
Setyawan et al. Cancer Imaging            (2024) 24:3  
https://doi.org/10.1186/s40644-023-00638-8

RESEARCH ARTICLE Open Access

© The Author(s) 2023. Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which 
permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the 
original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or 
other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line 
to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory 
regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this 
licence, visit http://creativecommons.org/licenses/by/4.0/. The Creative Commons Public Domain Dedication waiver (http://creativecom-
mons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated in a credit line to the data.

Cancer Imaging

Beyond invasive biopsies: using VASARI 
MRI features to predict grade and molecular 
parameters in gliomas
Nurhuda Hendra Setyawan1*  , Lina Choridah1, Hanung Adi Nugroho2, Rusdy Ghazali Malueka3 and 
Ery Kus Dwianingsih4 

Abstract 

Background Gliomas present a significant economic burden and patient management challenge. The 2021 WHO 
classification incorporates molecular parameters, which guide treatment decisions. However, acquiring these molecu-
lar data involves invasive biopsies, prompting a need for non-invasive diagnostic methods. This study aims to assess 
the potential of Visually AcceSAble Rembrandt Images (VASARI) MRI features to predict glioma characteristics such 
as grade, IDH mutation, and MGMT methylation status.

Methods This study enrolled 107 glioma patients treated between 2017 and 2022, meeting specific criteria includ-
ing the absence of prior chemotherapy/radiation therapy, and the presence of molecular and MRI data. Images were 
assessed using the 27 VASARI MRI features by two blinded radiologists. Pathological and molecular assessments were 
conducted according to WHO 2021 CNS Tumor classification. Cross-validation Least Absolute Shrinkage and Selec-
tion Operator (CV-LASSO) logistic regression was applied for statistical analysis to identify significant VASARI features 
in determining glioma grade, IDH mutation, and MGMT methylation status.

Results The study demonstrated substantial observer agreement in VASARI feature evaluation (inter- and intra-
observer κ = 0.714 - 0.831 and 0.910, respectively). Patient imaging characteristics varied significantly with glioma 
grade, IDH mutation, and MGMT methylation. A predictive model was established using VASARI features for glioma 
grade prediction, exhibiting an AUC of 0.995 (95% CI = 0.986 – 0.998), 100% sensitivity, and 92.86% specificity. IDH 
mutation status was predicted with AUC 0.930 (95% CI = 0.882 - 0.977), and improved slightly to 0.933 with ’age-
at-diagnosis’ added. A model predicting MGMT methylation had a satisfactory performance (AUC 0.757, 95% 
CI = 0.645 - 0.868), improving to 0.791 when ’age-at-diagnosis’ was added.

Conclusions The T1/FLAIR ratio, enhancement quality, hemorrhage, and proportion enhancing predict glioma grade 
with excellent accuracy. The proportion enhancing, thickness of enhancing margin, and T1/FLAIR ratio are signifi-
cant predictors for IDH mutation status. Lastly, MGMT methylation is related to the longest diameter of the lesion, 
edema crossing the midline, and the proportion of the non-enhancing lesion. VASARI MRI features offer non-invasive 
and accurate predictive models for glioma grade, IDH mutation, and MGMT methylation status, enhancing glioma 
patient management.
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Introduction
Gliomas are the most common primary intracranial 
tumors, accounting for a significant proportion of 
malignant brain tumors. Glioblastoma is the most com-
mon histology of glioma, representing approximately 
45% of all gliomas [1]. The incidence and survival rates 
of glioma vary across populations, and recent studies 
have provided updated incidence and survival data [2]. 
The prognosis for glioma patients remains poor, with 
a 5-year relative survival rate of approximately 5% for 
glioblastoma [1]. The economic burden of glioma is 
substantial, encompassing direct medical costs, non-
medical costs, and indirect costs related to productiv-
ity loss. The costs associated with glioma treatment, 
including surgery, radiotherapy, and chemotherapy, can 
be substantial. Glioma survivorship also poses socio-
economic challenges, impacting patients, their families, 
and society as a whole [3–5].

The importance of molecular diagnosis in brain gli-
oma according to the WHO CNS classification 2021 is 
significant. The 2021 WHO classification incorporates 
molecular parameters in addition to histology to define 
many tumor entities, providing a more comprehensive 
and precise diagnosis in the molecular era. The integra-
tion of molecular information in CNS tumor classifica-
tion allows for improved diagnostic precision, better 
prognostic information, and the development of tar-
geted therapies [6].

IDH mutations, particularly in IDH1 and IDH2 genes, 
are mutually exclusive and have significant implications 
for tumor behavior and patient prognosis [7]. Gliomas 
with IDH mutations are associated with better over-
all survival and response to treatment compared to 
IDH wild-type gliomas [8]. Therefore, the assessment 
of IDH mutation status is crucial for accurate glioma 
classification and treatment planning. MGMT meth-
ylation status is another important molecular marker 
in glioma diagnosis. MGMT is a DNA repair enzyme 
that can counteract the effects of alkylating agents used 
in chemotherapy. Methylation of the MGMT promoter 
leads to reduced MGMT expression and increased sen-
sitivity to alkylating agents. Therefore, the determina-
tion of MGMT methylation status can guide treatment 
decisions, particularly in the selection of patients who 
may benefit from alkylating chemotherapy [9]. The 
Ki-67 proliferation index is a measure of cell prolifera-
tion and is commonly used as a prognostic marker in 
gliomas. High Ki-67 labeling index is associated with 
increased tumor aggressiveness and poorer prognosis 
[10]. The assessment of Ki-67 proliferation index pro-
vides valuable information for tumor grading and helps 
in determining the appropriate treatment approach.

However, to obtain these molecular marker data, 
patients must undergo a brain biopsy procedure. Brain 
biopsies are invasive procedures that carry inherent risks, 
such as bleeding, infection, and damage to surrounding 
brain tissue. The invasiveness of the procedure can lead 
to patient rejection or reluctance to undergo the biopsy, 
especially in cases where the tumor is located in criti-
cal or difficult-to-reach areas of the brain [11]. Tumors 
located in eloquent or deep brain regions, such as the 
brainstem or basal ganglia, may be difficult to access 
safely. In such cases, the risk of complications and dam-
age to vital brain structures may outweigh the potential 
benefits of obtaining a tissue sample. Additionally, mul-
tifocal gliomas, which involve multiple areas of the brain, 
may require multiple biopsies to accurately characterize 
the tumor [11, 12].

To overcome these challenges, alternative non-inva-
sive methods for diagnosing and monitoring gliomas 
have been explored. Liquid biopsies, which involve the 
analysis of circulating tumor DNA or other biomarkers 
in body fluids such as blood or cerebrospinal fluid, offer 
a less invasive approach for obtaining molecular infor-
mation about the tumor [13, 14]. Non-invasive imaging 
techniques, such as magnetic resonance imaging (MRI) 
and spectroscopy, can also provide valuable information 
about tumor characteristics and grade [15, 16].

The VASARI (Visually AcceSAble Rembrandt Images) 
MRI features are a set of standardized descriptors used 
to characterize brain tumors on contrast-enhanced MRI 
scans. These features provide qualitative and quantitative 
information about the visual appearance and character-
istics of the tumor, aiding in the diagnosis, grading, and 
prognostication of gliomas [17]. The VASARI features 
encompass various aspects of the tumor, including its 
location, shape, enhancement quality, necrosis propor-
tion, edema proportion, and other geometric properties 
[18]. The standardized nature of the VASARI features 
allows for reproducibility and consistency in the interpre-
tation of MRI scans, enabling interobserver agreement 
and facilitating multicenter collaborations [19, 20]. The 
use of VASARI features in structured reporting systems 
improves communication between radiologists, oncolo-
gists, and other healthcare professionals involved in the 
management of glioma patients [20]. They have been 
employed in machine learning algorithms and radiom-
ics analyses to improve the accuracy of glioma grading, 
prognosis prediction, and treatment response assessment 
[21, 22]. By combining VASARI features with other imag-
ing features and clinical data, predictive models can be 
developed to guide treatment decisions and patient man-
agement [23, 24].

The novel nature of molecular markers in glioma, and 
the potential for non-invasive imaging to predict these 
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data, underscore the need for further exploration and 
validation of non-invasive diagnostic and prognostic 
tools. These could mitigate the limitations and risks asso-
ciated with brain biopsies. Our study aims to evaluate the 
potential of VASARI MRI features in providing accurate 
and valuable information about glioma characteristics, 
namely glioma grade, IDH mutation status, and MGMT 
methylation status. We plan to develop predictive models 
that integrate these MRI features with other clinical data, 
with the goal of guiding treatment decisions and improv-
ing patient management in glioma.

Methods
Ethical approval
In this observational analytical study, a retrospective 
analysis was conducted on both magnetic resonance 
(MR) imaging and molecular data belonging to 107 
glioma patients who underwent treatment within our 
institution. All datasets were effectively anonymized and 
subsequently incorporated into this study, aligning with 
a pre-established retrospective protocol approved by the 
Institutional Review Board (IRB) of Universitas Gadjah 
Mada. The IRB provided clearance under the approval 
number KE/FK/1182/EC/2022, and written consents 
were obtained from the patients involved in the study.

Subject selection
Between November 2017 and November 2022, our insti-
tution treated 220 glioma patients. The inclusion criteria 
for this study were as follows: patients with a definitive 
pathologic diagnosis of glioma, presence of molecular 
data (IDH mutation status, MGMT methylation status, 
and Ki-67 proliferation index), absence of prior chemo-
therapy and/or radiation therapy, and availability of MR 
data without any severe artifacts. Medical records of 107 
patients meeting these criteria were extracted from our 
institutional database, while imaging data were accessed 
from our institution’s picture archiving and communica-
tion system. The detailed process of patient recruitment 
and the exclusion criteria are provided in Fig. 1.

Imaging parameter and VASARI assessment
All patients underwent MR imaging using a 1.5 T Philips 
Multiva (Philips HealthCare, Best, Netherlands) or a 3 T 
Siemens Skyra (Siemens, Erlangen, Germany). The brain 
contrast-enhanced MRI protocol was conducted, which 
included axial T1-weighted images, axial T2-weighted 
images, axial FLAIR (Fluid-Attenuated Inversion Recov-
ery) images, axial  b0 and  b1000 DWI (Diffusion-Weighted 
Images), and subsequent ADC (Apparent Diffusion 
Coefficient) images. Additionally, contrast-enhanced 3D 
volumetric spin echo T1-weighted images were taken 
after the injection of an intravenous Gadolinium-based 

contrast agent, Gadovist (Bayer AG, Germany), at a 
dose of 0.1 mmol per kilogram of body weight. Detailed 
parameters of the MR sequences are presented in Table 1. 
All imaging data were anonymized and can only be iden-
tified by the subject ID number. There is no information 
in the DICOM metadata that can be related to the real 
patient identity.

The visual radiomic features were assessed by two radi-
ologists (each with experience and exposure to brain 
glioma cases for 5 years) in a room with adequate light-
ing, using a diagnostic monitor, and the OsiriX DICOM 
Viewer software version 8.5 (Pixmeo, Switzerland). Both 
radiologists were blinded to the patient’s basic informa-
tion, including histopathological results and molecular 
data. Initially, both radiologists independently reviewed 
the entire dataset and assessed the visual radiomic fea-
tures using VASARI parameters [18]. Differences of 
opinion were resolved through discussion, resulting in a 
final common assessment. This consensus-building step 
occurred after the initial interpretations but prior to the 
calculation of Kappa values comparing the two radiolo-
gists. However, for intra-observer agreement, only one 
radiologist repeated the assessment 4 weeks later.

Based on the VASARI assessment, a brain glioma has 
several components: necrotic areas, enhancing solid 
areas, non-enhancing solid areas, and edema areas. 
Necrotic areas are defined as areas that are hypointense 
on T1-WI compared to normal brain parenchyma, hyper-
intense on T2-WI, and do not enhance after contrast 
administration. Enhancing solid areas are defined as areas 
that are hypointense or isointense on T1-WI compared 
to normal brain parenchyma, hypointense or isointense 
on T2-WI, and enhance after contrast administration. 
Non-enhancing solid areas are defined as areas that are 
hypointense or isointense on T1-WI compared to normal 
brain parenchyma, hypointense or isointense on T2-WI, 
but do not enhance on T1-WI post-contrast administra-
tion and do not have signals corresponding to necrotic 
areas. The edema area is the area outside the boundary 
of the necrotic and solid areas, appearing hypointense on 
T1-WI compared to normal brain parenchyma, hyper-
intense on T2-WI, but does not enhance after contrast 
administration. The edema area also features vasogenic 
edema characteristics such as a finger-like appearance 
or pseudopods. Hemorrhage generally appears as hyper-
intensity on T1-WI and hypointensity on T2-WI, which 
can be confirmed with hypointense appearance on SWI 
(susceptibility-weighted imaging). Diffusion character-
istic assessment is performed on DWI b1000 and ADC 
images, considering the presence of intratumoral hemor-
rhage products and the possible T2-shine through effect. 
In total, there are 27 MRI features evaluated, namely 
tumor location, side of tumor epicenter, eloquent brain 
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areas, enhancement quality, proportion of enhancing 
tumor, proportion of non-enhancing tumor (nCET), pro-
portion of tumor necrosis, cysts, multifocal or multicen-
tric lesions, T1/FLAIR ratio, thickness of the enhancing 
margins, definition of the enhancing margins, definition 
of the non-enhancing margins, proportion of edema, 
edema crossing midline, hemorrhage, diffusion char-
acteristics, pial invasion, ependymal extension, cortical 
involvement, deep white matter invasion, nCET crosses 

midline, CET crosses midline, satellites, calvarial remod-
eling, longest diameter of FLAIR abnormality, and per-
pendicular diameter of the longest FLAIR abnormality.

Pathological and molecular assessment
All tissue samples were obtained from biopsy results 
or using fresh surgical tissues preserved in formalin-
fixed paraffin-embedded (FFPE) blocks. All specimens 
were evaluated for classification according to the WHO 

Fig. 1 Subject selection process
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2021 Central Nervous System Tumor classification by 
a pathologist. The determination of the degree of brain 
glioma was based on morphological criteria. To confirm 
that the specimen was indeed a brain glioma, an immu-
nohistochemical examination was performed on the 
glial fibrillary acidic protein. The evaluation of the Ki-67 
labeling index was conducted using the mean method 
by two pathologists without knowledge of the tumor 
grade and the results of other doctors’ interpretations. 
The IDH mutation status examination used the immu-
nohistochemical method, the RFLP (Restriction Frag-
ment Length Polymorphism) method, or PCR from FFPE 
blocks or fresh tissue, in succession if earlier results were 

inconclusive. The MGMT methylation status examina-
tion was performed using the immunohistochemical 
method and qRT-PCR. The techniques used have been 
validated and reported in previous studies [25–27].

Statistical analysis
All statistical analyses were conducted using Stata soft-
ware version 17 (StataCorp, College Station, TX, USA). 
The basic characteristics of patients in the low-grade 
and high-grade glioma groups, IDH mutation status, 
and MGMT methylation were evaluated using the Chi-
Squared Test and Independent Samples T-Test, accord-
ingly. Cross-validation Least Absolute Shrinkage and 

Table 1 MR imaging parameters used in two MR systems

FLAIR Fluid-Attenuated Inversion Recovery, T1-WI T1-Weighted Images, T2-WI T2-Weighted Images, DWI Diffusion-Weighted Images, ADC Apparent Diffusion 
Coefficient

MR sequences Philips Multiva 1.5 T Siemens Skyra 3 T

Axial T2-FLAIR Spin echo; inversion recovery Spin echo; inversion recovery

Slice thickness 5 mm 4.5 mm

Pixel/voxel size 0.89 × 0.89 mm 0.85 × 0.85 mm

Time echo 140 ms 85 ms

Time repetition 9000 ms 8000 ms

Inversion time 2700 ms 2372 ms

Acquisition matrix 256 × 256 256 × 256

Axial T1-WI Spin echo Spin echo

Slice thickness 5 mm 4.5 mm

Pixel/voxel size 0.71 × 0.71 mm 0.68 × 0.68 mm

Time echo 15 ms 11 ms

Time repetition 678 ms 1800 ms

Acquisition matrix 320 × 320 320 × 320

Axial T2-WI Spin echo Spin echo

Slice thickness 5 mm 4.5 mm

Pixel/voxel size 0.34 × 0.34 mm 0.49 × 0.49 mm

Time echo 120 ms 111 ms

Time repetition 4000 ms 5000 ms

Acquisition matrix 672 × 672 448 × 392

Axial 3D T1-WI post-contrast admin-
istration

Spin echo volumetric Spin echo volumetric

Slice thickness 1.2 mm 0.9 mm

Pixel/voxel size 0.7 × 0.7 mm 0.89 × 0.89 mm

Time echo 9.3 ms 11 ms

Time repetition 400 ms 700 ms

Acquisition matrix 352 × 352 256 × 256

Axial DWI & ADC Echo planar imaging Echo planar imaging

Slice thickness 5 mm 4 mm

Pixel/voxel size 0.7 × 0.7 mm 1.72 × 1.72 mm

Time echo 72 ms 59 ms

Time repetition 3500 ms 5870 ms

Acquisition matrix 336 × 336 128 × 128

b-value 0 & 1000 0 & 1000
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Selection Operator (CV-LASSO) logistic regression 
method was used to identify which of the 27 VASARI fea-
tures have significant predictive value in determining the 
grade of glioma, IDH mutation status, and MGMT meth-
ylation status. During the process of cross-validation, 
data are continually split into training and validation sub-
sets. The model is trained on the training subset, and the 
prediction error is computed using the validation subset. 
This procedure aids in determining the best value for λ, 
that maximizes the model’s predictive accuracy, mean-
ing it reduces the estimated mean-squared prediction 
error to its lowest possible value (λopt) [28]. The Hosmer–
Lemeshow test was performed to assess the goodness-
of-fit of the model. A tenfold cross-validation test was 
conducted by evaluating the standard deviation of the 
cross-validated mean AUC. The performance of the pre-
dictive model will be visualized with the receiver operat-
ing  characteristic curve (ROC) and evaluated using the 
area under the curve (AUC). The optimal cut-off point 
will be selected to obtain the best sensitivity, specificity, 
and accuracy of the model.

Results
Observer agreement
In assessing both inter-observer and intra-observer 
agreement, we utilized Cohen’s kappa coefficient. For 
inter-observer agreement, the kappa coefficient ranged 
from 0.714 to 0.831, which indicates substantial agree-
ment between different observers across all VASARI 
features. As for the intra-observer agreement, evalua-
tions were conducted four weeks apart, yielding a kappa 
coefficient of 0.910. This falls within the ’almost perfect’ 
agreement category, highlighting that individual observ-
ers were highly consistent in their evaluations across dif-
ferent time points.

Subject characteristics
In our study, the subjects’ characteristics varied across 
sex, age, and Ki-67 proliferation index. We further cat-
egorized these characteristics according to glioma grade, 
IDH mutation status, and MGMT methylation (Table 2). 
When examining the glioma grade, we noticed signifi-
cant differences across various patient characteristics. 
Age demonstrated a pronounced association with glioma 
grade. High-grade gliomas were more common in older 
patients (50.35 ± 13.90 years old), while younger patients 
were more likely to be diagnosed with low-grade gliomas 
(33.32 ± 12.44  years old, p < 0.001). High-grade gliomas 
exhibited significantly higher means of the Ki-67 prolif-
eration index compared to low-grade gliomas (24.86 vs 
7.12, respectively, p < 0.001). The distribution of sex did 
not vary significantly between low-grade and high-grade 
glioma patients (p = 0.451).

In terms of IDH mutation status, significant variations 
were observed across age. IDH-wild types were found 
more often in older patients than in younger ones, with 
a mean age difference of 48.39 vs 37.42 (p = 0.002). Upon 
comparing IDH mutation status with MGMT methyla-
tion, we found a significant difference in proportion; most 
of the MGMT-unmethylated gliomas were also IDH-wild 
type (p < 0.001). Sex and Ki-67 proliferation index did not 
differ significantly between IDH-mutant and IDH-wild 
type groups (p = 0.254 and p = 0.261, respectively). Simi-
lar patterns were not observed with MGMT methylation 
status, with no statistically significant difference observed 
among sex (p = 0.721), age (p = 0.317), and Ki-67 prolifer-
ation index (p = 0.087).

VASARI and grade prediction
The logistic regression procedure using the cross-vali-
dation LASSO technique on the 27 VASARI features to 
predict glioma grades resulted in 8 significant predic-
tive features that have non-zero coefficients (Table  3). 
The features included in the glioma grade prediction 
model based on VASARI features are enhancement qual-
ity (f4), proportion enhancing (f5), proportion necrosis 
(f7), presence of cyst (f8), T1/FLAIR ratio (f10), presence 
of hemorrhage (f16), and diffusion characteristics (f17). 
This prediction model has good Hosmer–Lemeshow 
goodness-of-fit (p = 0.997) and robustness, with a stand-
ard deviation of 0.040 in the tenfold cross-validation 

Table 2 Subject characteristics relative to glioma grade, IDH 
mutation, and MGMT methylation

Chi-Squared Test and Independent Samples T-Test were utilized as appropriate. 
Data are presented as number (percentage) or mean (standard errors)

IDH Isocitrate dehydrogenase, MGMT Methylguanine DNA‐methyltransferase
* denotes statistically significant p value of less than 0.05
a data missing (n = 2)
b data missing (n = 3)

a. Subject characteristics relative to glioma grade

Low Grade (n = 28) High Grade (n= 79) p-value
Sex (male) 14 (50%) 46 (58.22%) 0.451

Age (years) 33.32 (12.44) 50.35 (13.90)  < 0.001*

Ki-67b 7.12 (13.61) 24.86 (19.09)  < 0.001*

b. Subject characteristics relative to IDH mutation  statusa

Mutant (n = 24) Wildtype (n= 81) p-value
Sex (male) 17 (70.83%) 42 (51.85%) 0.254

Age (years) 37.42 (10.54) 48.39 (15.99) 0.002*

Ki-67b 16.61 (18.01) 21.75 (19.86) 0.261

c. Subject characteristics relative to MGMT methylation status

Methylated (n= 30) Unmethylated (n= 77) p-value
Sex (male) 16 (53.33%) 44 (57.14%) 0.721

Age (years) 48.30 (11.4) 44.96 (16.71) 0.317

Ki-67b 15.14 (18.05) 22.32 (19.67) 0.087



Page 7 of 15Setyawan et al. Cancer Imaging            (2024) 24:3  

test. The ROC curve depicts the discriminative ability of 
this model, with an AUC value of 0.995 (95% CI = 0.986 
– 0.998) (Fig.  2). The sensitivity of this model is 100%, 
with a specificity of 92.86%, and an accuracy of 98.13%. 
Adding the predictor variable age did not significantly 
increase the AUC.

VASARI and molecular profile
We attempted to identify which VASARI features could 
serve as reliable predictors for IDH mutation status and 
MGMT methylation. IDH-mutant was established as the 
base category, enabling predictor features to be used for 

estimating the likelihood of patients with certain MRI 
characteristics having IDH-wildtype status. LASSO 
regression cross-validation techniques identified 12 pre-
dictor features with non-zero coefficients as predictors of 
IDH mutation status (Table  4). This IDH mutation pre-
diction model demonstrated good Hosmer–Lemeshow 
goodness-of-fit (p = 0.771) and robustness, with a stand-
ard deviation of 0.102 in the tenfold cross-validation 
test. The ROC curve indicated good performance with 
an AUC of 0.930 (95% CI = 0.882—0.977). The addition 
of the predictor variable ’age-at-diagnosis’ improved the 
AUC performance to 0.933 (Fig. 3). The best sensitivity, 

Table 3 VASARI features predicting high grade glioma yields 8 significant features with non-zero coefficients

Categories (within parentheses) have significant odds ratios compared to their base categories for predicting high grade glioma

VASARI Visually AcceSAble Rembrandt Images, OR odds ratio, FLAIR fluid-attenuated inversion recovery, LASSO (Least Absolute Shrinkage and Selection Operator)

Selected VASARI features Logistic LASSO coefficient Category OR (95% CI) p-value

f4–enhancement quality 1.090 (marked/avid) 20.70 (4.782—89.607)  < 0.001

f5–proportion enhancing 1.549 (34–67%) 11.48 (1.302—75.159) 0.028

f7–proportion necrosis 0.719

f8–cysts -1.004

f10–T1/FLAIR ratio 0.503 (infiltrative) 41.99 (4.603—383.215) 0.001

f13–definition of the non-enhancing 
margin

0.449

f16–hemorrhage 0.650 (yes) 13.57 (4.553—40.442)  < 0.001

f17–diffusion characteristics 0.966

Fig. 2 Receiver operating characteristic (ROC) curve with an area under the curve (AUC) value of 0.9946 for the model prediction of glioma grade 
based on VASARI features
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specificity, and accuracy of this model were 92.59%, 
70.83%, and 87.62%, respectively. A deeper analysis of 
the categorical VASARI features revealed the specific 
odd ratios for each category within the VASARI features, 
compared to its base category (Table  4). Those features 
were enhancing proportion (f5) of 34–67% (OR 6.333, 
95% CI = 1.854—21.638), T1/FLAIR ratio (f10) of infiltra-
tive (OR 4.727, 95% CI = 1.587—14.074), and thickness of 
enhancing margin (f11) of thick/nodular (OR 6.328, 95% 
CI = 1.880—21.295).

MGMT methylation is another important molecular 
marker in glioma management. MRI through VASARI 
evaluation is expected to predict MGMT methylation 

status. MGMT-methylated was set as the base category, 
due to its characteristic of providing a better prognosis 
for patients, with predictor features being used to esti-
mate the likelihood of a glioma being MGMT-unmeth-
ylated. Analysis using LASSO regression identified 5 
predictor features with non-zero coefficients as predic-
tors of MGMT methylation status (Table 5). This MGMT 
methylation prediction model demonstrated good Hos-
mer–Lemeshow goodness-of-fit (p = 0.452), with a stand-
ard deviation of 0.130 in the tenfold cross-validation test. 
The ROC curve indicated fairly good performance with 
an AUC of 0.757 (95% CI = 0.645—0.868). The addition of 
the ’age-at-diagnosis’ variable improved the AUC to 0.791 

Table 4 VASARI features predicting IDH wildtype status resulted in 12 significant features with non-zero coefficients

Categories (within parentheses) have significant odds ratios compared to their base categories for predicting IDH wildtype status

VASARI Visually AcceSAble Rembrandt Images, OR odds ratio, FLAIR fluid-attenuated inversion recovery, LASSO (Least Absolute Shrinkage and Selection Operator), IDH 
Isocitrate dehydrogenase

Selected VASARI features Logistic LASSO 
coefficient

Category OR (95% CI) p-value

f1–tumor location 0.199

f3–eloquent brain 0.106

f5–proportion enhancing 0.240 (34–67%) 6.333 (1.854—21.638) 0.003

f6–proportion of non-enhancing -0.214

f10–T1/FLAIR ratio 0.276 (infiltrative) 4.727 (1.587—14.074) 0.005

f11–thickness of enhancing margin 0.377 (thick/nodular) 6.328 (1.880—21.295) 0.003

f13–definition of the non-enhancing margin -0.224

f22–non-contrast enhancing crosses midline -0.191

f23–contrast-enhancing crosses midline -1.077

f24–satellites 0.037

f29–longest diameter -0.142

f30–perpendicular to longest diameter -0.143

Fig. 3 Receiver operating characteristic (ROC) curve with (a) an area under the curve (AUC) value of 0.930 for the model prediction of IDH mutation 
status based on VASARI features and (b) AUC value of 0.933 with the addition of age-at-diagnosis variable
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(Fig.  4). The best sensitivity, specificity, and accuracy 
values were 94.81%, 33.33%, and 77.57%, respectively. 
Further analysis revealed which categories within the 
VASARI features were significant in predicting MGMT 
methylation status (Table  5). These categories were the 
proportion of non-enhancing (f6) of 68–100% (OR 0.215, 
95% CI = 0.067—0.687), the presence of edema crossing 
the midline (f15) (OR 0.305, 95% CI = 0.125—0.742), and 
longest diameter (f29) (OR 0.746, 95% CI = 0.599—0.929).

Discussion
In this study, we attempted to create a predictive model 
from VASARI features to predict glioma grade, IDH 
mutation status, and MGMT methylation. Not every 
glioma patient at our institution undergoes molecu-
lar examinations, resulting in 107 patients being eli-
gible for this study. This number is too small to form 
separate training and testing datasets. The large number 
of VASARI features also resulted in a high-dimensional-
ity data profile, which poses its own challenges for stand-
ard regression statistical analysis. We implemented the 
cross-validation Least Absolute Shrinkage and Selection 

Operator (CV-LASSO) logistic regression technique to 
overcome this issue [28].

Patient age has a significant influence on the distri-
bution of glioma grades. In our study, the average age 
of low-grade gliomas was 33.32  years, while that of 
high-grade gliomas was 50.35  years (p < 0.001). These 
data align with various other studies, which found that 
the grade of brain gliomas tended to increase with the 
patient’s age, with grade IV gliomas patients having a 
significantly higher mean age than those with grades I 
and II [1, 29]. No definite mechanisms have been estab-
lished regarding the influence of age on glioma grade, 
but several theories such as cellular senescence, changes 
in the immune system with age, and the progression of 
low-grade gliomas to high-grade gliomas over time may 
explain this phenomenon [30, 31]. Age also has a sig-
nificant relationship with IDH mutation status. In our 
study, patients with IDH-mutant gliomas were on aver-
age younger compared to those with IDH-wildtype glio-
mas (37.42 vs 48.39 years, p = 0.002). The IDH mutation 
is often one of the earliest genetic changes in the devel-
opment of certain types of gliomas, including low-grade 

Table 5 VASARI features predicting MGMT unmethylated status resulted in 5 significant features with non-zero coefficients

Categories (within parentheses) have significant odds ratios compared to their base categories for predicting MGMT unmethylated status

VASARI Visually AcceSAble Rembrandt Images, OR odds ratio, LASSO (Least Absolute Shrinkage and Selection Operator), MGMT Methylguanine-DNA-methyltransferase

Selected VASARI features Logistic LASSO 
coefficients

Category OR (95% CI) p-value

f6–proportion of non-enhancing -0.176 (68–100%) 0.215 (0.067—0.687) 0.009

f13–definition of the non-enhancing margin -0.019

f15–edema crosses midline -0.351 (yes) 0.305 (0.125—0.742) 0.009

f25–calvarial modeling -0.399

f29–longest diameter -0.084 0.746 (0.599—0.929) 0.009

Fig. 4 Receiver operating characteristic (ROC) curve with (a) an area under the curve (AUC) value of 0.757 for the model prediction of MGMT 
methylation based on VASARI features and (b) AUC value of 0.791 with the addition of age-at-diagnosis variable
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gliomas and secondary glioblastomas. These gliomas usu-
ally occur in younger patients and have a better prognosis 
compared to gliomas without the mutation. On the other 
hand, primary glioblastomas, which are typically seen in 
older patients and have a poor prognosis, usually do not 
have the IDH mutation [32, 33]. In this study, since low-
grade gliomas are clearly more frequently found in the 
younger age group, it makes sense that IDH-mutant glio-
mas are also more frequently found at younger ages.

Ki-67 is a cellular marker for proliferation that is pre-
sent during all active phases of the cell cycle (G1, S, G2, 
and mitosis), but is absent from resting cells (G0). There-
fore, the presence and percentage of Ki-67 in a tissue 
sample are often used as measures of the growth frac-
tion of cells. In the context of gliomas, the Ki-67 labe-
ling index (the percentage of tumor cells positive for 
Ki-67) has been used as a prognostic indicator. As pre-
vious studies have demonstrated, a higher Ki-67 labeling 
index often correlates with higher grade gliomas and is 
associated with poorer prognosis [26, 34, 35]. Our study 
results confirmed this with significantly lower Ki-67 labe-
ling index in low-grade glioma compared to high-grade 
glioma (7.12 vs 24.86, p < 0.001). The Ki-67 value was also 
lower in IDH-mutant group compared to IDH-wildtype 
group, although not statistically-significant (16.61 vs 
21.75, p = 0.261). While many studies on IDH mutations 
in gliomas clearly show this association, [36–38] the 
statistical significance can vary depending on the spe-
cific study design, sample size, and the specific patient 
population.

Glioma grading prediction
Determining the grade of glioma often represents the 
initial step in patient management. The gold standard 
for determining the grade still involves a brain biopsy, an 
invasive procedure often met with reluctance by patients 
and their families. The structured and systematic assess-
ment of MRI using VASARI features is hoped to serve as 
a non-invasive predictor of glioma grade. In this study, 
eight features were part of the predictive model for deter-
mining glioma grade (Table  3). This prediction model 
demonstrates an exceptionally high AUC performance 
(0.995, 95% CI = 0.986 – 0.998), coupled with high sen-
sitivity, specificity, and accuracy. This allows the model 
to reliably distinguish between low-grade and high-grade 
gliomas. Several studies have investigated the use of 
VASARI features in glioma grading [39–44]. For example, 
our study findings are consistent with those of Su et al., in 
which the imaging features of enhancement quality and 
proportion enhancing were significantly higher in high-
grade gliomas compared to low-grade gliomas. This indi-
cates a more severe breakdown of the blood–brain barrier 
in high grade gliomas [43]. High-quality enhancement 

(marked/avid) and enhancement proportion of 34–67% 
or more had odds ratios of 20.7 and 11.478 (p < 0.001 and 
p = 0.028, respectively), suggesting high-grade glioma.

High-grade gliomas are more aggressive and grow 
more rapidly than low-grade gliomas. This rapid growth 
often leads to the formation of new, aberrant blood ves-
sels, a process known as angiogenesis. These newly 
formed vessels are typically more permeable or "leaky" 
than normal vessels. Consequently, when a contrast agent 
is administered during an MRI scan, it can more readily 
leak out of these abnormal vessels and into the surround-
ing tumor tissue, causing the tumor to appear brighter 
or "enhanced" in the resultant images. Moreover, high-
grade gliomas often exhibit areas of central necrosis due 
to their rapid growth rate and inadequate blood supply. 
This necrosis can lead to a breakdown of the blood–brain 
barrier, enabling more of the contrast agent to leak into 
the tumor and further increase its enhancement [41, 42].

High-grade gliomas tend to have an infiltrative tumor 
border into the surrounding tissue. This presents as 
a larger area of pathological intensity in FLAIR com-
pared to the pathology area visible on T1-weighted MRI 
sequences [41]. Our study supports this theory by show-
ing that the infiltrative T1/FLAIR ratio has a high pre-
dictive value for glioma grade (OR 41.99, p = 0.001). The 
presence of intratumoral hemorrhage indirectly indicates 
the rapid angiogenesis process in high-grade glioma. 
The blood vessels formed do not have good morphology, 
thus are easily damaged, resulting in hemorrhage. In our 
study, the presence of hemorrhage was a strong predic-
tive factor with an odds ratio of 13.57 (p < 0.001) for high-
grade glioma, a result consistent with previous research 
findings [39, 40].

IDH mutation status prediction
The 2021 WHO CNS classification system places a sig-
nificant emphasis on the assessment of molecular status. 
One such marker being evaluated is the IDH mutation 
status. Mutations commonly occur in one of the two IDH 
genes—IDH1 or IDH2. IDH1 gene mutation is more fre-
quently seen in gliomas and is typically characterized by 
a specific mutation (R132H) that leads to a single amino 
acid change in the enzyme’s active site. This mutated IDH 
enzyme gains a neomorphic activity, converting alpha-
ketoglutarate into 2-hydroxyglutarate (2-HG), an onco-
metabolite promoting cancer formation [33, 45]. Notably, 
gliomas with IDH mutations have a significantly better 
prognosis than those without these mutations, making 
IDH status a crucial factor in glioma classification and 
treatment decisions.

In our study, 12 VASARI features were found to pre-
dict IDH mutation status following selection using the 
LASSO regression technique (Table  4). Our predictive 
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model performed well with a high AUC value. However, 
the inclusion of the age-at-diagnosis variable improved 
this AUC performance (0.930 vs. 0.933, Fig.  3) with a 
sensitivity, specificity, and accuracy of 92.59%, 70.83%, 
and 87.62%, respectively. Of these features, three dem-
onstrated high odds ratios with p-values < 0.005, namely, 
proportion enhancing, T1/FLAIR ratio, and thickness of 
the enhancing margin.

A proportion enhancing of 34–67% or more has an OR 
of 6.33 (p = 0.003) for predicting IDH-wildtype status. 
According to the study by Olar et  al., there is an asso-
ciation between the proportion of enhancing tumor and 
IDH mutation status in glioma. The study evaluated the 
role of IDH mutation status, tumor grade, and mitotic 
index in patient outcome in grade II-III diffuse gliomas. 
The results indicated that the effect of the mitotic index 
on patient outcome depends on IDH mutation status [46, 
47]. A similar rationale could be put forward for the pre-
dictive feature thickness of the enhancing margin (OR 
6.328, p = 0.003), where a thicker/nodular enhancing 
area indicates a higher proportion of enhancement, rapid 
tumor cell proliferation, and aggressive growth patterns. 
FLAIR sequences are more sensitive in showing areas 
with pathological signal intensities. In the case of glio-
mas, especially high-grade gliomas with IDH-wildtype, 
pathological FLAIR areas outside of the tumor enhance-
ment boundary tend to represent tumor cell infiltration 
into the surrounding tissue rather than edema processes 
[41]. The T1/FLAIR ratio proved to be a good predictor 
(OR 4.727, p = 0.005) in distinguishing between gliomas 
with IDH-mutant and IDH-wildtype.

MGMT methylation prediction
The O6-methylguanine-DNA methyltransferase 
(MGMT) gene plays a vital role in cellular defense 
against mutagenesis and toxicity from alkylating agents. 
The MGMT gene encodes a DNA repair enzyme, which 
repairs the O6-methylguanine DNA lesion caused by 
alkylating agents by transferring the methyl group onto 
itself. This direct repair process prevents transition muta-
tions and safeguards the genome. In gliomas, the MGMT 
promoter methylation status is of significant interest. 
When the promoter region of MGMT is methylated, the 
expression of the MGMT enzyme is suppressed, which 
inhibits DNA repair and makes the tumor cells more 
susceptible to alkylating chemotherapy drugs such as 
temozolomide. Therefore, MGMT promoter methyla-
tion status is a critical prognostic and predictive marker 
in glioblastoma. Patients with MGMT-promoter-meth-
ylated glioblastoma typically have a better response to 
alkylating agent chemotherapy and have a longer over-
all survival compared to those with an unmethylated 
MGMT promoter [48, 49].

Our study results illustrate five VASARI features that 
hold predictive value regarding the methylation sta-
tus of MGMT (Table  5). Our predictive model demon-
strates adequate performance in distinguishing between 
MGMT-methylated and MGMT-unmethylated gliomas, 
with an AUC of 0.757. As with the IDH predictive model, 
the inclusion of the ’age-at-diagnosis’ variable improves 
the model’s performance, resulting in an AUC of 0.791 
(Fig.  4), with a sensitivity, specificity, and accuracy of 
94.81%, 33.33%, and 77.57%, respectively. We identified 
three features possessing significant odds ratios, with 
statistical significance at p < 0.05, including proportion of 
non-enhancing ‘68–100%’, edema crossing the midline, 
and the longest diameter.

The ’proportion of non-enhancing 68–100%’ feature 
presents an OR of 0.215 (p = 0.009) for being an MGMT-
unmethylated glioma, implying that the larger the non-
enhancing area, the greater the likelihood of the glioma 
being MGMT-methylated. This corresponds with pre-
vious studies that identified ring-enhancing pattern 
and extensive, heterogeneous enhancements related to 
MGMT-unmethylated status [50–52]. These MRI find-
ings may validate the theory that gliomas with MGMT-
unmethylated possess intact DNA repair mechanisms, 
enabling continuous tumor proliferation and reduction in 
the effectiveness of chemotherapy agents [48, 49].

The presence of ’edema crossing the midline’ holds an 
OR of 0.305 (p = 0.009) in predicting MGMT-unmeth-
ylated gliomas. This finding is consistent with another 
significant predictor feature, ’longest lesion diameter’, 
measured on axial FLAIR sequences, which shows an OR 
of 0.746 (p = 0.009) for predicting MGMT-unmethylated 
status. This suggests that the larger the longest lesion 
diameter, the higher the likelihood of MGMT methyla-
tion. Few studies have discovered a relationship between 
gliomas crossing hemispheres and MGMT methylation. 
A study by Han et  al. found no significant association 
between ’edema crossing the midline’ and MGMT meth-
ylation status [50]. However, our study finds that gliomas 
with edema crossing the midline tend to be associated 
with MGMT methylation. To the best of our understand-
ing, no theory fully explains this phenomenon; however, 
we propose that gliomas with MGMT methylation tend 
to grow more slowly and stably, without a large necrotic 
area. The common occurrence of extensive necrotic areas 
in high-grade gliomas with IDH-wildtype and MGMT-
unmethylated often limits tumor expansion [46]. This 
slower growth may lead to larger tumor sizes, accompa-
nied by more extensive and crossing the midline edema.

This study underscores the potential of non-inva-
sive VASARI features to predict glioma grading, IDH 
mutation status, and MGMT methylation, leading 
to improved patient care. MR imaging is especially 
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valuable in diagnosing inaccessible gliomas like 
intramedullary spinal cord lesions and when biopsy 
results conflict with clinical diagnoses, such as possible 
sampling errors in large intracranial masses. In areas 
with limited access to costly molecular marker tech-
nology, our findings present a practical alternative for 
glioma patient management and highlight avenues for 
future research on non-invasive diagnostic techniques.
Two examples of brain MRIs from patients in this 
study, illustrating various glioma grades, IDH mutation 
statuses, and MGMT methylation statuses, are shown 
in Figs. 5 and 6.

It’s worth noting that the application of VASARI fea-
tures also has some challenges. For example, it typi-
cally requires the involvement of trained radiologists, 
and there can be variability in the interpretation of MR 
images. Additionally, while VASARI provides a standard 
language, it may not capture all relevant aspects of the 
imaging appearance of gliomas. The limited number of 

patients also makes this study unable to split all patients 
into two different datasets as training and testing data.

Conclusion
Our study offers valuable insights into the potential 
application of MRI-based VASARI features for non-
invasively predicting glioma grade, IDH mutation status, 
and MGMT methylation status. Our findings suggest 
that patient age, Ki-67 labeling index, and VASARI fea-
tures are significant predictors for glioma grade, IDH 
mutation status, and MGMT methylation status. For 
high grade prediction, the most substantial predictors 
are the T1/FLAIR ratio, enhancement quality, hemor-
rhage, and proportion enhancing, with OR of 41.99, 20.7, 
13.57, and 11.478, respectively. The IDH wildtype sta-
tus is prominently predicted by the proportion enhanc-
ing, thickness of enhancing margin, and T1/FLAIR 
ratio, with OR of 6.333, 6.328, and 4.727, respectively. In 
contrast, MGMT unmethylated status is related to the 

Fig. 5 a Axial T1-weighted, (b) T2-weighted, (c) FLAIR, and (d) post-contrast administration T1-weighted MR images from a 40-year-old male 
with a WHO CNS Glioma Grade 4. Area of enhancement is visible that is less than 33% of the total area with pathological FLAIR signal intensity.
The abnormal areas on T1 and FLAIR being approximately the same (expansive), as well as the enhancement having a vague and thin thickness. 
Despite the high-grade histopathological appearance, this glioma is IDH-mutant. It is predominantly solid with quite extensive non-enhancing 
area (68–100% of the total pathological area on FLAIR), accompanied by tumor and edema crossing the midline, and the overall large size of FLAIR 
abnormalities. This tumor was also proven to have methylation in its MGMT gene
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lesion longest diameter, edema crossing the midline, and 
proportion of non-enhancing, with OR of 0.746, 0.305, 
and 0.215, respectively. Although our study faced spe-
cific limitations, such as a relatively small sample size 
and high-dimensionality data, it paves the way for more 
extensive studies to further refine and validate these pre-
dictive models, particularly using independent patient 
cohorts. Ultimately, this research contributes to a more 
profound understanding of gliomas and has the poten-
tial to enhance clinical decision-making. This could lead 
to personalized treatment plans and improved patient 
outcomes.
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