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Abstract
Background Accurate detection of cervical esophagus invasion (CEI) in HPSCC is challenging but crucial. We aimed 
to investigate the value of magnetic resonance imaging (MRI)-based radiomics for detecting CEI in patients with 
HPSCC.

Methods This retrospective study included 151 HPSCC patients with or without CEI, which were randomly 
assigned into a training (n = 101) or validation (n = 50) cohort. A total of 750 radiomics features were extracted from 
T2-weighted imaging (T2WI) and contrast-enhanced T1-weighted imaging (ceT1WI), respectively. A radiomics 
signature was constructed using the least absolute shrinkage and selection operator method. Multivariable logistic 
regression analyses were adopted to establish a clinical model and a radiomics nomogram. Two experienced 
radiologists evaluated the CEI status based on morphological findings. Areas under the curve (AUCs) of the models 
and readers were compared using the DeLong method. The performance of the nomogram was also assessed by its 
calibration and clinical usefulness.

Results The radiomics signature, consisting of five T2WI and six ceT1WI radiomics features, was significantly 
associated with CEI in both cohorts (all p < 0.001). The radiomics nomogram combining the radiomics signature 
and clinical T stage achieved significantly higher predictive value than the clinical model and pooled readers in the 
training (AUC 0.923 vs. 0.723 and 0.621, all p < 0.001) and validation (AUC 0.888 vs. 0.754 and 0.647, all p < 0.05) cohorts. 
The radiomics nomogram showed favorable calibration in both cohorts and provided better net benefit than the 
clinical model.

Conclusions The MRI-based radiomics nomogram is a promising method for detecting CEI in HPSCC.
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Introduction
Head and neck cancers are the seventh most common 
type of malignancy worldwide [1]. Hypopharyngeal 
squamous cell carcinoma (HPSCC) constitutes 3–5% of 
all head and neck cancers [1, 2]. Primary HPSCCs are 
often locally advanced at the time of diagnosis and fre-
quently combined with the invasion of nearby anatomical 
structures [3]. Among these structures, cervical esopha-
gus invasion (CEI) is an important factor distinguishing 
between T2 and T3/4 stages according to the 8th edition 
of American Joint Committee on Cancer (AJCC) staging 
system [4]. In addition, it has been established that the 
existence of CEI is strongly correlated with poor prog-
nosis of the patients with HPSCC [5]. Thus, accurate 
determination of CEI is crucial in making clinical deci-
sions for HPSCCs. At present, esophagoscopy is listed as 
one of the recommended procedures for detecting CEI in 

newly diagnosed HPSCC. However, it has numerous con-
traindications in clinical applications and may overlook 
pertinent information regarding submucosal extension 
[3, 6–8]. Therefore, there is a pressing need to explore 
alternative approaches that can reliably identify CEI in 
HPSCCs before treatment.

Magnetic resonance imaging (MRI) is instrumental in 
the preoperative staging of HPSCC and has been increas-
ingly used to evaluate tumor invasion into surround-
ing structures [9–11]. However, information derived 
from MRI commonly refers to some simple traits, such 
as primary tumor location, and thickness and contrast 
enhancement of the cervical esophageal wall [3]. In 
addition, visual evaluation of these conventional mor-
phological features is limited by subjectivity and lack of 
a consensus. Radiomics, which involves extracting high-
throughput quantitative features from medical imaging, 
can noninvasively provide information about tumor het-
erogeneity [12–14]. MRI-based radiomics has demon-
strated great potential to predict therapeutic response 
[15], lymph node metastasis [16], and survival [17, 18] 
for HPSCC. However, to our knowledge, there are no 
reports documenting whether radiomics could facilitate 
the detection of CEI in HPSCC.

In this study, we aimed to develop and validate an MRI-
based radiomics nomogram for preoperative prediction 
of CEI in patients with HPSCC.

Methods
Patients
This retrospective study was approved by the Ethics 
Review Board of Shanghai Eye & ENT Hospital of Fudan 
University, and the requirement of informed consent was 
waived. We thoroughly search the picture archiving and 
communication system (PACS) of Shanghai Eye & ENT 
Hospital from December 2014 to December 2022 to 
retrieve data. Patients were selected or excluded accord-
ing to the criteria presented in Fig.  1. A total of 151 
patients were enrolled in the study and randomly allo-
cated to a training cohort (n = 101) or a validation cohort 
(n = 50) at a ratio of 2:1. The clinical characteristics of 
each patient before treatment including gender, age, pri-
mary site, maximum diameter, clinical T stage, clinical N 
stage, and clinical TNM stage were recorded. The gold 
standard for assessing CEI is determined by the postop-
erative pathological findings.

MRI acquisition
MRI examinations was performed on a 3.0 T scanner 
(Magnetom Verio, Siemens Medical, Erlangen, Germany) 
using a 12-channel head and neck array coil. The axial fat-
suppressed T2-weighted imaging (T2WI) and contrast-
enhanced T1-weighted imaging (ceT1W) were used for 
analysis. The MRI acquisition parameters were as follows: 

Fig. 1 Flowchart of the patient selection process. HPSCC, hypopharyn-
geal squamous cell carcinoma; PACS, picture archiving and communica-
tion system; CEI, cervical esophagus invasion
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axial T2WI (repetition time [TR] / echo time [TE], 4000 
ms / 99 ms; matrix, 640 × 592; field of view, 220  mm × 
220 mm; thickness, 6 mm; gap, 0.6 mm) and axial ceT1W 
(TR / TE, 384 ms / 9 ms; matrix, 640 × 592; field of view, 
220  mm × 220  mm; thickness, 6  mm; gap, 0.6  mm). A 
standard dose of 0.1 mmol/kg of gadopentetate dimeglu-
mine (Magnevist, Bayer Healthcare Pharmaceuticals, 
Berlin, Germany) was administered for ceT1WI.

Tumor segmentation and image processing
Tumor segmentation was performed with the open-
source ITK-SNAP software (version 3.6.0; www.itk-snap.
org) on T2WI and ceT1WI images independently. Three-
dimensional regions of interest (ROIs) were manually 
drawn slice by slice to cover the entire tumor by Radiolo-
gist 1 (M.Q.) with 6 years of experience of head-and-neck 
MRI interpretation. Subsequently, 30 randomly selected 
lesions were segmented by Radiologist 2 (J.R.) with 8 
years of experience of head-and-neck MRI interpretation. 
Dice similarity coefficient (DSC) was calculated to evalu-
ate the interobserver’s agreement of tumor segmentation 
between two radiologists. The radiologists were blinded 
to clinical information and histopathologic results 
regarding CEI status. For the hypopharynx/esophagus 
junction, the areas of esophageal thickening with signifi-
cant enhancement on contrast-enhanced T1WI were cat-
egorized as the regions affected by the tumor, and were 
consequently incorporated for analysis. In addition, con-
trast-enhanced T1WI was required to be referenced in 
order to ascertain the tumor boundary on T2WI. Tumor 
segmentation is illustrated in Fig. 2.

Three image-processing methods were conducted on 
all images before feature extraction. First, the in-plane 
resolution was rescaled to 1 × 1 mm2; second, the gray-
level was normalized using µ ± 3σ technique (scale, 100); 
and finally, gray-level discretization was completed with 
the bin count set as 64.

Radiomic-feature extraction
Radiomics features were extracted from T2WI and 
ceT1WI images using PyRadiomics, an open-source 

Python package (version 3.0.1; www.radiomics.io). The 
radiomics features included 14 shape- and size-based fea-
tures, 17 first-order histogram features, and 75 textural 
features. Five classes of textural features were extracted: 
gray-level co-occurrence matrix (GLCM), gray-level 
dependence matrix (GLDM), gray-level run-length 
matrix (GLRLM), gray-level size zone matrix (GLSZM), 
and neighboring gray-tone difference matrix (NGTDM). 
The original, Laplacian of Gaussian (LoG)-filtered (values 
of 1, 3, and 5  mm) and wavelet-transformed (four dif-
ferent combinations of high- and low-frequency bands) 
images were separately used for calculating the histogram 
and textural features. In total, 750 radiomics features 
were obtained from each sequence. Detailed information 
on the radiomics features have been described elsewhere 
(pyradiomics.readthedocs.io/en/latest/index.html).

Feature selection and development of a radiomics 
signature
To evaluate the interobserver reproducibility, intraclass 
correlation coefficients (ICCs) were calculated for each 
radiomics feature. Only the features with satisfactory 
interobserver reproducibility (ICC ≥ 0.8) were retained. 
Then, the collinearity among features was evaluated 
using Spearman’s correlation coefficients (r). If a pair 
of features had high collinearity (r > 0.8), the one with 
higher collinearity with the remaining features was 
excluded. Subsequently, Mann–Whitney U tests were 
conducted for the non-redundant features. The features 
that differed significantly between the two groups with 
and without CEI were screened out for further analy-
sis. Finally, the most significant features were selected to 
construct a radiomics signature using the least absolute 
shrinkage and selection operator (LASSO) method with 
10-fold cross-validation. The radiomics score for each 
patient was calculated by a linear combination of the fea-
tures weighted by their respective coefficients.

Development of a clinical model and radiomics nomogram
The significant clinical characteristics alone and with 
the radiomics signature were entered into multivariate 

Fig. 2 Tumor segmentation of hypopharyngeal squamous cell carcinoma. The segmentation was performed on T2-weighted imaging (a) and contrast-
enhanced T1-weighted imaging (b). By drawing regions of interest slice by slice, a region of interest covering the entire tumor (c) was acquired
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logistic regression analysis to respectively establish 
the clinical model and radiomics model for the train-
ing cohort. A nomogram based on the radiomics model 
was constructed. The performance of the two models for 
detecting CEI were tested in the validation cohort.

MRI visual assessment
Two radiologists (M.Q. and J.R) jointly reviewed all 
MRI scans to evaluate the status of CEI before tumor 
segmentation. Any disagreement was resolved through 
consultation. At approximately six-month intervals, two 
radiologists performed individual assessments of the 
MRI scans. The classification outcomes from two read-
ers were documented for both the pooled and individual 
assessments. The radiologists were blinded to the clinical 
information and histopathologic details.

Statistical analyses
Statistical analyses were performed using R software 
(version 3.5.2; www.r-project.org). The differences in 
clinical characteristics and radiomics features between 
the patients with and without CEI were assessed. All vari-
ables were compared by the χ2 test or Mann–Whitney U 
test, where appropriate. The kappa value was calculated 
to assess the diagnosis consistency of CEI between two 
radiologists, where the kappa value of 0.75 to 1.00 showed 
almost perfect consistency, 0.4 to 0.75 as moderate con-
sistency, and 0 to 0.40 as a poor or no consistency [19]. 
Receiver operating characteristic (ROC) curve analysis 

was used to evaluate the predictive performance of the 
significant variables, prediction models, and pooled read-
ers. The area under the curve (AUC), accuracy, sensitiv-
ity, and specificity were derived. The AUC values of the 
radiomics nomogram for the two cohorts were compared 
with those of the clinical model and pooled readers using 
the DeLong method. The Hosmer–Lemeshow test was 
used to assess the calibration of the radiomics nomo-
gram. Decision curve analysis was performed to quan-
tify the net benefit from the use of the clinical model and 
radiomics nomogram at different threshold probabilities. 
p < 0.05 was considered significant.

Results
Patient characteristics
The baseline characteristics of all patients are summa-
rized in Table 1. The rates of CEI were 38.6% (39 of 101) 
and 52% (26 of 50) in the training and validation cohorts, 
respectively, whereas no difference was found between 
the two cohorts (p = 0.165). Significant differences in 
primary site, maximum diameter, and clinical T stage 
were observed between the patients with and without 
CEI in the training cohort. After multiple logistic regres-
sion analysis, primary site (p = 0.015) and clinical T stage 
(p = 0.033) were confirmed as independent predictors 
for CEI and were used to construct the clinical model 
(Table 2). ROC curve analysis showed that the AUCs for 
primary site and clinical T stage were 0.652 and 0.647, 

Table 1 Clinical characteristics and radiomics score of patients
Training cohort (n = 101) Validation cohort (n = 50)
Without CEI (n = 62) With CEI (n = 39) p value Without CEI (n = 24) With CEI (n = 26) p value

Gender

 Female 4 (6.5%) 2 (5.1%) 1 1 (4.2%) 1 (3.8%) 1

 Male 58(93.5%) 37 (94.9%) 23 (95.8%) 25 (96.2%)

Age (years) 61 (56, 65) 58 (55, 62) 0.056 61 (56, 66) 61 (53, 67) 0.899

Primary site 0.012 0.201

 Pyriform sinus 38 (61.3%) 12 (30.8%) 13 (54.2%) 8 (30.8%)

 Posterior pharyngeal wall 15 (24.2%) 17 (43.6%) 6 (25.0%) 12 (46.2%)

 Postcricoid region 9 (14.5%) 10 (25.6%) 5 (20.8%) 6 (23.1%)

Maximum diameter (mm) 33 (28, 39) 38 (23, 44) 0.001 30 (24, 36) 41 (36, 48) < 0.001

Clinical T stage 0.001 0.005

 T1-2 23 (37.1%) 3 (7.7%) 12 (50.0%) 3 (11.5%)

 T3-4 39 (62.9%) 36 (92.3%) 12 (50.0%) 23 (88.5%)

Clinical N stage 0.830 0.164

 N0 16 (25.8%) 10 (25.6%) 7 (29.2%) 3 (11.5%)

 N1-3 46 (74.2%) 29 (74.4%) 17 (70.8%) 23 (88.5%)

Clinical TNM stage 0.122 0.467

 I-II 10 (16.1%) 2 (5.1%) 3 (12.5%) 6 (23.1%)

 III-IV 52 (83.9%) 37 (94.9%) 21 (87.5%) 20 (76.9%)

Radiomics score -1.04 (-1.61, -0.41) 0.24 (-0.16, 0.57) < 0.001 -1.30 (-1.65, -0.30) 0.45 (-0.10, 0.89) < 0.001
CEI, cervical esophagus invasion

Data are expressed as median (interquartile range) or number (percentage)

http://www.r-project.org
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respectively, in the training cohort, and 0.598 and 0.692, 
respectively, in the validation cohort (Table 3).

Development of a radiomics signature
The average DSC values obtained by the two radiolo-
gists were 81.8% ± 7.06% and 82.2% ± 5.27% for the 
delineations generated on T2WI and ceT1WI, respec-
tively. In total, 65.7% (493/750) of T2WI features and 
74.3% (557/750) of ceT1WI features showed satisfactory 
interobserver agreement (ICC ≥ 0.8). After the collin-
earity analysis, 52 T2WI and 54 ceT1WI features were 
retained. In the training cohort, significant differences 
were observed in 13 T2WI and 18 ceT1WI features 
between the two groups with and without CEI. Finally, 
the LASSO regression identified 11 features (5 T2WI and 
6 ceT1WI features) with non-zero coefficients that were 
used to develop a radiomics signature (Table  4; Fig.  3). 
The radiomics score showed a significant difference 
between the two groups in both cohorts (all p < 0.001, 
Table  1). The AUC values for the radiomics signature 
were 0.916 and 0.865 in the training and validation 
cohorts, respectively (Table 3).

Development of a radiomics nomogram
When the radiomics signature and clinical characteristics 
were incorporated, the radiomics signature (p < 0.001) 
and clinical T stage (p = 0.016) were identified as indepen-
dent predictors and were used to construct a radiomics 
nomogram (Table  2; Fig.  4a). The radiomics nomogram 
exhibited good calibration and yielded non-significant 
results in the training and validation cohorts (p = 0.526 
and 0.969) (Fig. 4b and c).

Performance of the prediction models and readers
During the individual assessment of CEI status, Radiolo-
gist 1 and Radiologist 2 attained accuracies of 62.4% and 
63.4% respectively in the training cohort, while achiev-
ing accuracies of 62.0% and 66.0% respectively in the 
validation cohort. When evaluating the diagnostic con-
sensus for CEI between the two radiologists, there was 

Table 2 Risk factors for cervical esophagus invasion in 
hypopharyngeal squamous cell carcinoma
Variable Radiomics Model Clinical Model

Odds ratio p value Odds ratio p 
value

Primary sites 0.88 (0.34, 
2.23)

0.781 2.09 (1.16, 
3.78)

0.015

Clinical T stage 10.02 (1.55, 
65.04)

0.016 4.64 (1.13, 
19.11)

0.033

Maximum diameter 0.93 (0.89, 
1.02)

0.108 1.05 (0.99, 
1.10)

0.084

Radiomics signature 61.24 (9.54, 
393.08)

< 0.001 NA NA

Data are results of the multivariable regression analysis. Data in parentheses are 
95% confidence intervals

NA, not available

Table 3 Diagnostic performance of the significant predictors in the training and validation cohorts
AUC Accuracy Sensitivity Specitivity

Training cohort

 Primary site 0.652 (0.550, 0.754) 64.4 (63.9, 64.8) 69.2 (54.7, 83.7) 61.3 (49.2, 73.4)

 Clinical T stage 0.647 (0.573, 0.721) 58.4 (57.9, 58.9) 92.3 (83.9, 100) 37.1 (25.1, 49.1)

 Radiomics signature 0.916 (0.866, 0.967) 80.2 (79.9,80.5) 97.4 (92.5, 100) 69.4 (57.9, 80.8)

Validation cohort

 Primary sites 0.598 (0.446, 0.749) 62.0 (61.1, 62.9) 69.2 (51.5, 87.0) 54.2 (34.2, 74.1)

 Clinical T stage 0.692 (0.572, 0.812) 70.0 (69.2,70.8) 88.5 (76.2, 100) 50.0 (30.0, 70.0)

 Radiomics signature 0.865 (0.762, 0.969) 82.0 (81.4, 82.6) 84.6 (70.7, 98.5) 79.2 (62.9, 95.4)
Data are presented as percentages, except AUC; 95% confidence intervals are included in parentheses

AUC, area under the curve

Table 4 LASSO coefficients of the selected features for the 
radiomics signature
Sequence Image 

type
Feature 
class

Feature name LASSO 
coeffi-
cient

T2WI Original Shape MajorAxisLength 1.89E-03

T2WI Original GLSZM LargeAreaHighGray-
LevelEmphasis

9.80E-05

T2WI LoG3mm GLCM Imc1 2.06E + 00

T2WI LoG3mm GLRLM RunEntropy -6.36E-01

T2WI WaveletHL GLDM DependenceEntropy -7.39E-01

ceT1WI Original Shape Flatness -4.20E + 00

ceT1WI LoG3mm Histo-
gram

90Percentile 1.27E-03

ceT1WI LoG3mm GLCM Imc1 2.51E + 00

ceT1WI LoG5mm NGTDM Busyness 4.72E + 00

ceT1WI WaveletHH GLDM LargeDependence-
HighGrayLevelEm-
phasis

4.75E-04

ceT1WI WaveletLL GLCM Imc1 4.05E + 00

(Intercept) 9.50E + 00
GLCM, gray-level co-occurrence matrix; GLRLM, gray-level run-length matrix; 
GLDM, gray-level dependence matrix; GLSZM, gray-level size zone matrix; 
NGTDM, neighboring gray-tone difference matrix; LASSO, least absolute 
shrinkage and selection operator
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Fig. 4 Radiomics nomogram developed with calibration curves. (a) A radiomics nomogram was developed in the training cohort, with radiomics signa-
ture and clinical T stage incorporated. Calibration curves of the radiomics nomogram in the training (b) and validation (c) cohorts

 

Fig. 3 Radiomic feature selection by least absolute shrinkage and selection operator (LASSO) logistic regression. (a) Selection of tuning parameter (λ) 
in the LASSO model using 10-fold cross-validation. Dotted vertical lines were drawn at the optimal values by using the minimum criteria and 1 standard 
error of the minimum criteria (the 1-standard error criteria). The optimal log (λ) of -2.53 was chosen. (b) LASSO coefficient profiles of the 31 features. A 
vertical line was plotted at the optimal log (λ), which resulted in 11 features with non-zero coefficients
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moderate agreement with a kappa value of 0.571. In the 
training cohort, the clinical model and the pooled read-
ers achieved AUCs of 0.723 and 0.621, respectively and 
accuracies of 68.3% and 63.4%, respectively. In the vali-
dation cohort, the clinical model and the pooled readers 
achieved AUCs of 0.754 and 0.647, respectively and accu-
racies of 72.0% and 64.0%, respectively. In the training 
and validation cohorts, the radiomics nomogram showed 
the highest discrimination between the patients with 
and without CEI, with AUCs of 0.923 and 0.888, respec-
tively, and accuracies of 84.2% and 84.0%, respectively. 
The Delong test indicated that the performance of the 
radiomics nomogram was significantly superior to that 
of the clinical model and pooled readers in both cohorts 
(p < 0.001 and p < 0.001, respectively, in the training 

cohort; p = 0.036 and p < 0.001 in the validation cohort). 
The AUC, accuracy, sensitivity, and specificity for each 
model or pooled readers are listed in Table  5 and the 
ROC curves are provided in Fig. 5. Finally, decision curve 
analysis indicated that the radiomics nomogram achieved 
a higher overall net benefit compared with the clini-
cal model across the majority of the range of reasonable 
threshold probabilities in the validation cohort (Fig. 6).

Discussion
CEI status is a key factor affecting the making of a treat-
ment plan and prognostic evaluation for patients with 
HPSCC. In this study, we developed and validated a 
nomogram incorporating an MRI radiomics signature 
and clinical T stage for detecting CEI in HPSCC. The 

Table 5 Diagnostic performance of the clinical model, radiomics nomogram, and readers in the training and validation cohorts
AUC Accuracy Sensitivity Specitivity

Training cohort

 Radiomics nomogram 0.923 (0.876, 0.971) 84.2 (83.9, 84.4) 97.4 (92.5, 100) 75.8 (65.1, 86.5)

 Clinical model 0.723 (0.630, 0.817) 68.3 (67.9, 68.7) 61.5 (46.3, 76.8) 72.6 (61.5, 83.7)

 Pooled readers 0.621 (0.523, 0.719) 63.4 (62.9, 63.8) 56.4 (40.8, 72.0) 67.7 (56.1, 79.4)

 Radiologist 1 0.617 (0.519, 0.716) 62.4 (61.9, 62.8) 59.0 (43.5, 74.4) 64.5 (52.6, 76.4)

 Radiologist 2 0.664 (0.574, 0.753) 63.4 (62.9, 63.8) 79.5 (66.8, 92.2) 53.2 (40.8, 65.6)

Validation cohort

 Radiomics nomogram 0.888 (0.792, 0.983) 84.0 (83.5, 84.5) 73.1 (56.0, 90.1) 95.8 (87.8, 100)

 Clinical model 0.754 (0.617, 0.891) 72.0 (71.2, 72.8) 65.4 (47.1, 83.7) 79.2 (62.9, 95.4)

 Pooled readers 0.647 (0.524, 0.771) 64.0 (63.1, 64.9) 46.2 (27.0, 65.3) 83.3 (68.4, 98.2)

 Radiologist 1 0.623 (0.489, 0.758) 62.0 (61.1, 62.9) 53.8 (34.7, 73.0) 70.8 (52.6, 89.0)

 Radiologist 2 0.659 (0.525, 0.793) 66.0 (65.1, 66.9) 69.2 (51.5, 87.0) 62.5 (43.1, 81.9)
Data are presented as percentages, except AUC; 95% confidence intervals are included in parentheses

AUC, area under the curve

Fig. 5 Receiver operating characteristic curves of the radiomics nomogram, clinical model, and pooled readers in the training (a) and validation (b) 
cohorts
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proposed radiomics nomogram demonstrated supe-
rior performance compared with the clinical model and 
pooled readers in the training and validation cohorts. In 
addition, the radiomics nomogram provided more net 
benefit than the clinical model.

Among the clinical characteristics, maximum diam-
eter was eliminated from predictive models, although it 
showed a significant difference between HPSCCs with 
and without CEI. However, clinical T stage was con-
firmed to be an independent predictor of CEI in clinical 
and radiomics models. These results may be attributed 
to the fact that clinical T stage comprehensively contains 
the information of tumor size, structure invasion, and 
hemilaryngeal fixation. Consistent with a previous study 
[5], primary site in the posterior pharyngeal wall was 
significantly associated with the presence of CEI in the 
training cohort. In addition, the small sample size may 
contribute to the non-significant difference of primary 
site between the two groups in the validation cohort. By 
comparing the predictive performance of the significant 
variables, we found that the radiomics signature achieved 
the best performance with AUCs of 0.916 and 0.865 in 
the training and validation cohorts, respectively. These 
results preliminarily confirmed that, compared with the 
clinical characteristics, the radiomics approach could 
generate more relevant information related to CEI.

Radiomics was raised based on the hypothesis that 
the spatial distribution of voxel intensities could pre-
cisely reflect the intratumor heterogeneity [20, 21]. It 
can transform medical images into multi-dimensional 
quantitative data [22]. In our study, five T2WI and six 
ceT1WI features were identified by LASSO regression 
to develop the radiomics signature. Radiomics features 
from T2WI and ceT1WI can reflect the heterogeneity 
of tumor water content and blood supply, respectively 
[17, 23]. Therefore, radiomics analysis based on different 
imaging sequences could provide supplemental informa-
tion regarding the prediction of CEI in HPSCC. Among 
the optimal radiomics features, there was one first-order 
histogram feature and eight textural features (Table  4). 
Histogram features mainly describe the appearance fre-
quency of each gray level within the whole ROI [24], 
whereas textural features can comprehensively describe 
the spatial distribution of pixel intensity [25–27]. There-
fore, these features could capture the global, local, and 
regional heterogeneity of lesions at different scales [24]. 
In addition, three, five, and three optimal features were 
extracted from the original, LoG-filtered, and wavelet-
transformed images, respectively (Table  4). The gray-
scale distribution and variation on different types of 
images may comprehensively reflect tumor microscopic 

Fig. 6 Decision curve analysis for the clinical model and radiomics nomogram. The y-axis indicates the net benefit and the x-axis indicates threshold 
probability. The radiomics nomogram had a higher overall net benefit in detecting cervical esophagus invasion (CEI) compared with the clinical model 
and simple diagnoses such as all patients with or without CEI across the majority of the range of reasonable threshold probabilities in the validation 
cohort
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characteristics, which facilitate monitoring of the tumor 
biological behavior.

To thoroughly investigate the advantages of MRI 
radiomics, the radiomics nomogram was compared with 
a clinical model and pooled assessment by two experi-
enced radiologists. We found that a considerable pro-
portion of patients were misclassified according to visual 
assessment. Morphological MRI assessment predomi-
nantly relies on the experience and capabilities of the 
radiologists [28]. Moreover, the thickness and enhance-
ment pattern of normal cervical esophageal wall var-
ies among different patients, which can also affect the 
diagnostic accuracy of radiologists [29]. In addition, it 
further underscores the significance of developing an 
objective and quantitative imaging marker for CEI, given 
the unsatisfactory level of diagnostic concordance (kappa 
value of 0.571) on CEI status between the two radiolo-
gists. Our results showed that the radiomics nomogram 
(AUC 0.888; Accuracy 84.0%) achieved superior perfor-
mance than the clinical model (AUC 0.754; Accuracy 
72.0%) and pooled readers (AUC 0.647; Accuracy 64.0%) 
in the validation cohort. In addition, the radiomics 
nomogram exhibited good calibration in the training and 
validation cohorts. The decision curve analysis showed 
that the radiomics nomogram had better clinical utility 
than the clinical model in the validation cohort. Collec-
tively, these results suggest that the nomogram is a reli-
able and reproducible tool for detecting CEI in HPSCC. 
Therefore, our findings could potentially benefit clinical 
practice for HPSCC in the future.

This study does have several limitations. First, sample 
selection bias could not be eliminated in this the single-
center retrospective study due to the strict enrollment 
criteria utilized. The value of MRI radiomics in predicting 
CEI in HPSCC needs to be further confirmed in multi-
center and large-scale studies. Second, only whole tumor 
ROIs were used in this study. As the most critical part for 
evaluating CEI in HPSCC, the hypopharynx/esophagus 
junction is deserved to be independently to be analyzed. 
Third, T1WI radiomic features were not explored due to 
the challenge in tumor segmentation, some important 
T1WI information regarding CEI may be leaved out. 
Fourth, all the ROIs were manually delineated, which is 
time-consuming and has interobserver variation. There-
fore, an automatic segmentation approach should be 
explored in the future. Finally, the methods used in this 
study need improvement; additional machine learning or 
deep learning techniques also warrant investigation.

Conclusion
In conclusion, our MRI-based radiomics nomogram 
showed good diagnostic efficiency in detecting the CEI 
status of HPSCC. The nomogram may provide added 

value for clinical decision-making and prognostic evalu-
ation for patients with HPSCC.
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