for the development of the radiomics 
model includes (a) Feature extraction: A total of 1364 
radiomics features were extracted from the delineated 
three-dimensional VOIs based on uRP. (b) Feature 
selection: Ten most important radiomics features were 
selected using a decision tree. (c) Model development: 
A radiomics-based model for predicting OLNM was 
constructed using the support vector machine. For 
detailed information on the radiomics approach, please 
refer to Additional file 1: Appendix B.

Deep learning model development
To investigate the impact of model architecture and 
data initialization strategies on the performance of 
OLNM prediction in SPILAC across multiple centers, 
five common neural networks, namely ResNet-18 [18], 
ResNet-34 [18], ResNet-50 [18], DenseNet-121 [19], 
and Swin Transformer [20], were employed to build 

classification models separately. Beyond training from 
scratch, both ResNet and Swin Transformer models 
could be pre-trained on extensive medical datasets and 
subsequently fine-tuned on our specific dataset, aligning 
with the paradigm of transfer learning. The ResNet was 
pre-trained through segmentation tasks on the 3DSeg-8 
dataset [21], which includes CT/magnetic resonance 
(MR) images of 1638 cases from different organs/
tissues. The Swin Transformer was pre-trained on a set 
of 5050 CT cases derived from various organs. The pre-
training was accomplished through three proxy tasks 
of self-supervised learning: masked volume inpainting, 
contrastive learning, and rotation prediction [22]. We 
developed a total of nine deep learning models. By 
feeding the output of each neural network into a global 
average pooling layer, we were able to obtain deep 
learning features.

Radiomics‑deep learning fusion model development
The architecture of radiomics-deep learning fusion 
model was depicted as detailed in Fig.  2. To explore 
whether feature fusion techniques help to enhance the 
performance of the classification model, we introduced 
four methods of feature fusion. Radiomics features and 
deep learning features were fused either by addition or 
concatenation. The overall training objective incorpo-
rated cross-entropy loss Lce to evaluate classification 
errors, along with contrastive learning loss Lcl [23] to 

Fig. 1 Flowchart illustrating the process of patient enrollment and the criteria for inclusion and exclusion in the dataset. 
CTR = consolidation-to-tumor ratio, GGO = ground-glass opacity, pN +  = pathological nodal positive, pN- = pathological nodal negative
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enhance the domain invariance of semantic features from 
pN+ and pN- cases across different centers. To mitigate 
overfitting, we also trained a momentum model follow-
ing [24]. This model, which evolves continuously, shares 
initial parameters with the base model. The parameters 
of the momentum model are updated via the exponential 
moving average (EMA).

In the training process, we employed a batch size of 12. 
Optimization was executed using the Adam optimizer, 
with an initial learning rate of  10–4. The training persisted 
for a total of 100 epochs, with cosine decay applied to the 
learning rate starting from the fifth epoch. Our compiling 
platform was based on the Python library (version 3.7.16) 
and Pytorch library (version 1.10.0) with CUDA (version 

10.2) for GPU (NVIDIA Tesla V100, nvidia corporation, 
Santa Clara, California, USA) acceleration on a Linux 
operating system (Ubuntu 16.04 long-term support of 
a 64-bit server, 40 CPUs, and 503 GB of memory). Our 
codes are publicly available at https:// github. com/ parad 
isetww/ OLNM_ Predi ction.

Statistical analysis
Statistical analysis was conducted using R software 
(version 4.0.2). The clinical characteristics across the 
training, internal validation, and two independent test 
sets were analyzed using the χ2-test for categorical 
variables and the Kruskal-Wallis H-test for continuous 
variables to assess distribution differences. The area 

Fig. 2 Design of the study. A Overall framework of the radiomics-deep learning fusion model for the prediction of OLNM in SPILAC. The w/o stands 
for with/without. Lce and Lcl represent the cross-entropy loss function and the contrastive learning loss function, respectively. B Comparison 
of different feature fusion techniques. * denotes the mapping of radiomics features to the same dimension as the deep learning features 
through the fully connected layer. w1 and w2 represent the learnable weight parameters

https://github.com/paradisetww/OLNM_Prediction
https://github.com/paradisetww/OLNM_Prediction
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under the receiver operating characteristic (ROC) 
curve (AUC), accuracy, sensitivity, specificity, positive 
predictive value (PPV), and negative predictive value 
(NPV) were used to evaluate the performance of all 
models in predicting OLNM of SPILAC patients. The 
comparison between the ROC curves of different models 
was conducted using DeLong’s test. A p-value of less 
than 0.05 indicated statistical significance.

Results
Patient clinical characteristics
Our study comprised a total of 1325 SPILAC patients. 
This included 478 pN+ cases and 847 pN- cases. Patient 
clinical characteristics -- gender, age, nodule maximum 
diameter, density, and location relative to lung structures 
-- are detailed in Table 1. Solid nodules show a CTR of 1, 
while part-solid nodules have a CTR between 0.5 and 1. 
Comparisons across the training, internal validation, and 
two independent test sets showed significant inter-cohort 
differences.

Model performance evaluation
The accuracy, sensitivity, specificity, PPV, NPV, and 
AUC of the nine radiomics-deep learning fusion mod-
els using concatenation based on ResNet-18, pre-
trained ResNet-18, ResNet-34, pre-trained ResNet-34, 
ResNet-50, pre-trained ResNet-50, DenseNet-121, Swin 
Transformer, and pre-trained Swin Transformer, on the 
internal validation set, independent test set 1, and inde-
pendent test set 2 are shown in Table  2 and Fig.  3. The 
average AUC (aAUC) of the three datasets trained with 

ResNet-18, pre-trained ResNet-18, ResNet-34, pre-
trained ResNet-34, ResNet-50, pre-trained ResNet-50, 
DenseNet-121, Swin Transformer, and pre-trained 
Swin Transformer were 0.746  ±  0.018, 0.754  ±  0.018, 
0.710 ± 0.019, 0.746 ± 0.018, 0.722 ± 0.019, 0.733 ± 0.018, 
0.674  ±  0.020, 0.742  ±  0.018, 0.737  ±  0.018, respec-
tively. The radiomics-deep learning fusion model 
trained with pre-trained ResNet-18 obtained the high-
est aAUC (0.754  ±  0.018), whereas the models trained 
with ResNet-34 (0.710  ±  0.019) and DenseNet-121 
(0.674  ±  0.020) performed the worst. On the internal 
validation set, there was no significant difference dis-
cerned in the AUC of the fusion model, combining 
radiomics and deep learning, trained with a pre-trained 
ResNet-18 when compared to other models. However, 
a distinct performance improvement was noted on the 
independent test set 1, where the AUC of the radiom-
ics-deep learning fusion model trained with the pre-
trained ResNet-18 significantly exceeded those of the 
models trained with ResNet-34, ResNet-50, pre-trained 
ResNet-50, DenseNet-121, and Swin Transformer. The 
respective p-values were 0.009, 0.038, 0.022, 0.019, and 
0.044, illustrating statistical significance. Similarly, on 
the independent test set 2, the AUC of the radiomics-
deep learning fusion model trained with the pre-trained 
ResNet-18 demonstrated significantly higher perfor-
mance than the models trained with ResNet-50 (p = 
0.028) and DenseNet-121 (p < 0.001).

To further investigate the impact of feature fusion 
techniques on classification performance, we evaluated 
six models grounded in radiomics, deep learning, and 

Table 1 Clinical characteristics across the training, internal validation, and independent test sets (test set 1 and test set 2) in patients

Unless otherwise specified, the data presented were the number of patients, with the corresponding percentages denoted in parentheses. The p-values represented 
the outcomes of univariable association analysis conducted for each characteristic across four datasets

SD Standard deviation
a Data were means ± SDs

Characteristics Training Set Internal Validation Set Independent Test Set 1 Independent Test Set 2 P‑value

pN+ (n = 235) pN‑ (n = 235) pN+ (n = 101) pN‑ (n = 101) pN+ (n = 43) pN‑ (n = 184) pN+ (n = 99) pN‑ (n = 327)

Agea (years) 59.9 ± 9.2 59.1 ± 9.9 60.0 ± 9.7 61.7 ± 9.0 59.4 ± 10.6 61.9 ± 9.6 59.7 ± 9.4 59.7 ± 9.7 0.048

Gender < 0.001

 Male 108 (46.0) 101 (43.0) 47 (46.5) 42 (41.6) 21 (48.8) 90 (48.9) 46 (46.5) 146 (44.6)

 Female 127 (54.0) 134 (57.0) 54 (53.5) 59 (58.4) 22 (51.2) 94 (51.1) 53 (53.5) 181 (55.4)

Maximum 
 Diametera (cm)

1.8 ± 0.4 1.6 ± 0.4 1.8 ± 0.4 1.6 ± 0.3 1.8 ± 0.4 1.8 ± 0.6 1.8 ± 0.5 1.6 ± 0.4 0.040

Density < 0.001

 Solid 201 (85.5) 198 (84.3) 85 (84.2) 88 (87.1) 39 (90.7) 137 (74.5) 83 (83.8) 239 (73.1)

 Part-Solid 34 (14.5) 37 (15.7) 16 (15.8) 13 (12.9) 4 (9.3) 47 (25.5) 16 (16.2) 88 (26.9)

Location < 0.001

 Inner 21 (8.9) 11 (4.7) 12 (11.9) 5 (5.0) 8 (18.6) 8 (4.3) 8 (8.1) 17 (5.2)

 Middle 59 (25.1) 54 (23.0) 29 (28.7) 34 (33.7) 9 (20.9) 41 (22.3) 24 (24.2) 106 (32.4)

 Outer 155 (66.0) 170 (72.3) 60 (59.4) 62 (61.4) 26 (60.5) 135 (73.4) 67 (67.7) 204 (62.4)
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radiomics-deep learning fusion across three datasets: 
the internal validation set, independent test set 1, and 
independent test set 2, as shown in Table  3 and Fig.  4. 
The aAUC for the three datasets, trained with radiom-
ics, deep learning, and radiomics-deep learning fusion 

utilizing  addition*, learnable  addition*,  concatenation*, or 
simple concatenation, were 0.715 ± 0.019, 0.676 ± 0.021, 
0.736  ±  0.018, 0.740  ±  0.017, 0.737  ±  0.018, and 
0.754 ± 0.018, respectively. Here, the asterisk(*) denotes 
that radiomics features were mapped to the same 

Table 2 Comparison of performance among deep learning prediction models integrated with radiomics using concatenation, 
including ResNet-18, ResNet-34, ResNet-50, DenseNet-121, and Swin Transformer, on the internal validation set, independent test set 1, 
and independent test set 2

95% CI indicated the 95 percent confidence interval of AUC 
a Pre-trained models on large-scale medical data

Model Dataset Accuracy Sensitivity Specificity PPV NPV AUC 95% CI aAUC (SD)

ResNet-18 Internal Validation Set 0.777 0.832 0.723 0.750 0.811 0.837 0.781–0.892 0.746 (0.018)

Independent Test Set 1 0.674 0.767 0.652 0.340 0.923 0.726 0.644–0.807

Independent Test Set 2 0.620 0.798 0.566 0.357 0.902 0.712 0.657–0.768

ResNet-18a Internal Validation Set 0.767 0.861 0.673 0.725 0.829 0.813 0.753–0.874 0.754 (0.018)

Independent Test Set 1 0.736 0.698 0.745 0.390 0.913 0.758 0.679–0.838

Independent Test Set 2 0.700 0.677 0.706 0.411 0.878 0.728 0.673–0.782

ResNet-34 Internal Validation Set 0.738 0.713 0.762 0.750 0.726 0.783 0.720–0.847 0.710 (0.019)

Independent Test Set 1 0.740 0.581 0.777 0.379 0.888 0.680 0.586–0.775

Independent Test Set 2 0.636 0.667 0.627 0.351 0.861 0.702 0.647–0.757

ResNet-34a Internal Validation Set 0.777 0.871 0.683 0.733 0.841 0.813 0.752–0.874 0.746 (0.018)

Independent Test Set 1 0.753 0.791 0.745 0.420 0.938 0.778 0.699–0.856

Independent Test Set 2 0.638 0.788 0.593 0.370 0.902 0.725 0.672–0.778

ResNet-50 Internal Validation Set 0.757 0.693 0.822 0.795 0.728 0.811 0.752–0.870 0.722 (0.019)

Independent Test Set 1 0.599 0.814 0.549 0.297 0.927 0.698 0.606–0.790

Independent Test Set 2 0.629 0.737 0.596 0.356 0.882 0.677 0.619–0.736

ResNet-50a Internal Validation Set 0.733 0.911 0.554 0.672 0.862 0.794 0.732–0.856 0.733 (0.018)

Independent Test Set 1 0.670 0.698 0.663 0.326 0.904 0.714 0.631–0.797

Independent Test Set 2 0.660 0.747 0.633 0.381 0.892 0.738 0.687–0.790

DenseNet-121 Internal Validation Set 0.743 0.911 0.574 0.681 0.866 0.806 0.747–0.866 0.674 (0.020)

Independent Test Set 1 0.656 0.628 0.663 0.303 0.884 0.679 0.593–0.766

Independent Test Set 2 0.540 0.687 0.495 0.292 0.839 0.607 0.543–0.671

Swin Transformer Internal Validation Set 0.733 0.891 0.574 0.677 0.841 0.775 0.711–0.840 0.742 (0.018)

Independent Test Set 1 0.722 0.628 0.745 0.365 0.895 0.722 0.643–0.800

Independent Test Set 2 0.643 0.828 0.587 0.378 0.919 0.755 0.705–0.805

Swin  Transformera Internal Validation Set 0.733 0.832 0.634 0.694 0.790 0.788 0.725–0.850 0.737 (0.018)

Independent Test Set 1 0.727 0.628 0.750 0.370 0.896 0.740 0.661–0.818

Independent Test Set 2 0.646 0.818 0.593 0.379 0.915 0.729 0.677–0.781

Fig. 3 The ROC curves of nine radiomics-deep learning fusion models using concatenation on the internal validation set, independent test set 1, 
and independent test set 2. The numbers in parenthesis represent the AUC metrics
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dimensional space as the deep learning features prior 
to the feature fusion process. Radiomics leveraged a 
support vector machine model, whereas deep learn-
ing implemented a pre-trained ResNet-18 model. The 
model achieving the highest aAUC was the radiom-
ics-deep learning fusion model using concatenation 
(0.754 ± 0.018), while those trained solely with radiomics 
(0.715 ± 0.019) and deep learning (0.676 ± 0.021) exhib-
ited the least effective performance. Within the internal 
validation set, the AUC of the radiomics-deep learning 
fusion model employing concatenation was significantly 
greater than that of the model trained exclusively with 
deep learning (p = 0.027). Within the independent test 
set 1, the AUC of the radiomics-deep learning fusion 
model using concatenation significantly outperformed 
those of the models trained with radiomics and the radi-
omics-deep learning fusion utilizing  addition*, learnable 
 addition*, and  concatenation*, with respective p-values 

of 0.001, 0.002, 0.002, and 0.012. Similarly, within the 
independent test set 2, the AUC of the radiomics-deep 
learning fusion model using concatenation was signifi-
cantly superior to that of the model trained solely with 
deep learning (p < 0.001).

Discussion
In this study, our primary investigation focused on the 
efficacy of various factors--model architectures, data 
initialization strategies, and feature fusion techniques-
-in enhancing the generalizability to predict OLNM 
in SPILAC across multiple centers. The experimental 
outcomes indicated that the integration of the ResNet-18 
network architecture, the pre-training strategy, 
and the concatenation-based fusion technique of 
radiomics-deep learning features yielded the highest 
predictive performance (aAUC: 0.754  ±  0.018). In 
contrast, the models trained from scratch using 
ResNet-34 or DenseNet121 within a concatenation-
based radiomics-deep learning fusion framework, or 
the models trained separately using radiomics or deep 
learning, demonstrated inferior performance, with 
aAUCs of 0.710  ±  0.019, 0.674  ±  0.020, 0.715  ±  0.019, 
and 0.676  ±  0.021, respectively. These results would 
be discussed from three perspectives: (1) When 
compared to other model architectures based on CNN 
or Transformer, the ResNet-18 outperformed, thanks 
to its shallower network depth and relatively simplistic 
structure, which effectively minimized model overfitting. 
(2) As opposed to training from scratch, employing a pre-
training strategy on a large-scale medical dataset followed 
by fine-tuning on a self-built dataset significantly and 
universally augmented the model’s generalizability on 
the independent test set 1 and independent test set 2 
obtained from other centers. This improvement can be 
attributed to the model’s ability to learn diverse and useful 
feature representations from large-scale medical data, 
which can be transferred efficaciously to the downstream 

Table 3 Performance comparison of different feature fusion techniques on the internal validation set, independent test set 1, and 
independent test set 2

Performance was reported in terms of AUC. Radiomics employed the support vector machine model, while deep learning utilized the pre-trained ResNet-18 model
a Before feature fusion, the radiomics features were mapped to the same dimension as the deep learning features

Model Feature Fusion Internal Validation 
Set

Independent Test Set 1 Independent Test Set 2 aAUC (SD)

Radiomics None 0.810 0.644 0.679 0.715 (0.019)

Deep Learning None 0.746 0.717 0.623 0.676 (0.021)

Radiomics-Deep Learning 
Fusion

Additiona 0.795 0.663 0.736 0.736 (0.018)

Learnable  Additiona 0.793 0.677 0.748 0.740 (0.017)

Concatenationa 0.790 0.697 0.743 0.737 (0.018)

Concatenation 0.813 0.758 0.728 0.754 (0.018)

Fig. 4 Performance of six models based on radiomics, deep 
learning, and radiomics-deep learning fusion. Radiomics employed 
the support vector machine model, while deep learning utilized 
the pre-trained ResNet-18 model.  Addition*, learnable  addition*, 
 concatenation*, and concatenation indicate different feature fusion 
techniques. * represents that before feature fusion, the radiomics 
features were mapped to the same dimension as the deep learning 
features
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OLNM prediction task. (3) Radiomics methods provide 
interpretability, but their scope is limited to the VOIs. 
Conversely, deep learning methods possess the ability to 
automatically learn and prioritize task-relevant critical 
regions. However, the interpretability of deep learning 
models remains constrained. Compared to models 
trained separately using radiomics and deep learning, 
or other radiomics-deep learning feature fusion models, 
the concatenation-based fusion technique of radiomics-
deep learning features effectively combined the strengths 
of both radiomics and deep learning, thereby achieving 
superior performance.

The non-invasive preoperative prediction of OLNM 
status plays a critical role in the treatment decision-
making process for patients suffering from SPILAC. 
However, the robustness and practicality of most 
existing radiomics or deep learning models for lymph 
node metastasis prediction were debatable, as they 
were typically constructed based on limited or single-
center datasets [16, 17]. Our research differed in that 
we collected an extensive array of CT images from six 
different hospitals, utilizing multiple scan devices and a 
variety of image reconstruction parameters. The broad 
distribution of this dataset has enabled us to conduct a 
comprehensive investigation into the impacts of model 
architectures, data initialization strategies, and feature 
fusion techniques on the challenging task of predicting 
OLNM, bringing our work into closer alignment with 
real-world clinical scenarios.

Our study does present several limitations. First, 
despite the comprehensive inclusion of a significant 
number of multi-center SPILAC patients for OLNM 
prediction, our study possessed an inherent bias, owing 
to its retrospective design. Going forward, a prospective 
exploration would be valuable to mitigate this bias. 
Second, we have not yet assessed the actual benefits 
of non-invasive preoperative OLNM prediction for 
patients with SPILAC. This important area merits further 
investigation in the future.

Conclusions
The integration of the ResNet-18 network architecture, 
the pre-training strategy, and the concatenation-based 
fusion technique of radiomics-deep learning features 
have the potential to enhance the generalizability of 
predicting OLNM based on preoperative CT images in 
SPILAC across multiple centers.
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