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Abstract
Background & aims The present study utilized extracted computed tomography radiomics features to classify the 
gross tumor volume and normal liver tissue in hepatocellular carcinoma by mainstream machine learning methods, 
aiming to establish an automatic classification model.

Methods We recruited 104 pathologically confirmed hepatocellular carcinoma patients for this study. GTV and 
normal liver tissue samples were manually segmented into regions of interest and randomly divided into five-fold 
cross-validation groups. Dimensionality reduction using LASSO regression. Radiomics models were constructed 
via logistic regression, support vector machine (SVM), random forest, Xgboost, and Adaboost algorithms. The 
diagnostic efficacy, discrimination, and calibration of algorithms were verified using area under the receiver operating 
characteristic curve (AUC) analyses and calibration plot comparison.

Results Seven screened radiomics features excelled at distinguishing the gross tumor area. The Xgboost machine 
learning algorithm had the best discrimination and comprehensive diagnostic performance with an AUC of 0.9975 
[95% confidence interval (CI): 0.9973–0.9978] and mean MCC of 0.9369. SVM had the second best discrimination 
and diagnostic performance with an AUC of 0.9846 (95% CI: 0.9835– 0.9857), mean Matthews correlation coefficient 
(MCC)of 0.9105, and a better calibration. All other algorithms showed an excellent ability to distinguish between 
gross tumor area and normal liver tissue (mean AUC 0.9825, 0.9861,0.9727,0.9644 for Adaboost, random forest, logistic 
regression, naivem Bayes algorithm respectively).

Conclusion CT radiomics based on machine learning algorithms can accurately classify GTV and normal liver tissue, 
while the Xgboost and SVM algorithms served as the best complementary algorithms.
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Introduction
Liver cancer is one of the most common cancers world-
wide [1]. The liver is also one of the most common meta-
static organs for other carcinomas, including metastases 
related to colorectal, melanoma, and pancreatic cancers 
[2–6]. Currently, palliative treatment for hepatocellular 
carcinoma includes radiofrequency ablation, transarterial 
chemoembolization, immunotherapy, and gene therapy 
in addition to traditional radiotherapy (RT) and chemo-
therapy [7]. RT is an important part of clinical oncology 
treatment. It also plays a significant role in the treatment 
of hepatocellular carcinoma. RT utilizes various radiation 
devices and radionuclides to kill tumor cells. Determin-
ing the tumor and normal tissue outline during delin-
eating is an important step in the process of RT, directly 
affecting its accuracy [8]. The differences in clinical expe-
rience and different doctors’ opinions may cause sizeable 
differences in the delineation of target areas between dif-
ferent radiologists. Furthermore, the delineation process 
is time-consuming and labor-intensive. Manual sketch-
ing of target areas and crucial organs for a patient with 
a tumor can take the clinician hours to accomplish to 
ensure that the maximum dose is administered accord-
ing to the delineated tumor areas and that the normal tis-
sue is protected as much as possible. On the other hand, 
the patient’s weight, as well as morphology and size of 
the target area and organs, may change during the treat-
ment process. Therefore, the automatic outline of impor-
tant organs is particularly valuable. The automatic organ 
delineation methods can be implemented using the active 
contours model. This model uses a priori knowledge 
of the target shape to define a closed curve around the 
region to be outlined in the form of a parametric equation 
with an energy function. The equation converges to the 
boundary contours of the target by taking advantage of 
the high gradient position of the image and smoothness 
and continuity of the curve [9–11]. Atlas-based library 
and alignment methods can also outline certain medical 
images based on the relative spatial location and shape of 
the normal organs inside the body that are similar even 
for different populations. Therefore, beginners can follow 
the expert atlas to obtain the same features in the coarse 
image texture.Pre-sketched computed tomography (CT) 
images (atlas + markers) can be used to assist in creat-
ing new sketches [12]. Deep learning automatic delinea-
tion techniques with self-learning capability can extract 
complex hierarchical features from images. The basic 
idea of deep learning methods is to represent abstract 
information through multiple high-level features. The 
methods for medical image outlining include convolu-
tional neural network [13], fully convolutional network 
[14], and U-Net [15] methods. In the image texture-
based method, radiomics features extracted from the 
image using texture parameters can provide information 

about the spatial arrangement of image pixels. The inten-
sity arrangement of the image texture can be quantified 
and image features can be extracted to divide the image 
region into meaningful parts such as normal organs and 
tissues [16]. Lambin et al. first introduced the concept of 
radiomics in 2012 as a field focused on improving image 
analysis and high-throughput extraction of a large num-
ber of quantitative features [17]. Radiomics features of 
tumor regions have been reported to have an important 
predictive role in the classification of hepatocellular car-
cinoma [18–19]. However, there are still relatively few 
studies using texture features to outline the gross tumor 
areas in hepatocellular carcinoma. It is clinically impor-
tant to improve the effectiveness and accuracy of distin-
guishing between normal liver and target areas for RT 
by analyzing the radiomics features. Relevant studies 
have reported using radiomics for classification, while 
identification prognosis studies have extracted MRI or 
CT image histological features based on patients diag-
nosed with liver cancer [20–23]. In a radiomics study on 
non-enhanced CT in hepatocellular carcinoma (HCC) 
by Zhao et al., the machine-learning algorithm, such as 
SVM, was effective in classifying benign and malignant 
liver lesions in the test set, obtaining an AUC of 0.8990 
and an overall accuracy of 0.8400 [24].

Therefore, it is possible that a machine-learning clas-
sification algorithm that distinguishes gross tumor tissue 
from normal tissue based on the image features extracted 
from the CT images before RT can produce a significant 
guidance and reference value for confirmation of liver 
GTV in RT for hepatocellular carcinoma patients. In 
addition, there is an error rate associated with hepato-
cellular carcinoma delineation by low-grade radiothera-
pists. The machine-learning algorithm that distinguishes 
normal tissue from tumor tissue is likely to improve their 
accuracy in outlining target areas [25–26].There are fewer 
automatic outlining software packages for liver tumors in 
relevant automatic target area outlining software. There-
fore, the extracted relevant CT image radiomics feature 
values were used in the present study for the differentia-
tion of normal tissues from RT target in order to achieve 
automatic outlining of RT target and improve the treat-
ment effect.

Materials and methods
Patient population
The clinical data and CT images for 104 patients with 
hepatocellular carcinoma who underwent liver biopsy 
surgery between January 2016 and September 2022 were 
included in the study. Inclusion criteria were as follows: 
(1) patients who underwent a preoperative two-phase 
enhanced scan; (2) no history of RT and chemotherapy; 
(3) malignant liver tumors were diagnosed by postop-
erative pathology and had complete clinical data; and 
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(4) patients aged 18–80 years with no contraindications 
for RT and life expectancy greater than three months. 
Exclusion criteria were as follows: (1) images with severe 
motion artifacts or evident noise; (2) maximum tumor 
diameter of < 1.0  cm; (3) other tumor diseases; and (4) 
pregnant or breastfeeding females and individuals who 
refused to use suitable contraception. The baseline clini-
cal data distribution is described in Table 1.

Image acquisition
Images for histology analysis were obtained from RT 
localization CT scans. Enhanced CT scans were per-
formed using a LightSpeed RT 16 CT machine (GE 
Healthcare, Chicago, IL, USA). The scan parameters 
were set as follows: tube voltage, 120 kVp; field of view, 
250–400  mm; pixel size, 512 × 512; and layer thickness, 
2.5 mm. CT images were preprocessed by wavelet-based 
filtering methods before extraction of histological fea-
tures. The GTV and normal liver tissue were regarded as 
the regions of interest representing the target area for RT 
and normal tissue, respectively.

Feature extraction and downscaling
For feature extraction, all CT images and regions of inter-
est were batched and converted to nii format. Manual 
segmentations were performed with oversight from an 
experienced radiologist with > 10 years of experience 
in radiology therapy. Feature extraction was based on 
Python 3.9 implemented using the pyradiomics soft-
ware (http://PyRadiomics.readthedocs.io/en/latest). 
All images were resampled according to a voxel size of 
1 × 1 × 1 mm3 before feature extraction. The image quanti-
fication method used bin widths of 25. The GTV and nor-
mal liver tissue were regarded as the regions of interest. 
The radiomics features included the First Order Statistics 

(firstorder), Gray Level Cooccurence Matrix (glcm), Gray 
Level Dependence Matrix (gldm), Gray Level Run Length 
Matrix (glrlm), Gray Level Size Zone Matrix (glszm), and 
Neighbouring Gray Tone Difference Matrix (ngtdm). 
Shape features were abandoned. These algorithms for 
obtaining radiomics features were referenced from the 
Image Biomarker Standardization Initiative [27]. The 
radiomics feature dimensionality reduction and selection 
using the least absolute shrinkage and selection operator 
(LASSO) regression model with five-fold cross-validation 
were used to select features with nonzero coefficients, 
such that we could choose the variables with the smallest 
mean square error. All feature selection procedures were 
executed on the training cohort and used for the test 
cohort. The variance inflation factor (VIF)measures the 
severity of multicollinearity in multiple regression mod-
els. It represents the ratio of the estimator variance of the 
regression coefficient to the variance when no linear cor-
relation between the independent variables is assumed. 
The VIF can be calculated as follows:

 
VIF =

1

1− R2
i

where Ri is the negative correlation coefficient of the 
regression analysis for other independent variables. The 
larger the VIF, the greater the possibility of collinearity 
between the independent variables. Generally, multicol-
linearity is assumed when the VIF value is greater than 
five. Thus, removing the radiomics features with a VIF 
value greater than five is necessary. Z-score transforma-
tion was utilized for field correction and intensity stan-
dardization for each feature.

Construction of matching learning algorithm-based 
classification models and evaluation of diagnostic efficacy
All statistical assessments were carried out using R-4.1.1 
software. The final selected features were utilized to con-
struct the radiomics models. To select a classifier model 
with the greatest recognition of GTV, six mainstream 
machine learning algorithm training models were cho-
sen, which included logistic regression, SVM, random 
forest, Xgboost, Adaboost, and naive Bayes algorithms, 
respectively. The diagnostic performances of the six 
models were compared using the AUC of the receiver 
operating characteristic curve (ROC), sensitivity, speci-
ficity, positive prediction value (PPV), negative predic-
tion value (NPV), and Matthews correlation coefficient 
(MCC). The best radiomics model was then screened.

 
MCC =

TP · TN − FP · FN
sqrt((TP + FP) · (TP + FN) · (TN + FP) · (TN + FN))

Table 1 Baseline of 104 enrolled patients from clinical center
SEX (%) Female 19 (18.4)

(%) Male 85 (81.6)

Age (years,mean (SD)) 55.59 (10.58)

ECOG 1.17 (3.09)

PT (second,mean (SD)) 13.91 (2.12)

AFP (IU/ml,mean (SD)) 4,161.75 (6,977.57)

TBIL (µmol/L,mean (SD)) 29.03 (36.27)

ALB (g/L,mean (SD)) 36.51 (5.38)

ALT (U/L,mean (SD)) 66.13 (97.89)

AST (U/L,mean (SD)) 115.58 (313.87)

WBC (10^9/L,mean (SD)) 5.59 (2.43)

HB (g/L,mean (SD)) 123.38 (24.85)

PLT (10^9/L,mean (SD)) 143.41 (80.18)

Liver cirrhosis (%) NO 34 (32.0)

(%) YES 70 (68.0)

Hepatitis B virus (%) NO 30 (28.2)

(%) YES 74 (71.8)

http://PyRadiomics.readthedocs.io/en/latest
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Five-fold cross-validation and grid search were used to 
tune and optimize the model hyperparameters for Ada-
boost (mfinal = 10, maxdepth = 3), Xgboost (“eta"=0.05, 
“max_depth"=6, “colsample_bytree"=1, “min_child_
weight"=1, “subsampl e"=0.73, “gamma"=1, “lambda"=1, 
“alpha"=0, “max_delta_step"=0, “colsample_bylevel"=1) 
and random forest (Mtry = 2, nodesize = 15, samp-
size = 131, importance = TRUE). Other parameters 
remained at a default level.

Discrimination and calibration evaluation of multiple 
machine learning algorithms models
Calibration plot and AUC reflect how accurately a 
model can predict the type of true labels. Calibration 
curves depict the calibration of each model in terms of 
the agreement between the predicted probabilities of 
observed outcomes (GTV area). The y-axis for these 
curves represents the actual rate of the GTV area, the 
x-axis shows the predicted GTV area probabilities, and 
the diagonal dotted line describes a perfect prediction by 
an ideal model.

Results
Radiomics feature screening and collinearity analysis
A total of 104 patients (208 samples) diagnosed with 
HCC were enrolled in the study, and 1,395 radiomics fea-
tures were extracted from GTV and normal liver tissue. 
Among them, 29 features with nonzero coefficients were 
retained after LASSO logistic regression analysis for vari-
able screening. According to this calculation, the model’s 
deviation was the smallest when the minimum value was 
0.004292374. Figure 1 shows the binomial deviance and 
lambda (λ). The VIF of the independent variable in the 
logistic regression model was calculated after screening 

the variables. The variables with VIF > 5 after the LASSO 
logistic regression analysis were removed by eliminat-
ing all highly co-linear features that could lead to model 
overfitting as previously described until the logistic 
model converged. A total of seven radiomics features 
were retained as a result. The VIFs were all < 5, which 
indicates that no multicollinearity existed among the 
seven radiomics features (Table 2).

Comparing diagnosis efficiency of different machine 
learning algorithms
The data were divided 4:1 (167:41), yielding training and 
validation groups using five-fold cross-validation. The 
process was iterated 200 times with different initializa-
tion seeds, generating a total of 1,000 modeling data 
points for each machine learning algorithm. The train-
ing and validation groups were separately normalized 
before model construction and validation. Among the 
evaluation indicators, Xgboost achieved the best per-
formance than other algorithms with a mean AUC of 
0.9978. Xgboost also had the highest mean specificity of 
0.9921, mean PPV of 0.9918, and mean MCC of 0.9369, 
SVM with mean specificity 0.9490 performed better 
than other algorithms and had an mean NPV of 0.9468 

Table 2 Model collinearity analysis
Variables VIF
lbp.2D_glrlm_RunLengthNonUniformity 1.169

square_firstorder_Kurtosis 1.432

squareroot_firstorder_RootMeanSquared 1.606

wavelet.LLH_firstorder_Median 1.305

wavelet.LLH_firstorder_TotalEnergy 2.241

wavelet.HHH_glszm_LowGrayLevelZoneEmphasis 1.292

wavelet.LLL_glszm_SizeZoneNonUniformity 2.229

Fig. 1 Radiomics feature selection with the least absolute shrinkage and selection operator (LASSO) binary logistic regression model. (A) Tuning param-
eter (l) selection in the LASSO model used five-fold cross-validation with minimum criteria. Left vertical lines indicate the optimal value of the LASSO tun-
ing parameter (λ). (B) LASSO coefficient profile plot with different log (λ). Vertical dashed lines represent 29 radiomics features with nonzero coefficients 
selected with the optimal λ value
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in the validation groups. Naive Bayes was the worst algo-
rithm to distinguish between the GTV and normal liver. 
The violin diagrams show that the Xgboost values were 
more concentrated at a better level. However, the other 
algorithms were more widely distributed. The better 
the algorithm, the higher the concentration, showing its 
robustness (Fig. 2).

Discrimination and calibration evaluation of different 
machine learning algorithms
Five-fold cross-validation with 200 iterations and dif-
ferent initialization seeds produced 41,000 valida-
tions and predictions. The predicted probability and 
true classification were used for each prediction in the 
validation group as a fusion estimator for AUC calcu-
lation and generation of the calibration plot. In a fused 
evaluation of the ROC curves, Xgboost had the highest 

discrimination with an AUC of 0.9975 (95% confidence 
interval (CI): 0.9973–0.9978), followed by random forest 
with an AUC of 0.9856 (95% CI: 0.9846–0.9866). Simi-
lar performance was achieved by SVM with an AUC of 
0.9846 (95% CI: 0.9835–0.9857), followed by Adaboost 
with an AUC of 0.9812 (95% CI: 0.9799–0.9825). Naive 
Bayes remained the worst model with an AUC of 0.9633 
(95% CI: 0.9617–0.9649). SVM fit well in terms of cali-
bration curves, while Xgboost did not perform well. The 
predicted value for SVM was approximately equal to 
the observed value, and the blue line overlapped with 
the reference line. For Xgboost and Adaboost, when the 
positive observation rate was < 50%, the predicted value 
was lower than the observed value, the risk was under-
estimated, and the blue line was above the reference line. 
When the positive observation rate was > 50%, the pre-
dicted value was greater than the observed value, the risk 

Fig. 2 (A-F)Violin plots for different machine learning algorithms with 200 iterations of five-fold cross-validation for AUC, accuracy, specificity, NPV, PPV, 
and MCC
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was overestimated, and the blue line was above the ref-
erence line. Logistic and naive Bayes models were prone 
to underestimating the positive observation rate. Brier 
scores for Xgboost, Adaboost, SVM, RF, logistic regres-
sion, and naive Bayes were 0.0620, 0.0480, 0.0370, 0.0440, 
0.057, and 0. 1170, respectively. The diagnostic efficiency 
of different machine learning algorithms in the training 
and validation groups is shown in Tables  3 and 4. The 
ROC curve and calibration plot for the machine learning 
models in the validation groups are shown in Figs. 3 and 
4.

Discussion
In recent years, artificial intelligence technologies, such 
as machine learning and neural networks, have been 
widely used in the field of automatic tumor and organ 
delineation in RT. These include automatic segmentation 
technology based on CNN and automatic classification 
technology based on the U-NET model. These methods 

have greatly reduced clinician workload and raised work-
ing efficiency [27–31]. According to Patel et al., however, 
deep learning methods in automatic organ delineation 
may fail due to many factors, such as domain shift [32], 
adversarial noise, low image quality, and robustness 
problems if the input images have a different distribu-
tion from the training datasets for the regress network. 
In a radiomics study, a high number of features (typi-
cally more than a hundred) are extracted characteriz-
ing a given ROI in different ways [33]. The features are 
then tested as prognosticators. Moreover, features have 
to be carefully selected based on their robustness and 
sensitivity towards the delineation process to be clini-
cally applicable. This, in turn, reveals another potential 
use for radiomics features and distributions as a possible 
application for radiomics-based generation of regions/
volumes of interest (ROI/VOI) with certain characteris-
tics to improve anatomic auto-contouring. To date, only 
a small number of studies have been performed to assess 

Table 3 Diagnosis efficiency of different machine learning algorithms in training groups
AUC Sensitivity Specificity

Adaboost 0.9973(0.9962,0.9975,0.9986) 0.9748(0.9647,0.9762,0.9878) 0.9804(0.9750,0.9875,0.9880)

Xgboost 0.9945(0.9911,0.9954,0.9969) 0.9612(0.9529,0.9643,0.9647) 0.9747(0.9747,0.9756,0.9759)

SVM 0.9935(0.9915,0.9928,0.9955) 0.9632(0.9529,0.9639,0.9643) 0.9625(0.9524,0.9639,0.9643)

RF 0.9975(0.9972,0.9987,0.9994) 0.9855(0.9762,0.9880,1.0000) 0.9860(0.9765,0.9880,1.0000)

logistic 0.9880(0.9847,0.9867,0.9904) 0.9522(0.9398,0.9512,0.9634) 0.9457(0.9398,0.9412,0.9524)

naivebayes 0.9732(0.9692,0.9720,0.9765) 0.9222(0.9143,0.9178,0.9296) 0.8174(0.7959,0.8061,0.8280)

NPV PPV MCC

Adaboost 0.9744(0.9639,0.9759,0.9880) 0.9803(0.9759,0.9880,0.9881) 0.9549(0.9402,0.9524,0.9759)

Xgboost 0.9605(0.9518,0.9639,0.9643) 0.9750(0.9759,0.9759,0.9762) 0.9357(0.9280,0.9398,0.9407)

SVM 0.9632(0.9524,0.9639,0.9643) 0.9624(0.9518,0.9639,0.9643) 0.9257(0.9157,0.9277,0.9398)

RF 0.9853(0.9759,0.9880,1.0000) 0.9858(0.9759,0.9880,1.0000) 0.9713(0.9639,0.9759,0.9880)

logistic 0.9524(0.9398,0.9518,0.9639) 0.9453(0.9398,0.9405,0.9518) 0.8978(0.8797,0.8923,0.9159)

naivebayes 0.9336(0.9277,0.9286,0.9398) 0.7900(0.7590,0.7738,0.8072) 0.7316(0.7003,0.7184,0.7445)
#Data outside and inside the brackets indicate the mean and first, median, and third quartiles of the results, respectively, for five-fold cross-validation iterated 200 
times.

Table 4 Diagnosis efficiency of different machine learning algorithms in validation groups
AUC Sensitivity Specificity

Adaboost 0.9825(0.9728,0.9887,0.9976) 0.9408(0.9091,0.9500,0.9545) 0.9487(0.9091,0.9524,1.0000)

Xgboost 0.9978(0.9952,0.9976,1.0000) 0.9453(0.9500,0.9524,0.9524) 0.9921(1.0000,1.0000,1.0000)

SVM 0.9856(0.9751,0.9925,1.0000) 0.9490(0.9130,0.9524,1.0000) 0.9629(0.9500,0.9524,1.0000)

RF 0.9861(0.9786,0.9909,0.9977) 0.9439(0.9091,0.9524,0.9545) 0.9541(0.9444,0.9524,1.0000)

logistic 0.9727(0.9524,0.9796,0.9929) 0.9319(0.9048,0.9474,0.9524) 0.9275(0.9048,0.9444,0.9524)

naivebayes 0.9644(0.9500,0.9690,0.9833) 0.9129(0.8824,0.9048,0.9474) 0.8391(0.8000,0.8333,0.8696)

NPV PPV MCC

Adaboost 0.9385(0.9048,0.9524,0.9524) 0.9473(0.9048,0.9524,1.0000) 0.8876(0.8548,0.9045,0.9523)

Xgboost 0.9447(0.9524,0.9524,0.9524) 0.9918(1.0000,1.0000,1.0000) 0.9369(0.9069,0.9524,0.9524)

SVM 0.9468(0.9048,0.9524,1.0000) 0.9623(0.9524,0.9524,1.0000) 0.9105(0.8581,0.9065,0.9535)

RF 0.9417(0.9048,0.9524,0.9524) 0.9532(0.9500,0.9524,1.0000) 0.8964(0.8581,0.9048,0.9524)

logistic 0.9303(0.9048,0.9500,0.9524) 0.9250(0.9048,0.9500,0.9524) 0.8574(0.8095,0.8581,0.9089)

naivebayes 0.9176(0.9000,0.9048,0.9524) 0.8197(0.7619,0.8095,0.8571) 0.7445(0.6807,0.7571,0.8095)
#Data outside and inside the brackets indicate the mean and first, median, and third quartiles of the results, respectively, for five-fold cross-validation iterated 200 
times.
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the usability of radiomics features in the quantification 
of contouring precision [34]. There have been no studies 
systematically evaluating various machine learning algo-
rithms applied in the classification of RT targets for hepa-
tocellular carcinoma to date.

By building different models with image texture, the 
present study suggested that CT-based radiomics with 
machine leaning may effectually differentiate between 
normal tissue and GTV making it feasible and reliable 
in clinical practice of radiomics radiologists. It can also 
provide evidence for automatic delineation of hepato-
cellular carcinoma with radiomics features for RT target 
areas. The generalization ability of the classifiers was also 
evaluated in order to prevent overfitting and achieved 
similar results as the validator in the training and valida-
tion groups. The present study found that the Xgboost 
algorithm maintained a good discrimination in terms of 
accuracy, PPV, MCC, and AUC in the fused ROC curve 
analysis in the validation groups. However, Xgboost per-
formed poorly in the calibration curve analysis. The cali-
bration curve had a sigmoid shape, which was caused by 
the model’s lack of confidence. Its predicted probability 
was always relatively close to 0.5. The second-best algo-
rithm was SVM, which achieved the highest score in 
sensitivity and NPV and ranked second for MCC. MCC 
takes into account true and false positives and false 

negatives and is usually considered to be a balanced 
measure that produces high scores only if the prediction 
obtains good results in all four confusion matrix catego-
ries (TP, TN, FN, and FP). In summary, since both linear 
and nonlinear models achieved good results in the valida-
tion groups, the radiomics features of GTV and normal 
liver tissue were considered as linearly separable data. 
Artificial intelligence models have achieved great success 
in the automatic delineation of organs [35–36], but the 
accuracy of the automatic delineation of tumor regions 
remains a problem. In the present study, the robustness 
of the algorithms was verified via a large number of itera-
tions and each model was compared in detail in terms of 
its diagnostic performance, discrimination, and calibra-
tion of six leading and popular machine learning algo-
rithms for differentiating GTV areas in hepatocellular 
carcinoma. Therefore, if we can use radiomics features 
extracted through the training set instead of pixel values 
to distinguish between tumor and normal liver regions, 
this may be a supplement to the depth learning auto-
matic delineation technology. The region of interest can 
be limited to the entire liver region, and extract only the 
radiomics features extracted through the training set to 
improve efficiency.

Fig. 3 (A1–C1) Receiver operating characteristic curves for Xgboost, Adaboost and SVM models in the validation group. (A2–C2) Calibration plots for 
Xgboost, Adaboost and SVMmodels in the validation group
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Conclusion
CT radiomics based on machine learning algorithms can 
accurately classify GTV and normal liver tissue, while the 
Xgboost and SVM algorithms served as the best comple-
mentary algorithms. Therefore, multiple machine-learn-
ing methods were first used in the present study for the 
differentiation of gross tumor volume and normal liver 
tissue in order to achieve automatic outlining of RT tar-
get areas in the future and improve the treatment effect 
of RT and the efficiency of radiotherapists.

Limitations
This study has some limitations. This study mainly focus 
on the study of GTV of hepatocellular carcinoma (HCC)
and normal liver, not for all types of liver tumors. In the 
future, we will prospectively collect patients with differ-
ent types of liver cancer, including liver metastases, for 
multi-center research, and further evaluate the bleeding 
in the tumor or the surrounding tissues by combining 
with the deep learning algorithm.
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