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Abstract
Background The consistency of meningiomas is critical to determine surgical planning and has a significant impact 
on surgical outcomes. Our aim was to compare mono-exponential, bi-exponential and stretched exponential MR 
diffusion-weighted imaging in predicting the consistency of meningiomas before surgery.

Methods Forty-seven consecutive patients with pathologically confirmed meningiomas were prospectively 
enrolled in this study. Two senior neurosurgeons independently evaluated tumour consistency and classified them 
into soft and hard groups. A volume of interest was placed on the preoperative MR diffusion images to outline the 
whole tumour area. Histogram parameters (mean, median, 10th percentile, 90th percentile, kurtosis, skewness) were 
extracted from 6 different diffusion maps including ADC (DWI), D*, D, f (IVIM), alpha and DDC (SEM). Comparisons 
between two groups were made using Student’s t-Test or Mann-Whitney U test. Parameters with significant 
differences between the two groups were included for Receiver operating characteristic analysis. The DeLong test was 
used to compare AUCs.

Results DDC, D* and ADC 10th percentile were significantly lower in hard tumours than in soft tumours (P ≤ 0.05). 
The alpha 90th percentile was significantly higher in hard tumours than in soft tumours (P < 0.02). For all histogram 
parameters, the alpha 90th percentile yielded the highest AUC of 0.88, with an accuracy of 85.10%. The D* 10th 
percentile had a relatively higher AUC value, followed by the DDC and ADC 10th percentile. The alpha 90th percentile 
had a significantly greater AUC value than the ADC 10th percentile (P ≤ 0.05). The D* 10th percentile had a significantly 
greater AUC value than the ADC 10th percentile and DDC 10th percentile (P ≤ 0.03).
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Background
Meningioma is one of the most common primary intra-
cranial tumours [1]. With surgical resection as the treat-
ment of choice for meningiomas, the consistency of 
meningiomas is crucial for surgical planning and prog-
nosis. Soft meningiomas can be easily removed by only 
suction with minimal invasion to the surrounding normal 
tissue. However, harder tumours are usually more diffi-
cult to remove and require additional instruments (ultra-
sonic aspiration and scissors), prolonging the operation 
time and increasing blood loss. This may lead to a higher 
rate of subtotal resection and perioperative complications 
[2]. Therefore, if hard consistency can be accurately pre-
dicted before surgery, a more experienced surgical team, 
better prepared blood and more extensive neurophysi-
ological monitoring can be prepared to optimize surgical 
strategies and obtain a more favourable prognosis.

At present, several histological factors have been iden-
tified to be related to hard tumour consistency, such as 
high cellularity [3], rich fibrous components [4, 5], and 
low vascularity [5–7]. Nevertheless, this valuable histo-
logical information can only be obtained after surgery or 
biopsy. Alternatively, diffusion magnetic resonance imag-
ing (MRI) is a non-invasive method to assess tumour 
biology and quantify physiological processes [8, 9]. The 
apparent diffusion coefficient (ADC) value obtained 
from mono-exponential model (MEM)-based diffusion-
weighted imaging (DWI) is the most frequently used 
and studied diffusion metric to evaluate tumour consis-
tency [10–14]. However, the results of these studies vary. 
ADC was found to be either lower [10, 11] or higher [12] 
in hard meningiomas than in soft meningiomas. Other 
studies even found no association between ADC and 
meningioma consistency [13, 14]. The conflicting results 
may be attributed to the fact that the ADC only reflects 
the overall water diffuse motion, such as water molecu-
lar diffusion and blood microcirculation [15] and fails 
to accurately represent specific tissue characteristics. 
Bi-exponential model (BEM)-based DWI reflects the 
separation of simple diffusion and microvascular perfu-
sion by yielding 2 perfusion-related metrics: pseudo-
diffusion coefficient (D*) and perfusion fraction (f) [16]. 
D* macroscopically describes the incoherent movement 
of blood in the microvasculature compartment, and f 
denotes the fraction of the incoherent signal that arises 
from the vascular compartment in each voxel over the 
total incoherent signal. However, tissue characteristics 
cannot be fully explored by dividing water diffuse motion 
into only two compartments [17]. Stretched exponential 

model (SEM)-based DWI is an advanced diffusion imag-
ing method that considers the composite of continuous 
distribution of ADCs in each part. Therefore, SEM can 
reflect tissue characteristics by calculating the heteroge-
neity of intravoxel diffusion rates and the distributed dif-
fusion effect within each voxel in multiple pools of water 
molecules [18]. BEM and SEM have been widely explored 
in studies of meningiomas [19–22] to assess histologi-
cal grade, subtype, vascular density and differentiability 
[22–24]. However, their application in predicting menin-
gioma consistency is still lacking. Meanwhile, intratu-
moural heterogeneity is another possible reason for the 
inconsistent results of meningioma consistency predic-
tion. Voxel-based whole tumour histogram analysis is an 
objective and reproducible method that provides a myr-
iad of information and details inside the tumour based 
on the tissue volume [25]. Hence, the histogram param-
eter is expected to reflect the overall heterogeneity of the 
tumour.

As advanced diffusion MR models, BEM and SEM can 
provide more information relative to tumour histological 
components and structures, while histogram parameters 
can reflect the intratumoural heterogeneity. We hypoth-
esized that advanced diffusion MR models with histo-
gram analysis can better predict meningioma consistency 
than the traditional diffusion model (MEM). Hence, the 
current study aimed to evaluate and compare the poten-
tial of various histogram parameters extracted from dif-
ferent diffusion maps obtained from the MEM, BEM, 
and SEM-based DWI in predicting the consistency of 
meningiomas.

Methods
Patients
The present study was approved by the local institutional 
review boards. Written informed consent was obtained 
from all patients before participation. Sixty-seven con-
secutive patients with suspected meningiomas in our 
hospital from November 2017 to August 2018 were pro-
spectively included according to the following inclusion 
criteria: (I) performed preoperative brain MRI including 
multiple-b-value DWI; (II) received surgical removal in 
our hospital; (III) surgical pathology confirmed menin-
gioma based on the 2016 WHO classification [1]; (IV) 
assessed the tumour consistency by a unified standard. 
The exclusion criteria were as follows: (I) patients had 
undergone radiotherapy, chemotherapy, or surgery; and 
(II) insufficient quality of images. Finally, 52 patients 
pathologically confirmed as meningiomas were included 
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in the studies. Of these, 2 patients were excluded due 
to a history of cranial radiotherapy, and 3 patients were 
excluded because of severe motion artefacts. The final 
cohort consisted of 47 patients. The patient flowchart is 
shown in Fig. 1.

Intraoperative assessment of tumour consistency
The assessment was conducted by two senior neurosur-
geons (with 15 and 10 years of experience, respectively) 
who performed the surgical resection together. Tumour 
consistency was evaluated according to Zada’s consis-
tency grading system [26]. Both neurosurgeons agreed 
on the final grade of each tumour. Soft meningiomas 
were defined as those amenable to be removed totally 
or mainly with suction, which corresponded to Grade 1 
and Grade 2 of Zada’s consistency grading system. Hard 
meningiomas were defined as those that required sharp 
resection, ultrasonic aspiration or with calcification the 
within tumour, which corresponded to Grade 3, Grade 4 
ad Grade 5 of Zada’s consistency grading system [27].

Image acquisition
MRI was performed using a 3 T MRI system (Discovery 
750, GE Healthcare, Milwaukee, Wis, USA) equipped 
with an eight-channel receiver head coil. Conventional 
non-enhanced MRI sequences, multiple-b-value DWI, 
and contrast-enhanced T1-weigted imaging were per-
formed in sequence. The total scan duration was 15 min 
41 s.

Conventional non-enhanced MRI sequences included 
axial T1-weighted fluid attenuated inversion recov-
ery (FLAIR) images (repetition time [TR] = 1,750 ms, 
echo time [TE] = 23 ms, section thickness = 5  mm, 
intersection gap = 1.5  mm, field of view [FOV] = 24  cm, 

matrix = 320 × 320); axial T2-weighted FSE images 
(TR = 6,488 ms, TE = 94 ms, section thickness = 5  mm, 
intersection gap = 1.5  mm, matrix = 512 × 512, 
FOV = 24  cm); axial T2-weighted FLAIR images 
(TR = 8,500 ms, TE = 143 ms, section thickness = 5  mm, 
intersection gap = 1.5  mm, matrix = 288 × 224, 
FOV = 24 cm).

DWI used a spin echo (SE)-echo planar imaging 
(EPI) diffusion sequence in the axial plane (TR = 5,000, 
TE = 84.6ms, section thickness = 5  mm, intersection 
gap = 0 mm, FOV = 24 cm, matrix = 192 × 192, number of 
sections = 30. Twelve b-values from 0 to 3,000 s/mm2 (0, 
50, 100, 150, 200, 300, 500, 800, 1,000, 1,500, 2,000, and 
3,000  s/mm2; with number of excitations [NEX] = 1 for 
b = 0-500 s/mm2, two NEX for b = 800-1,000 s/mm2, three 
NEX for b = 1,500 s/mm2, four NEX for b = 2000 s/mm2, 
and six NEX for b = 3000 s/mm2 [22].

A contrast-enhanced three-dimensional (3D) axial 
T1-weighted fast spoiled gradient echo (FSPGR) was 
served as anatomical reference for DWI (TR = 8.2, 
TE = 3.2ms, section thickness = 1 mm, matrix = 256 × 256, 
FOV = 24  cm, inversion = 450ms, flip angle = 12°. Post-
contrast images were obtained after administration of 
intravenous contrast material (0.1 mmol/kg, gadopen-
tetate dimeglumine, Bayer Schering, Berlin, Germany) at 
a speed of 2 ml/s.

MR image processing and histogram analysis
The obtained DWI data were transferred to a worksta-
tion (Advantage Workstation 4.6; GE Medical Systems) 
for further postprocessing. Parameter maps were gener-
ated through the MADC program in Functool software 
for each model.

The mono-exponential model was calculated with the 
following equation:

S(b)/S0 = exp (-b × ADC).
where S(b) is the mean signal intensity with diffusion 

gradient b, and S0 is the mean signal intensity without 
diffusion gradient [8]. In the present study, ADC was 
calculated from the mono-exponential model with two 
b-values (0, 1000 s/mm2).

The bi-exponential model was calculated with the fol-
lowing equation:

S(b)/S0 = [f × exp (-b × D*)] + [(1-f) ×exp (-b × D)]
where D is the pure molecular diffusion. D* is the 

pseudo-diffusion coefficient, and f is the microvascular 
volume fraction which represents the fraction of water 
diffusion relative to microcirculation [16].

The stretched-exponential model was calculated with 
the following equation:

S(b)/S0 = [exp (-b × DDC) alpha]
where DDC is the distributed diffusion coefficient 

which reflects the mean intravoxel diffusion rate, and 
Fig. 1 Patient enrolment flowchart
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alpha indicates intravoxel diffusion heterogeneity ranging 
from 0 to 1 [18].

MEM data were linearly fitted with the least square 
method. BEM and SEM data were fitted by the Leven-
bergeMarquardt fit for non-linear fitting [28].

For each lesion, a three-dimensional volume of interest 
(VOI) of the whole tumour was semiautomatically delin-
eated on all imaging slices with the ITK SNAP program 
(version 4.6.1, University of Pennsylvania, www.itksnap.
org), by two independent radiologists (with 15 and 10 
years of experience in neuroradiology, respectively). The 
VOIs of the solid tumour portion were delineated on 
axial contrast-enhanced T1WI by referring to conven-
tional MR images. Necrosis, cystic portion, calcification 
and haemorrhage were carefully recognized and excluded 
from tumour portion. Then VOIs were automatically pro-
jected onto 6 diffusion maps (ADC, D, D*, f, DDC, alpha) 
by a co-registration tool in SPM8 (Wellcome Centre for 
Human Neuromaging, http://www.fl.ion.ucl.ac.uk/spm/).

The data of tumour solid parts were then assessed by 
an open-source software package FeAture Explorer (FAE; 
https://github.com/salan668/FAE). The 3D information 
from all voxels inside the VOIs was calculated to gener-
ate the histogram of 6 diffusion maps. The final extracted 
histogram parameters included mean, median, 10th 
percentile, 90th percentile, kurtosis, and skewness. The 
workflow chart is presented as Fig. S2.

Statistical analysis
All data analysis was performed with IBM SPSS Statistics 
(Version 23.0, IBM Corp) and Medcalc (Version 11.1.1.0). 
The interobserver agreements of all histogram param-
eters were evaluated with Bland‒Altman analysis and 
the intraclass correlation coefficient (ICC): 0.00–0.20, 
poor correlation; 0.21–0.40, fair correlation; 0.41–0.60, 
moderate correlation; 0.61–0.80, good correlation; and 

0.81–1.00, excellent correlation. Student’s t-test or non-
parametric Mann‒Whitney U test was performed to test 
the differences in histogram parameters between soft and 
hard tumours. For statistically significant parameters, 
ROC curves were conducted to evaluate their diagnos-
tic abilities in differentiating hard tumours from soft 
tumours. The corresponding area under the ROC curves 
(AUCs), with the 95% confidence interval (CI), was cal-
culated to determine the optimal cut-off values for each 
histogram metric in the grading of meningioma. The 
diagnostic sensitivity and specificity of the value were 
also computed. The optimal threshold was selected by 
the maximum Youden index. The DeLong method was 
used to analyse the significance of the difference between 
the AUCs. P values less than 0.05 were considered statis-
tically significant.

Results
Patient characteristics
A total of 47 patients were eligible for the study. Seven-
teen patients were in the hard meningioma group, while 
30 were in the soft meningioma group. Patient character-
istics are summarised in Table 1. There was no significant 
difference between soft and hard tumours on sex, age, 
histological grading or subtype.

Interobserver agreement
As shown in Table S1, excellent inter-reader agreements 
were gained in the measurement of most histogram 
parameters except DDC kurtosis and skewness (fair and 
good agreement, respectively). Moreover, Bland–Alt-
man analysis also showed good repeatability between the 
two observers and was considered clinically acceptable 
(Fig.S1).

Comparisons of histogram parameters between soft and 
hard meningiomas
The results of comparison of all histogram parameters 
between hard and soft meningiomas are presented in 
Table 2. The 10th percentile of DDC, D*, and ADC were 
significantly lower in hard tumours than in soft tumours 
(P ≤ 0.05). The alpha 90th percentile was significantly 
higher in hard tumours than in soft tumours (P < 0.02). 
No significant difference was found for other parameters 
between the two groups. Metric maps and histograms of 
two representative subjects are presented in Fig. 2.

Diagnostic performances of histogram parameters in 
distinguishing soft and hard meningiomas
The results of ROC analyses of the significant histogram 
parameters are presented in Table  3; Fig.  3. The alpha 
90th percentile yielded the highest AUC of 0.88. The 
optimal cut-off value of alpha was 0.91 with a sensitiv-
ity of 58.52%, a specificity of 100.00% and an accuracy 

Table 1 Patient characteristics of soft and hard meningiomas
Soft Hard p 

Value
N 30 17

Sex (% female) 23 
(76.7)

11 
(64.7)

0.378a

Age (years) 57 
(25–79)

52 
(38–71)

0.088a

Histopathological Grade (% high grade) 5 (16.7) 3 (17.6) 1a

Histopathological Subtype 0.424b

 Meningothelial 7 (23.3) 4 (23.5)

 Fibroblastic 6 (20.0) 7 (41.2)

 Transitional 8 (26.7) 3 (17.6)

 Atypical 5 (16.7) 3 (17.6)

 Other subtypes 4 (13.3) 0 (0)
Values are given as the mean (range) or n (%)
aComparisons were performed by the Mann‒Whitney U test
bComparisons were performed by χ2 test

http://www.itksnap.org
http://www.itksnap.org
http://www.fl.ion.ucl.ac.uk/spm/
https://github.com/salan668/FAE
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of 85.10% in the diagnosis of hard meningiomas. The D* 
10th percentile had a relatively high AUC value of 0.86. 
When differentiating two groups by the optimal cut-off 
value of 17.30, a sensitivity of 64.71%, a specificity of 
96.67% and an accuracy of 83.00% were obtained in diag-
nosing hard meningiomas. The ADC 10th percentile and 
DDC 10th percentile had relatively lower AUCs (0.68 
and 0.71, respectively). The Delong test demonstrated 
that alpha 90th percentile had a significantly greater 
AUC value than the ADC 10th percentile (P ≤ 0.05). 
The D* 10th percentile had a significantly greater AUC 
value than ADC 10th percentile and DDC 10th per-
centile (P ≤ 0.03). No significant difference between the 
alpha 90th percentile and D* 10th percentile or between 
the alpha 90th percentile and DDC 10th percentile was 
observed.

Discussion
Preoperative prediction of meningioma consistency is of 
vital clinical importance. DWI is a promising approach 
for evaluating the tumour biology [8]. In this study, 
MEM, BEN, and SEM DWI were applied to preopera-
tively predict the consistency of meningiomas. The pres-
ent results demonstrated that the differentiation between 
hard and soft meningiomas is feasible through different 
models of DWI with histogram analysis. D* (BEM-DWI) 
and alpha (SEM-DWI) showed significantly better diag-
nostic performances than ADC (MEM-DWI) Moreover, 
among all histogram parameters, only percentile values 
(10th and 90th percentiles) showed significant differences 
between soft and hard tumours.

In the current study, the ADC 10th percentile derived 
from MEM was significantly lower in hard meningiomas 
than in soft tumours. Our result is consistent with several 
previous studies on meningiomas [10, 11] and pituitary 
adenomas [29], which are the most explored intracranial 
tumours in preoperative tumour consistency prediction. 
However, there were also a few incoherent results. Phut-
tharak et al. found that hard meningiomas had higher 
ADC values and ADC ratios than soft tumours [12]. 
Watanabe et al. indicated that there was no correlation 
between meningioma consistency and the ADC value. 
Despite the various methodologies in these studies [29], 
these controversial conclusions may also be explained 
from a histopathological perspective. Harder tumour 
consistency is considered to be related to higher tumour 
cellularity with stronger cell adhesion [3], more fibrous 
components [4, 5] and lower vascularity levels [5–7]. 
Meanwhile, a lower ADC value was suggested to be asso-
ciated with a higher cell density and fibrous components 
[29, 30]. However, ADC reflects the overall diffusion level 
within a voxel and cannot separately present different dif-
fusion patterns [15]. Hence, we cannot distinguish differ-
ent histopathological components based on ADC values, 

Table 2 Comparison of histogram parameters of diffusion 
metrics between soft and hard meningiomas
Histogram Parameters Tumour Consistency p Value

Soft Hard
ADC (×10− 3 mm2/sec)

 10th percentile 0.69 ± 0.09 0.60 ± 0.26 0.044b*
 90th percentile 0.91 ± 0.14 0.92 ± 0.42 0.324b

 Mean 0.82 ± 0.11 0.80 ± 0.22 0.982b

 Median 0.81 ± 0.11 0.78 ± 0.20 0.626b

 Kurtosis 7.19 ± 6.77 7.95 ± 4.88 0.492b

 Skewness 0.73 ± 0.95 0.97 ± 0.97 0.929b

D (×10− 3 mm2/sec)

 10th percentile 0.49 ± 0.05 0.43 ± 0.22 0.054b

 90th percentile 0.61 ± 0.06 0.63 ± 0.13 0.358b

 Mean 0.55 ± 0.05 0.52 ± 0.12 0.432a

 Median 0.55 ± 0.05 0.55 ± 0.14 0.479b

 Kurtosis 5.13 ± 6.28 5.25 ± 6.15 0.808b

 Skewness 0.40 ± 0.89 0.35 ± 1.17 0.808b

D* (×10− 3 mm2/sec)

 10th percentile 2.38 ± 0.77 1.64 ± 1.64 < 0.001b**
 90th percentile 6.17 ± 4.09 6.97 ± 5.11 0.288b

 Mean 4.20 ± 2.09 4.22 ± 2.15 0.859b

 Median 3.74 ± 1.85 3.52 ± 1.10 0.104b

 Kurtosis 38.08 ± 129.75 46.76 ± 54.62 0.674b

 Skewness 4.22 ± 5.16 4.71 ± 3.04 0.400b

F

 10th percentile 0.20 ± 0.04 0.19 ± 0.08 0.278b

 90th percentile 0.32 ± 0.08 0.33 ± 0.11 0.501b

 Mean 0.25 ± 0.06 0.28 ± 0.12 0.232b

 Median 0.25 ± 0.04 0.25 ± 0.10 0.912b

 Kurtosis 23.60 ± 40.09 7.06 ± 22.71 0.057b

 Skewness 2.92 ± 1.78 2.43 ± 2.07 0.391a

Alpha

 10th percentile 0.69 ± 0.09 0.64 ± 0.12 0.215b

 90th percentile 0.85 ± 0.05 0.93 ± 0.05 < 0.001a**
 Mean 0.77 ± 0.07 0.78 ± 0.07 0.084b

 Median 0.77 ± 0.07 0.80 ± 0.07 0.068b

 Kurtosis 3.90 ± 0.80 3.13 ± 1.46 0.073b

 Skewness 0.09 ± 0.47 0.31 ± 0.69 0.068b

DDC (×10− 3 mm2/sec)

 10th percentile 0.68 ± 0.11 0.58 ± 0.37 0.020b*
 90th percentile 0.91 ± 0.20 0.93 ± 0.58 0.191b

 Mean 0.78 ± 0.17 0.78 ± 0.25 0.965b

 Median 0.77 ± 0.16 0.72 ± 0.16 0.113b

 Kurtosis 9.43 ± 13.35 11.29 ± 46.94 0.207b

 Skewness 1.19 ± 2.33 1.78 ± 4.63 0.199b

Data are presented as the mean ± standard deviation (normalized distribution) 
or median ± interquartile range (skewness distribution) ADC, D, D*, and DDC are 
in units of ×10− 3 mm2/sec

**p < 0.01, *p < 0.05
a Comparisons were performed by independent samples t-test
b Comparisons were performed by Mann‒Whitney U test
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which may underlie the mismatch between them. Miyoshi 
et al. indicated that the increased cellularity with stron-
ger adhesion accounted for the lower ADC value in hard 
meningiomas [10]. While Romano et al. held the oppo-
site view that hard specimens from pituitary adenomas 

had low cellularity and a high percentage of collagen 
content [5] which may indicate that the decreased ADC 
value may be due to the collagen content rather than the 
high cellularity. Several advanced diffusion models have 
been developed to generate parameters that reflect more 

Table 3 Diagnostic performances of histogram parameters in differentiating hard from soft meningiomas
Histogram Parameters AUC (95%CI) Cut-off Se (%) Sp (%) Youden Index Accuracy (%) PPV (%) NPV (%)
ADC 10th percentile 0.68 (0.53, 0.81) 0.60 52.94 90.00 0.43 76.60 75.00 77.14

D* 10th percentile 0.87 (0.77, 0.95) 17.30 64.71 96.67 0.61 83.00 91.67 82.86

Alpha 90th percentile 0.88 (0.75, 0.95) 0.91 58.82 100.00 0.59 85.10 100.00 75.00

DDC 10th percentile 0.71 (0.56, 0.83) 0.58 52.94 90.00 0.43 76.60 90.91 80.56
Note: Se represents sensitivity. Sp represents specificity. PPV represents positive predictive value. NPV represents negative predictive value

Fig. 2 Histograms of ADC, alpha, DDC, fast-ADC, fraction of fast-ADC and slow-ADC from a soft meningioma in a 48-year-old woman (blue) and a hard 
meningioma in a 54-year-old woman (orange). The corresponding diffusion maps are on the right side of each histogram (the soft tumour with a blue 
border, the hard tumour with an orange border)
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specific diffusion patterns. To the best of our knowl-
edge, the current study is the first study to apply BEM 
and SEM to predict tumour consistency. Notably, mag-
netic resonance elastography (MRE) seems to be able to 
bypass the histological complexity to provide tumour 
stiffness information by applying a mechanical wave [31, 
32]. However, this technology requires specialized hard-
ware that is not widely used in clinical practice [31, 32].In 
addition, it remains unknown whether mechanical vibra-
tion harms the brain [10]. Thus, Le Bihan et al. used a vir-
tual MRE approach to yield a novel metric named shift 
ADC (b = 200, 1500s/mm2). However, it failed to predict 
meningioma [10] and pituitary adenoma [33] consistency 
evaluated during surgery.

In the present study, the D* 10th percentile was signifi-
cantly lower in the hard meningiomas with an excellent 
AUC of 0.86. This result indicated that the hypervas-
cular tumour tended to be softer, which was consis-
tent with previous studies. Romano et al. [5] found that 
specimens from soft components of pituitary adenomas 
were characterized by the high representation of vascu-
larization and microhemorrhage, and the signal inten-
sity ratio value obtained by dynamic contrast-enhanced 
T1WI could distinguish soft and hard components. Phut-
tharak et al. found that meningiomas with hard consis-
tency had a significant correlation with the absence of a 
vascular core [12]. Takamura et al. reported that the rela-
tive mean transit time (MTT) measured by CT perfusion 
was inversely correlated with stiffness measured by MRE 
[6]. Flagstad et al. also suggested that decreased tissue 
stiffness in glioblastoma was associated with increased 
cerebral blood flow [7]. In the present study, none of the 

histogram parameters of D or f were significantly differ-
ent between soft and hard tumours. This may indicate 
that D* is a more sensitive biomarker than f when pre-
dicting meningioma consistency. The insignificant result 
of D demonstrates that the perfusion-free diffusion level 
does not correlate with tumour consistency. Moreover, 
the significant difference in the ADC 10th percentile may 
be ascribable to the perfusion component inside the ADC 
value. Thus, we speculated that perfusion or vascularity 
contributes more to tumour consistency than cellularity.

In the present study, the DDC 10th percentile was sig-
nificantly lower in hard tumours, which is in line with our 
result of ADC value results. In a previous study [22], a 
lower DDC value was correlated with tumour aggressive-
ness, which usually demonstrated higher mitotic activity, 
necrosis, nuclear atypia, and small cells with increased 
intracellular complex protein molecules and nucleus to 
cytoplasm ratio [34]. Although stronger intercellular 
adhesion and higher cellular density may be an explana-
tion [3, 10], these pathological characteristics can induce 
firmer consistency and lower DDC value of tumours 
still needs further investigation. The alpha 90th percen-
tile in the present study was significantly higher in hard 
tumours and yielded the highest AUC of 0.88. This result 
demonstrates a lower degree of multiexponential decay 
of signal [18] in hard meningiomas than in soft menin-
giomas. Hyung et al. reported a significantly higher alpha 
value in hypovascular focal liver lesions than in hyper-
vascular lesions [19]. Orton et al. found that alpha value 
significantly increased after treatment with vascular 
endothelial growth factor inhibitors [35]. These two stud-
ies both proved that the alpha value is highly impacted 
by the vascular portion in tissue. Notably, this view-
point is in line with the result of D* that harder tumours 
have lower D* indicating less vascular structure or lower 
microperfusion. Thus, the excellent performance of alpha 
and D* in differentiating hard from soft tumours might 
be explained through the reflection of tissue vascular 
portion or microperfusion. Therefore, radiologists and 
neurosurgeons should pay more attention to meningio-
mas showing lower D* or higher alpha, as the tumour 
is likely to be harder. A stricter pre- and intra-operative 
management is needed. Interestingly, neither kurtosis 
nor skewness parameters turned out to have significant 
differences between hard and soft tumours in the present 
study. These results show the diverse feasibilities of intra-
voxel and intervoxel level metrics. Since alpha, the intra-
voxel metric, had a better performance of differentiation 
between hard and soft meningiomas, we suggest studies 
in the future focusing more on the intravoxel scale to 
explore tumour consistency.

In this study, only the histogram percentile parameters 
(10th and 90th percentiles) were proven to be feasible to 
predict meningioma consistency. While the conventional 

Fig. 3 ROC curves of histogram parameters in differentiating soft and 
hard meningiomas
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parameters (mean and median) failed, which is consistent 
with previous studies [25, 36]. Our results suggest that 
histogram parameters can act as more promising bio-
markers than conventional metrics in revealing tumour 
microstructure, especially intratumuoral heterogeneity.

This study still has several limitations. First, the sam-
ple size was relatively small. A larger and multi-centre 
study population may further verify the present findings. 
Second, the classification of tumour consistency was 
still based on a subjective method. Several studies used 
durometers to measure the consistency of tumours [10, 
32]. Third, the association of diffusion parameters with 
pathological characteristics was not performed in this 
study. Detailed histological parameters, such as cell den-
sity, fibrous content and vascularity need to be explored 
in the future to demonstrate the associations.

Conclusion
Different models of DWI, including MEM, BEM, and 
SEM, are useful in the differentiation between soft and 
hard meningiomas. Moreover, histogram percentile 
parameters (10th, 90th percentile) outperform conven-
tional parameters such as the mean or median in dis-
tinguishing between two groups. Alpha and D* have 
significantly better diagnostic performances than ADC 
and DDC in identifying hard meningiomas.

Abbreviations
MRI  Magnetic resonance imaging
DWI  Diffusion-weighted imaging
MEM  Mono-exponential model
BEM  Bi-exponential model
SEM  Stretched exponential model
ADC  Apparent diffusion coefficient
D  Pure molecular diffusion
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