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Abstract 

Objectives Commercialized total-body PET scanners can provide high-quality images due to its ultra-high sensitivity. 
We compared the dynamic, regular static, and delayed 18F-fluorodeoxyglucose (FDG) scans to detect lesions in onco-
logic patients on a total-body PET/CT scanner.

Materials & methods In all, 45 patients were scanned continuously for the first 60 min, followed by a delayed acqui-
sition. FDG metabolic rate was calculated from dynamic data using full compartmental modeling, whereas regular 
static and delayed SUV images were obtained approximately 60- and 145-min post-injection, respectively. The reten-
tion index was computed from static and delayed measures for all lesions. Pearson’s correlation and Kruskal–Wallis 
tests were used to compare parameters.

Results The number of lesions was largely identical between the three protocols, except MRFDG and delayed 
images on total-body PET only detected 4 and 2 more lesions, respectively (85 total). FDG metabolic rate (MRFDG) 
image-derived contrast-to-noise ratio and target-to-background ratio were significantly higher than those from static 
standardized uptake value (SUV) images (P < 0.01), but this is not the case for the delayed images (P > 0.05). Dynamic 
protocol did not significantly differentiate between benign and malignant lesions just like regular SUV, delayed SUV, 
and retention index.

Conclusion The potential quantitative advantages of dynamic imaging may not improve lesion detection and dif-
ferential diagnosis significantly on a total-body PET/CT scanner. The same conclusion applied to delayed imaging. This 
suggested the added benefits of complex imaging protocols must be weighed against the complex implementation 
in the future.

Clinical relevance Total-body PET/CT was known to significantly improve the PET image quality due to its ultra-
high sensitivity. However, whether the dynamic and delay imaging on total-body scanner could show additional 
clinical benefits is largely unknown. Head-to-head comparison between two protocols is relevant to oncological 
management.
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Introduction
Whole-body 18F-fluorodeoxyglucose (FDG) PET/ CT is 
often acquired at a specified time point, usually 60  min 
following the tracer injection [1]. FDG uptake is stud-
ied either qualitatively or semi-quantitatively using 
the standardized uptake value (SUV) [2]. This prac-
tice is generally acceptable for both reproducibility and 
repeatability. However, lesion SUV has a fundamental 
limitation as it represents a combination with FDG-
6-phosphate (FDG-6-P) retained in the targeted tissue 
and the unbound FDG in the background [3]. This could 
restrict the accurate qualitative assessment of lesions in 
the organs or tissues with a high background uptake. Fur-
thermore, SUV may not be the best option for applica-
tions requiring accurate measurement of specific FDG 
uptake, such as treatment response assessment [4].

Delayed acquisition (e.g., 90-min post-injection) can 
result in PET images with reduced background activity 
and possibly increased lesion activity, thereby generat-
ing a higher target-to-background ratio (TBR) than the 
regular protocol [5]. However, it requires prolonged scan 
time and provides low-count statistics. Nonetheless, this 
limitation can be outweighed by advantages in certain 
clinical scenarios. Delayed FDG PET/CT imaging of glio-
mas has been reported to efficiently distinguish between 
tumor and gray matter [6]. In addition, it can differentiate 
recurrence following radio-chemotherapy inflammation 
or a scar [7]. It is also beneficial for hepatocellular carci-
noma and pancreatic tumors [8, 9]. Delayed imaging has 
certain limitations; for instance, it requires repositioning 
for the second PET/CT acquisition, requiring additional 
CT radiation. Moreover, 18-F decay may result in high 
noise, resulting in insufficient detected photon counts 
for reconstructing an image with acceptable quality. The 
advantage of high lesion contrast may therefore be offset, 
especially for less-avid lesions.

Dynamic FDG imaging increases lesion conspicuity 
by providing additional parametric images based on 
mathematical modelling other than just one “lumped” 
image. Standard dynamic imaging requires more than 
60  min list-mode acquisition initiating with a tracer 
injection [10]. This facilitates the quantification of 
biological processes, such as metabolism or recep-
tor binding via specific radiotracers based on kinetic 
modelling. For FDG, most existing studies are based 
on Patlak graphical analysis [11], provides the net FDG 
influx rate  (Ki) or metabolic rate (MRFDG) into tissues, 
thereby extracting the bound FDG-6-P signal from 
the entire uptake. Such differentiation enables lower 
background activity and hence higher TBR that facili-
tates lesion detection [12–17]. A full dynamic acquisi-
tion initiated from the injection can further involve 
micro-kinetic parameters, e.g.,  K1,  k2,  k3, etc., which 

have been proven to be effective in disease staging and 
treatment assessment [14, 18–20]. Similar to delayed 
imaging, dynamic FDG imaging has certain limitations. 
First, its implementation is complicated due to the pro-
longed acquisition. Second, it can be difficult to obtain 
the image-derived input function (IDIF) with no large 
artery in the field-of-view (FOV). IDIF derived from a 
small artery (e.g., carotid) can be underestimated [21, 
22]. Third, densely reconstructed frames with enough 
detected counts at an early scan may be required to 
obtain multiple parametric images and capture tracer 
kinetics [23].

The introduction of the commercialized total-body 
scanners, i.e., uEXPLORER [24] and Biograph Vision 
Quadra [25], has allowed long coverage of human body. 
Ultra-high sensitivity facilitates both dynamic and 
delayed imaging with high image quality, which is ben-
eficial in addressing the low count. Furthermore, IDIF 
can be extracted directly from large arteries such as the 
descending aorta. Micro- and macro-parameters at all 
critical organs can then be obtained. The enhanced qual-
ity of dynamic images allows better estimation of the 
whole-body parametric images [26, 27].

In this work, we performed both dynamic and delayed 
imaging in oncologic patients on a total-body PET scan-
ner. As stated earlier, both delayed and dynamic FDG-
PET imaging distinguished the metabolic FDG from the 
background FDG. However, a head-to-head comparison 
of these two imaging techniques has not been conducted 
despite numerous previous separate investigations. 
Here, each patient was scanned continuously for the first 
60 min, followed by a delayed acquisition. Three images, 
i.e., regular SUV, delayed SUV, and parametric MRFDG, 
were obtained for each patient. We first evaluated the 
lesion detectability and quantitative comparability. Next, 
we investigated whether the advantage of certain proto-
col could be converted into clinical value, i.e., improved 
lesion detection and better differential diagnosis.

Materials and methods
Patient demographics
The study was approved by the local ethics committee. A 
total of 45 patients with tumor lesions in different loca-
tions were studied retrospectively for which the clinical 
indication for PET/CT imaging was staging of suspected 
malignancy. The inclusion criteria are shown in Fig. 1A. 
Each patient underwent both dynamic and delayed FDG 
scans on a uEXPLORER PET/CT scanner (United Imag-
ing Healthcare, Shanghai, China) from December 2020 
to July 2021 at the Henan Provincial People’s Hospital. 
Detailed information (age, sex, weight, injection dose, 
and suspicious lesion type/location) is listed in Table 1.
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Scan protocol
The complete scanning protocol is depicted in Fig.  1B. 
First, a CT scan was performed for attenuation correc-
tion. Next, a 60-min PET list-mode acquisition was ini-
tiated with a bolus injection of the tracer via the ankle 
vein. List-mode data were binned into 67 frames (5 s × 24, 
10  s × 6, 30  s × 6, 60  s × 6, 120  s × 24, and 300  s × 1) and 
reconstructed into 192 × 192 × 673 matrices with voxel 
size of 3.125 × 3.125 × 2.866  mm3 using the 3D-ordered 
subset expectation maximization (OSEM) (PSF-TOF, 2 
iterations, and 28 subsets). The last frame of the image 
(5  min) was converted into SUV value by normalizing 
it to the patient’s weight and injection dose and treated 

as a regular SUV image (SUV60). After initial imaging 
acquisition, the patient left the scanner and waited for a 
delayed scan. A second PET/CT scan was initiated 120 
to 180 (154 ± 12) min post-injection for each subject and 
lasted for 10  min. Finally, the delayed SUV image was 
reconstructed with the same parameters as a regular SUV 
image, followed by a 2-mm Gaussian post-smoothing.

Dynamic image processing
For dynamic imaging, voxel-based kinetic model-
ling was performed to generate parametric images. 
FDG is assumed to follow the irreversible two-tissue 
three-compartment model (irreversible two-tissue 

Fig. 1 A Criteria for excluding scans. A total of 45 patients with lesions were studied retrospectively, including 21 patients with lung cancer, 6 
patients with infection or inflammation, 13 patients with mediastinal lesions, and 5 patients with liver cancer as the primary suspicious lesion. 
B Scan protocol. A 65-min list-mode acquisition was initiated immediately after the bolus injection of FDG on a uEXPLORER PET/CT scanner. 
The acquired data were binned into 67 frames (5 s × 24, 10 s × 6, 30 s × 6, 60 s × 6, 120 s × 24, and 300 s × 1), for which the last frame was treated 
as a regular SUV image. The average start time of the delay scan was 145 min and lasted for 10 min

Table 1 Patient population in the current retrospective  studya, with primary suspicious lesion type, age, gender, weight, and dose 
administration

a All exams were conducted for staging purpose in lung/liver

Primary suspicious lesion type Age (y/o.) Gender (F:M) Weight (kg) Dose 
administrated  
(MBq)

Lung tumor (21) 58.7 ± 9.4 12:9 62.3 ± 10.9 250 ± 43

Mediastinal lesion (13) 53.2 ± 7.6 5:8 71.1 ± 9.8 281 ± 59

Liver and others (5) 52.7 ± 8.2 2:3 70.8 ± 6.9 282 ± 45

Infection and Inflammation (6) 52.1 ± 8.5 3:3 69.1 ± 6.2 277 ± 41

Total (45) 55.6 ± 8.5 25:20 66.7 ± 9.5 266 ± 46
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three-compartment [2T3k]). Considering the large num-
ber of voxels, the non-linear estimation problem was 
reformed into a linearized problem [28]. Afterward, the 
least squares algorithm was applied to solve parameters 
 Ki (mL/g/min) and distribution volume (DV) at each 
voxel.  Ki image was transformed to an MRFDG image 
(µmoL/g/min) by multiplying the blood glucose levels 
measured before the scan. IDIF was extracted from the 
ascending aorta by drawing a 10-mm-diameter region-
of-interest (ROI) on six consecutive slices in an image 
obtained by summing early frames (0–60  s [29]). The 
delay (arrival time) between the body tissue and the 
aorta was computed using the leading-edge method [30]. 
Time–activity curve (TAC) at each voxel was aligned to 
the input function by selecting 10% of the peak value of 
the first 120 s as the trigger threshold to mark the arrival 
time. Neither the difference in uptake between blood and 
plasma nor the dispersion accounted for correction.

Lesion detection
All target lesions were identified by two experienced 
nuclear medicine physicians (with 6 and 8 years of expe-
rience) who were blinded to the clinical information. The 
lesions were categorized into benign, indeterminate, and 
malignant lesions. The reference standard was based on 
the results from the follow-up surgery, biopsy, or com-
plementary imaging techniques such as MRI or CT. In 
all, 73/85 lesions were confirmed by follow-up exami-
nations (35 surgeries, 20 biopsies, and 18 imaging). The 
indeterminate lesions were determined if they missed the 
follow-up or could not be determined even after exami-
nation. Next, lesions were visualized and simultaneously 
detected in regular SUV, delayed SUV, and MRFDG 
images side-by-side on uWS-MI software version R004 
(United Imaging Healthcare). In case physicians dif-
fered in their opinions, the final decision was made by 
consensus.

Quantification comparison
All identified regions were delineated and analyzed. Each 
lesion was first delineated in the regular SUV image with 
a 50% cut-off threshold of the maximum intensity value 
by the physicians. Parametric MRFDG images were 
delineated to obtain the metabolic information at the 
same lesion. The lesions were re-delineated in the delayed 
images to calculate their corresponding mean SUV val-
ues, considering  the potential positional mismatch 
between the first and second scans. All delineations were 
performed by the physicians using the software ITK-snap 
version 3.6.0. All computations below were performed 
with in-house MATLAB codes.

The mean TBR and CNR values for each lesion were 
computed for MRFDG, delayed, and regular images as a 

quantitative indication of lesion detectability. The mean 
TBR of a lesion was calculated as follows [17],

This value was measured on each set of images. The 
background region was manually drawn as a spherical 
region for which the locations differed. For instance, for 
a lung lesion, the background region was drawn in the 
chest muscle. For the mediastinal lesion, it was drawn 
in the adjoint tissue in the mediastinum, and for a liver 
lesion, it was drawn in the background in the liver. The 
mean CNR of a lesion was defined by the lesion contrast 
divided by noise [17],

A higher TBR or CNR indicated better quantitative 
lesion detectability. The lesions were further categorized 
into lung lesions with high contrast and the others in 
the mediastinal and liver lesions with low contrast. The 
quantitative detectability of TBR and CNR was compared 
in each group.

Next, the relationship between the imaging protocols 
and the histology of lesions was evaluated. Specifically, 
we studied whether TBR and CNR could differentiate 
benign and malignant lesions. The retention index, with 
proved differential diagnostic value [31], was computed 
and compared as follows:

Statistical analysis
All statistical analyses were performed using the Statisti-
cal and Machine Learning Toolbox in MATLAB version 
R2018b (Mathworks, Inc.). A threshold of 0.05 was con-
sidered significant. The Shapiro–Wilk normality test was 
used to determine whether the data showed a normal 
distribution. Normally distributed data are expressed as 
mean and standard deviation. Pearson’s correlation was 
used to assess the relationship between parameters from 
regular static, delayed, and MRFDG images. TBR and 
CNR between different categories were compared using 
the Kruskal–Wallis test among groups with the correc-
tion of multiple comparisons using Bonferroni’s method.

Results
Visual assessment
A total of 85 lesions were analyzed, as shown in Table 2, 
of which 22 were benign, 46 were malignant, and 17 
were indeterminate. The most remarkable difference was 

TBR =

Mean (lesion)

Mean (background)

CNR =

Mean (lesion)−Mean (background)

σbackground

Retention index(RI) =
Mean (lesiondelay)−Mean (lesionearly)

Mean (lesionearly)
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the improved visual lesion detectability in the paramet-
ric MRFDG and delayed images compared to the regular 
images. An example is shown in Fig.  2A. This could be 
explained by the suppression of the blood compartment, 
particularly in the organs with a non-negligible blood 
component, such as the liver, spleen, and ventricles. For 
example, regular static images revealed FDG avid foci in 
soft tissues or adjoining vessels that could be dismissed 

as background (Fig.  2B, C). This is not observed in lung 
lesions due to the absence of the background activity sur-
rounding the lesion (Fig.  2D). Delayed imaging was less 
superior to regular imaging because the alleviated noise 
level compromised the increased contrast. For example, in 
two lung tumors, two inflammation lesions, and one medi-
astinal lesion, the detectability was even inferior in the 
delayed imaging than in the regular acquisition (Fig. 2B).

Table 2 Lesion distribution with primary suspicious type, number of patients, diagnostic confirmation, and number of lesions

Primary suspicious lesion type Nr. of patients Dx Nr. of ROIs Total lesions

Lung lesion 21 benign 6 44

indeterminate 10

malignant 28

Mediastinal lesion 13 benign 7 25

indeterminate 6

malignant 12

Liver and others 5 benign 1 8

indeterminate 1

malignant 6

Infection and inflammation 6 benign 8 8

indeterminate 0

malignant 0

Total 45 85

Fig. 2 Cases with primary suspicious lesion type (A) liver cancer, (B) mediastinal lesion, and (C) lung cancer. The 60-min regular static images 
cannot confidently rule out the uptake foci (red arrows) from the background. They appear clear in delayed images and further in MRFDG images. 
For a lung lesion (D), the visual detectability among protocols was similar. Distribution volume images are shown in the last column
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Despite the differences in reader confidence, the num-
ber of identified lesions was almost identical for MRFDG 
(85/85), delayed (83/85), and regular images (81/85). 
This suggests that the absence of background activity, 
e.g., in the liver or mediastinum facilitated the reading 
of MRFDG images, although only a few more pathologi-
cal lesions were identified. In one patient with suspicious 
lung cancer, MRFDG excluded a suspicious lesion in an 
SUV image. Figure 3 shows the lesion in the SUV image, 
which is not visible in the MRFDG image. It was even-
tually confirmed as a benign blood clot, which was also 
observed in the DV image, reflecting the activity in blood 
volume.

Quantitative comparison
Lesion TBRs and CNRs for each protocol were com-
pared. Pearson’s correlation analysis revealed that regu-
lar SUV, delayed SUV, and MRFDG values of lesions 
correlated with each other (paired R2 = 0.81, R2

=  0.78, 
R2

=  0.83, all P < 0.01, Fig.  4). The scatter plots in Fig.  4 
display the comparison of their derived mean TBRs. 
Specifically, TBR derived from MRFDG images was sig-
nificantly higher than that derived from regular static 
images (3.56 ± 2.93 vs. 15.29 ± 17.96, P < 0.01, Fig.  5A), 
with seven exceptional cases that were confirmed as 
benign. Similarly, MRFDG image-derived CNR was sig-
nificantly higher than that obtained from regular images 
(22.72 ± 19.29 vs. 56.29 ± 51.53, P < 0.01, Fig. 5B).

On the other hand, this is not the case when com-
paring regular static and delayed images (3.56 ± 2.93 
vs. 5.52 ± 4.95, P = 0.078 for TBR; 22.72 ± 19.29 vs. 
20.72 ± 36.55, P = 0.59 for CNR). In this study, although 
the activity in blood pool significantly declined with 
time, it did not consistently translate into improved 
TBRs. For example, pulmonary lesions had a consid-
erably low background signal, for which TBR in the 
delayed image was not significantly different (P = 0.682, 
Fig.  5C). They were significantly different for tumors 
in mediastinal and liver regions (P = 0.043, Fig.  5D). In 
contrast, TBR derived from MRFDG images was sig-
nificantly higher in either group of lesions (P < 0.01). A 
similar trend was observed for CNR, except that delayed 
imaging was further restricted by high noise/low counts 
(Supplement Fig. 1).

Differential diagnosis
We evaluated whether each measure could differenti-
ate benign and malignant lesions based on follow-up 
confirmation of the pathology. Figure  6 shows the dif-
ferential capability between quantitative (MRFDG) and 
semi-quantitative (regular and delayed SUV) measure-
ments. None of these could significantly distinguish 
between benign and malignant lesions. TBR calcu-
lated from MRFDG images performed better than that 
obtained from regular SUV at 60  min (P = 0.051, effect 
size 0.615 vs. P = 0.588, effect size 0.389) and from 
delayed imaging (P = 0.098, effect size 0.563). The reten-
tion index displayed inferior performance (P = 0.097, 
effect size 0.567) to MRFDG. Similar trends were noted 
for CNR (Supplement Fig. 2).

Discussion
To the best of our knowledge, this study is the first one 
to conduct a head-to-head comparison of FDG dynamic 
and delayed imaging for oncologic applications. Total-
body scanner was known to have ultra-high sensitivity 
that can provide better image quality than conventional 
PET/CT scanner [24, 29, 32, 33]. In addition, dynamic 
PET imaging was previously restricted to single-bed 
positions and time-consuming invasive blood sampling. 
Total-body coverage would permit obtaining non-inva-
sive input functions from the aortic arteries close to the 
arterials sampled [34, 35]. We assessed lesion detect-
ability, quantification, and classification accuracy in 45 
patients who underwent a total-body PET scan, with 
three scan modes: regular static imaging, delayed imag-
ing, and dynamic imaging. It would be interesting to 
investigate whether the findings of this study could trans-
late to a scanner with a regular axial FOV.

The measured values from different protocols cor-
related well (Fig. 4), as evident from the overall number 
of identified lesions that remained almost identical for 
regular SUV, delayed SUV, and dynamic MRFDG images, 
with 4 exceptions of 85 in favor of MRFDG. In certain 
cases, the DV image was used to exclude a possible lesion 
(Fig. 3). When it comes to quantification, MRFDG images 
had significantly higher CNR and TBR quantitative abil-
ity than regular static images, whereas delayed images 
did not always show this capacity, especially for lung 

Fig. 3 MRFDG and distribution volume static images excluded a suspicious lung lesion in a patient. It was visible in the SUV (red arrow) 
and distribution images but not in the MRFDG image, suggesting it to be a blood clot which was confirmed later
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lesions that were devoid from the background (Fig. 5C). 
These results are consistent with different visual detecta-
bility results obtained in parametric MRFDG and delayed 
images. On the other hand, the quantitative superiority 
of MRFDG did not necessarily result in significant differ-
entiation between benign and malignant lesions (Fig. 6). 
However, a trade-off between the complexity of imple-
mentation (see Introduction) and accurately representing 
the FDG kinetics should be carefully considered.

For delayed imaging, higher TBR and CNR did not 
necessarily result in improved lesion detectability, which 
could contradict previously reported findings [5, 36]. This 
can partially be explained as most patients in this study 
suffered from pulmonary diseases, where the pathologi-
cal lesions were primarily located in a tissue (liver) devoid 
of background activity. Therefore, comparable lesion 
detectability was predictable among protocols, although 

delayed imaging could increase the diagnostic accuracy 
of a liver or mediastinal region because normal tissues 
in these organs exhibit a high uptake (Fig.  5D). A simi-
lar observation was noted for the dynamic FDG imaging 
as MRFDG is useful for high-uptake lesions surrounded 
by a high background activity [37]. The possibility that 
MRFDG will offer additional insights into low-uptake 
tumors with low background activity is less. For a similar 
reason, diabetic individuals with poor glucose clearance 
would benefit from dynamic and delayed imaging as they 
have a high background uptake.

Several practical distinctions exist between dynamic 
and delayed imaging. First is the scan time. Dynamic 
imaging begins immediately after the tracer injection 
and lasts over 60 min, whereas delayed imaging initiates 
at least after 90  min. Second, dynamic imaging quanti-
fies the net influx rate, together with micro-parameters, 

Fig. 4 Left column: significant and paired correlations between regular SUV, delayed SUV, and quantitative MRFDG measures for all lesions 
(P < 0.01). Right column: corresponding TBR comparison
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which cannot be achieved by semi-quantitative delayed 
imaging. Third, the major advantage of delayed imaging 
is its increased sensitivity in lesion detection, whereas 
kinetical information in dynamic imaging can further 
increase the specificity [20, 38, 39]. Lastly, there is no 
generally accepted delayed scan time point [40], and the 
parametric information derived from dynamic imaging is 
less time-dependent [41].

The current study has certain limitations. First, only 
a limited number of patients were involved because it 
is challenging to identify and recruit patients undergo-
ing both dynamic and delayed imaging. It is necessary 
to include a population with different types of cancer 
patients. A related issue is that motion artefacts could 
affect the quality of regular, delayed, and MRFDG 
images to different degrees, thereby preventing scan 
inclusion (45/78 in this study). The movement should 

be corrected whenever possible [42, 43]. Second, we 
selected datasets retrospectively, for which the interval 
between initial and delayed acquisition varied between 
120 and 180  min. Ideally, the same delayed interval 
should be applied. Third, tissues such as the liver, show 
reversible kinetics with a high rate of glucose dephos-
phorylation, which could result in biased MRFDG val-
ues [44]. Thus, a more appropriate tissue-specific model 
is warranted. Fourth, the slope of the linear regression 
can be calculated from the Patlak analysis as a surro-
gate of MRFDG [11]. Patlak analysis is a graphical anal-
ysis technique that derives from the full compartment 
model. Compared with full modelling, Patlak analysis 
requires the data after equilibrium and hence requires 
less scan time if a reliable population-based input func-
tion is available. Future studies should focus on their 
comparison.

Fig. 5 TBR (A) and CNR (B) values derived from MRFDG images were significantly higher than those obtained from static images (3.56 ± 2.93 
vs. 15.29 ± 17.96 for TBR, P < 0.01, 22.72 ± 19.29 vs. 56.29 ± 51.53 for CNR, P < 0.01). However, this was not the case when comparing delayed 
images with regular static images (3.56 ± 2.93 vs. 5.52 ± 4.95, P = 0.078 for TBR; 22.72 ± 19.29 vs. 20.72 ± 36.55, P = 0.59 for CNR). TBR was further 
assessed after dividing lesions into (C) pulmonary and (D) non-pulmonary lesions. Pulmonary lesions showed a considerably low background 
signal, for which TBR in the delayed image was not significantly different (P = 0.682, Fig. 5C). However, it was significantly different for the tumors 
in mediastinal and liver regions (P = 0.043, Fig. 5D). In contrast, TBR from the MRFDG was significantly higher in either group of lesions (P < 0.01)
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Conclusion
We conducted a head-to-head comparison of delayed 
and dynamic FDG protocols on a total-body PET scan-
ner, to detect and differentially analyze the lesions in can-
cer patients. On a total-body PET scanner, the dynamic 
protocol provided quantitative advantages over delayed 
SUV measure, especially for lesions in tissues with sig-
nificant background (e.g., blood abundant organs). On 
the other hand, it could not offer an obvious advan-
tage in lesion detection and differential diagnosis when 
compared to regular static SUV measure. Moreover, a 
dynamic or delayed imaging protocol consists of more 
laborious procedures than a regular protocol. Altogether, 
trade-off between the complexity of implementation and 
accurately representing the FDG kinetics should be care-
fully considered while applying these protocols.
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