RESEARCH ARTICLE

Head-to-head comparison of ¹⁸F-FAPI and ¹⁸F-FDG PET/CT in staging and therapeutic management of hepatocellular carcinoma

Jing Zhang^{1,2†}, Shuqin Jiang^{1†}, Mengsi Li^{3†}, Haibao Xue¹, Xi Zhong⁴, Shuyi Li¹, Hao Peng¹, Jiuceng Liang¹, Zhidong Liu¹, Songquan Rao¹, Haipeng Chen¹, Zewen Cao¹, Yuanfeng Gong⁵, Guoshuo Chen⁶, Rusen Zhang^{1*} and Linqi Zhang^{1*}

Abstract

Background Fluorine 18 (¹⁸F) fluorodeoxyglucose (FDG) positron emission tomography/computed tomography (PET/CT) has limitations in staging hepatocellular carcinoma (HCC). The recently introduced ¹⁸F-labeled fibroblast-activation protein inhibitor (FAPI) has shown promising prospects in detection of HCC lesions. This study aimed to investigate the initial staging and restaging performance of ¹⁸F-FAPI PET/CT compared to ¹⁸F-FDG PET/CT in HCC.

Methods This prospective study enrolled histologically confirmed HCC patients from March 2021 to September 2022. All patients were examined with ¹⁸F-FDG PET/CT and ¹⁸F-FAPI PET/CT within 1 week. The maximum standard uptake value (SUV_{max}), tumor-to-background ratio (TBR), and diagnostic accuracy were compared between the two modalities.

Results A total of 67 patients (57 men; median age, 57 [range, 32–83] years old) were included. ¹⁸F-FAPI PET showed higher SUV_{max} and TBR values than ¹⁸F-FDG PET in the intrahepatic lesions (SUV_{max}: 6.7 vs. 4.3, *P* < 0.0001; TBR: 3.9 vs. 1.7, *P* < 0.0001). In diagnostic performance, ¹⁸F-FAPI PET/CT had higher detection rate than ¹⁸F-FDG PET/CT in intrahepatic lesions [92.2% (238/258) vs 41.1% (106/258), *P* < 0.0001] and lymph node metastases [97.9% (126/129) vs 89.1% (115/129), *P* = 0.01], comparable in distant metastases [63.6% (42/66) vs 69.7% (46/66), *P* > 0.05]. ¹⁸F-FAPI PET/CT detected primary tumors in 16 patients with negative ¹⁸F-FDG, upgraded T-stages in 12 patients and identified 4 true positive findings for local recurrence than ¹⁸F-FDG PET, leading to planning therapy changes in 47.8% (32/67) of patients.

Conclusions ¹⁸F-FAPI PET/CT identified more primary lesions, lymph node metastases than ¹⁸F-FDG PET/CT in HCC, which is helpful to improve the clinical management of HCC patients.

Trial registration Clinical Trials, NCT05485792. Registered 1 August 2022, Retrospectively registered.

Keywords Hepatocellular carcinoma, Fibroblast activation protein, ¹⁸F-FAPI; PET, CT

⁺Jing Zhang, Shuqin Jiang and Mengsi Li contributed equally to this work.

*Correspondence: Rusen Zhang zhangrusen2015@163.com Linqi Zhang zhanglinqi0909@163.com Full list of author information is available at the end of the article

© The Author(s) 2023. **Open Access** This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.gn/licenses/by/4.0/. The Creative Commons Public Domain Dedication waiver (http://creativecommons.gn/licenses/by/4.0/. The Creative Commons Public Domain and redit line to the data.

Background

Hepatocellular carcinoma (HCC) is the most common type of primary liver cancer, and the fourth leading cause of cancer-related deaths worldwide [1]. Patients diagnosed in early stages of the disease have survival rates up to 50-70%. However, more than half of patients were diagnosed with advanced disease, and their 3-year survival rates were only 20–30% [2–4]. Therefore, early diagnosis and accurate staging for HCC patients are critical for planning therapy. Morphological imaging modalities, such as contrast computed tomography (CT) and magnetic resonance imaging (MRI), are commonly used in the diagnosis of HCC, but they are inadequate in detecting distant metastasis [5]. In addition, due to the postoperative anatomical changes, it is difficult to monitor the recurrence of HCC based on morphological imaging modalities [6]. Fluorine-18 fluorodeoxyglucose (¹⁸F-FDG) positron emission tomography/computed tomography (PET/CT) is an effective imaging tool for staging for many malignancies. However, ¹⁸F-FDG is not a useful tracer for detection of primary tumours of HCC [7]. Because of the low ¹⁸F-FDG uptake in well differentiated HCC and the physiological uptake in nomal liver, the detection rate of ¹⁸F-FDG PET/CT for primary HCC is less than 50% [8].

Fibroblast activation protein (FAP) is a serine protease that belongs to the dipeptidyl peptidase-IV (DPP-IV) family located in fbroblast membranes [9]. FAP is overexpressed in the cancer-associated fibroblasts (CAFs) of 90% of all epithelial carcinomas, including HCC [10]. Therefore, FAP-targeted radiopharmaceuticals can be considered a promising approach for the visualization of CAFs in HCC. Recently, 68 Ga labeled fibroblast activating protein inhibitor (⁶⁸ Ga-FAPI) has demonstrated diagnostic value in many types of malignancies [11]. Moreover, several pilot studies with small sample size have shown ⁶⁸ Ga-FAPI PET/CT is more sensitive than ¹⁸F-FDG PET/CT in detecting HCC lesions [3, 12–14]. Although ⁶⁸ Ga-FAPI is a promising radiopharmaceutical for clinical application of malignancies, it still has some disadvantages, such as high production costs and short half-life [15–17]. ¹⁸F-FAPI has a longer half-life and is more widely used to meet the needs of a large number of patients, and ¹⁸F-FAPI is equivalent to ⁶⁸ Ga-FAPI in detecting malignant tumors [17]. However, to our acknowledge, there is no study have explored the clinical staging value of ¹⁸F-FAPI PET/CT in HCC systematically.

Therefore, the aim of this head to head prospective study was to investigate whether the potential diagnostic value of ¹⁸F-FAPI PET/CT is superior to ¹⁸F-FDG PET/CT for HCC patients, and to explore the impact of ¹⁸F-FAPI PET/CT on the clinical therapeutic management of HCC.

Materials and methods Patients

This prospective study was authorized by the ethics committee of Affiliated Cancer Hospital & Institute of Guangzhou Medical University (ethics committee permission No.2021-sw07; clinical trial registration: NCT05485792). From March 2021 to September 2022, A total of 145 patients with suspected HCC were considered as candidate participants consecutively. The enrolled patients met the following criteria: (i) age \geq 18 years old; (ii) patients with suspected liver malignant lesions based on traditional diagnostic imaging (CT or MRI or ultrasound) and clinical symptoms; and (iii) patients who agreed to receive paired ¹⁸F-FDG PET/CT and ¹⁸F-FAPI PET/CT scans within one week. The exclusion criteria were as follows: (i) restaging patients who have received chemotherapy, radiation therapy, or targeted therapy within 3 months prior to scanning; (ii) patients who had another primary cancer at the time of evaluation; and (iii) unable to provide pathological findings to confirm HCC. Finally, a total of 67 patients were enrolled. The flow chart of our study was depicted in Fig. 1.

¹⁸F-FDG/¹⁸F-FAPI PET/CT acquisition and imaging

¹⁸F-FDG was automatically synthesized using a PET trace cyclotron and the ¹⁸F-FDG synthesizer module (Tracerlab FXF-N, GE Healthcare). The detailed methodology for radiolabeling DOTA-FAPI can be found in the Supplementary material. ¹⁸F-FDG and ¹⁸F-FAPI PET/CT were performed using a PET/CT scanner (Discovery 710, GE Healthcare, Milwaukee, WI, USA) within 1 week. The imaging preparation and parameters of ¹⁸F-FDG/¹⁸F-FAPI PET/CT was performed according to a previously reported protocol [18].

¹⁸F-FDG and ¹⁸F-FAPI PET/CT image analysis

All images were visually interpreted independently by four board certified nuclear medicine physicians. To reduce individual interpretation bias, ¹⁸F-FDG PET/CT images were reviewed by Hao Peng and Shuyi Li, and ¹⁸F-FAPI PET/CT images were reviewed by Shuqin Jiang and Linqi Zhang. A consensus was reached following a comprehensive discussion in cases of discrepancies.

For visual analysis, lesions were divided into primary tumor and extrahepatic organs/regions (lymph nodes and distant metastasis) based on their location. Individual lymph node was then classified into four regions, including the head and neck, thoracic (supraclavicular, mediastinal, and axillary lymph nodes), abdominal (para-aortic, porta hepatic, retroperitoneal, celiac lymph nodes), and pelvic (parailiac vessels and inguinal lymph nodes). Distant involvement such as lung, bone, peritoneal and adrenal metastasis was categorized as an individual site. A

Fig. 1 Study flowchart shows inclusion and exclusion criteria. HCC = hepatocellular carcinoma; ¹⁸F = fluorine 18; FAPI = fibroblast activation protein inhibitor; FDG = fluorodeoxyglucose; PET/CT = positron emission tomography/computed tomography

positive lesion was considered when met the following criteria [19]: (i) a focal area had abnormally elevated ¹⁸F-FDG or ¹⁸F-FAPI uptake, accompanied by the abnormal density/signal in the corresponding sites on CT/MRI; and (ii) the lesions had typical features from contrast-enhanced CT (ceCT) or ce-MRI.

For semi-quantitative assessment, a region of interest (ROI) was drawn along the entire lesion on the axial PET image or anatomical information presented by CT/MRI (lesions with low or equal tracer uptake), and the maximum standardized uptake value (SUV_{max}), the diameter of each lesion and the amount of lesions per region were recorded. The tumor-to-background ratio (TBR) of each lesion was calculated by dividing the SUV_{max} of the lesion by the SUV_{mean} of the background tissue (liver background for liver lesions; mediastinal blood pool

background for macrovascular invasion, lymph nodes and peritoneal lesions; lung background for lung lesions; contralateral adrenal gland background for adrenal gland lesions; and L5 background for bone lesions). The TNM stage was assigned based on the eighth edition of the American Joint Committee on Cancer staging system [20].

Reference standard

All patients were diagnosed HCC (at least one lesion) based on histological evaluation of biopsy or surgical specimens. Due to ethical and technical issues, not all lesions are pathologically confirmed, especially for intrahepatic foci, lymph node metastasis and distant metastasis. When histopathology was unavailable for positive PET/CT findings, a combination of clinical and

multimodality radiographic (including PET/CT, contrastenhanced CT, MRI, and ultrasound) follow-up for more than 6 months was taken as the reference standard of diagnosis to validate the PET/CT findings [18]. Follow-up imaging findings that were considered malignant lesions had either progress or response to anticancer therapy in terms of reduction in size and/or number of lesions.

Statistical analysis

Quantitative variables are presented as the median [range (minimum to maximum)], and categorical variables are presented as frequencies (percentages). The diagnostic performance for HCC of ¹⁸F-FDG PET and ¹⁸F-FAPI PET was compared using the McNemar's test. The SUV_{max} and TBR obtained from ¹⁸F-FDG PET and ¹⁸F-FAPI PET images were compared using the paired Wilcoxon signed-rank test. All statistical tests were performed using SPSS Statistics 17.0 (SPSS Inc., Chicago, IL, USA) software. P < 0.05 was considered statistically significant.

Results

Patients characteristics

Sixty-seven patients with histological proven HCC (57 men and 10 women; median age, 57 [range, 32–83] years old) were enrolled in our study (Fig. 1). The most common etiology was hepatitis B infection (n=46, 68.7%), and eighteen patients presented with cirrhosis. Fifty-nine treatment-naive patients received paired ¹⁸F-FDG and ¹⁸F-FAPI PET examinations for initial staging, and 8 patients with recurrent HCC underwent paired examinations for restaging. 26.9% (18 of 67) of patients had intrahepatic lesions invading macrovascular, and 19.4% (13 of 67) of patients were identified to have extrahepatic metastasis (6 patients with lymph node metastasis and 9 patients with distant metastasis) (Table 1).

¹⁸F-FDG PET and ¹⁸F-FAPI PET in detection of intrahepatic lesions

In the initial staging group of 59 patients (a total of 234 lesions), the detecting rate of ¹⁸F-FAPI PET for intrahepatic lesions is significantly higher than ¹⁸F-FDG PET among patients with T1-3 stages (detail in Table 2, Figs. 2 and 3) [T1: 93.8% (15/16) vs. 31.3% (5/16), P=0.0006; T2: 100% (13/13) vs. 38.5% (5/13), P=0.0016; T3: 100% (14/14) vs. 35.7% (5/14), P=0.0006; T4: 100% (16/16) vs. 100% (16/16), P>0.05], and the lesions in T2-4 stage patients were more clearly characterized by higher activity (median SUV_{max}, T2: 9.9 vs. 5.3, P=0.0339; T3: 10.9 vs. 5.5, P=0.0085; T4: 12.9 vs. 14.5, P=0.0457) and clearer boundaries (median TBR, T2: 5.0 vs. 1.7, P=0.0002; T3: 6.6 vs. 2.1, P=0.0001; T4: 10.2 vs. 3.1, P<0.0001) in ¹⁸F-FAPI PET than in ¹⁸F-FDG PET (Supplementary Fig. 1a & b).

Table 1 Baseline patient characteristics of the enrolled patients

Description of patients	67
Age [years, median (IQR)]	57(32–83)
M:F radio	57:10
Cirrhosis/Non-Cirrhosis	18/49
Etiology (HBV/HCV/AH)	46/1/1
Clinical biochemical testing	
AFP (>20 ng/ml)	33
CEA (> 5U/ml)	21
CA19-9 (> 37U/ml)	9
Patient status	
Staging	59
Recurrence detection after treatment	8
Tumor number	
Solitary	32
Multifocal	35
Macrovascular invasion (Yes/No)	18/49
Tumor staging (Initial evaluation)	
T1	16
T2	13
Т3	14
T4	16
Extrahepatic Lesions (N/total)	13/67
Lymph node metastasis	7
Distant metastasis	9

M male, *F* female, *HBV* Hepatitis B virus, *HCV* Hepatitis C virus, *AH* Alcoholic hepatitis, *IQR* interquartile range, *AFP* alpha-fetoprotein, *CEA* carcinoembryonic antigen, *CA* 19–9 carbohydrate antigen 199

In the evaluation of recurrent tumors in 8 patients (a total of 24 lesions), there was no statistically significance in the sensitivity of detecting recurrent tumors between ¹⁸F-FAPI PET and ¹⁸F-FDG PET [100% (8/8) vs. 50.0% (4/8), P=0.0769], while the TBR of ¹⁸F-FAPI PET/CT was significantly higher than that of ¹⁸F-FDG PET/CT for local recurrence (median TBR: 5.4 vs 1.4, P=0.0078) (Table 2 and Fig. 4).

As shown in Table 2, ¹⁸F-FAPI PET/CT depicted 92.2% of the intrahepatic lesions (238 of 258), which was much better than 41.1% (106 of 258) of ¹⁸F-FDG PET/CT (P < 0.0001). According to tumour size, ¹⁸F-FAPI PET detected significantly more intrahepatic lesions than ¹⁸F-FDG PET among different sizes subgroups, especially in the early stage HCC (Fig. 3) [$\leq 2 \text{ cm}$: 88.1% (97/110) vs. 25.5% (28/110), P < 0.0001; > 2 cm and $\leq 5 \text{ cm}$: 89.9% (80/89) vs. 38.2% (34/89), P < 0.0001; > 5 cm: 100% (59/59) vs. 74.6% (44/59), P < 0.0001]. Besides, there were also significant differences in ¹⁸F-FAPI PET and ¹⁸F-FDG PET uptake among different tumor size groups (all P < 0.0001, Supplementary Fig. 1c & d).

A total of 18 patients had macrovascular invasion (16 patients for initial staging; 2 patients for restaging).

Description of lesions	No. of patients (No. of lesions)	¹⁸ F-FDG PET/CT		¹⁸ F-FAPI PET/CT			<i>P</i> value (FDG vs. FAPI)		
		Positive detection of lesions(%)	Median SUV _{max} (range)	Median TBR (range)	Positive detection of lesions(%)	Median SUV _{max} (range)	Median TBR (range)	SUV _{max}	TBR
Total	67	35(52.2%)	5.3(2.3–22.5)	2.1(1.0–15.2)	66(98.5%)	9.9(0.4–24.1)	6.0(0.8–30.0)	< 0.0001	< 0.0001
Primary Tumor	59	31(53.4%)	5.6(2.3-22.5)	2.2(1.0-15.2)	58(98.3%)	9.9(0.4-24.1)	6.7(0.8–30.0)	< 0.0001	< 0.0001
T1	16	5(31.3%)	3.75(2.3-11.2)	1.5(1.0-4.3)	15(93.8%)	4.65(0.4-15.2)	3.6(0.8–27.8)	0.1305	< 0.0001
T2	13	5(38.5%)	5.3(2.3-22.5)	1.7(1.4–9.8)	13(100%)	9.9(4.6-15.6)	5.0(1.5–15.0)	0.0339	0.0002
T3	14	5(35.7%)	5.5(3.7–15.5)	2.1(1.3-6.4)	14(100%)	10.9(3.3-24.1)	6.6(2.6-30.0)	0.0085	0.0001
T4	16	16(100%)	14.5(4.1–18.4)	3.5(1.9–15.2)	16(100%)	12.9(2.2–22.9)	10.2(4.1–22.5)	0.0457	< 0.0001
Recurrent Tumor	8	4(50.0%)	3.6(2.4-11.8)	1.4(1.0-5.2)	8(100%)	9.8(2.9–16.8)	5.4(2.6–12.9)	0.0781	0.0078
Tumor Size(cm)									
Total	67(258)	106(41.1%)	4.3(1.3-22.5)	1.7(0.5–15.2)	238(92.2%)	6.7(0.4-24.1)	3.9(0.8–30.0)	< 0.0001	< 0.0001
≤2	NA(110)	28(25.5%)	3.7(1.3–9.8)	1.5(0.5-4.3)	97(88.1%)	5.9(1.2-18.3)	3.1(0.8–22.9)	< 0.0001	< 0.0001
> 2, ≤ 5	NA(89)	34(38.2%)	4.2(2.2-13.8)	1.6(0.8–10.3)	82(92.1%)	6.5(0.4-22.4)	3.8(0.8-30.0)	< 0.0001	< 0.0001
>5	NA(59)	44(74.6%)	7.1(3.7–22.5)	2.5(1.3–15.2)	59(100%)	11.2(2.2-24.1)	6.6(2.6–26.1)	< 0.0001	< 0.0001
No. of lesions									
Solitary	32(32)	12(37.5%)	4.35(2.3-22.5)	1.7(1.0–9.8)	31(96.9%)	6.35(0.4–15.6)	5.15(0.8–27.8)	0.0152	< 0.0001
Multifocal	35(226)	94(41.6%)	4.3(1.3-18.4)	1.7(0.5–15.2)	207(91.6%)	6.7(1.2-24.1)	3.8(0.8–30.0)	< 0.0001	< 0.0001
Macrovascular invasion	18(18)	18(100%)	5.6(2.7–23.3)	3.5(1.4–12.3)	16(88.9%)	4.65(0.5-8.2)	2.9(1.2–4.6)	0.007	0.043

Table 2 Comparison of ¹⁸F-FDG PET/CT and ¹⁸F-FAPI PET/CT for the intrahepatic lesions of 67 patients

Bold fonts indicate significant difference between FDG and FAPI (P < 0.05)

¹⁸ F Fluorine 18, FDG fluorodeoxyglucose, FAPI fibroblast activation protein inhibitor, PET/CT positron emission tomography/computed tomography, HCC hepatocellular carcinoma, SUV_{max} maximum standardized uptake value, TBR Tumor-to-background ratio, NA Not applicable

Patient 13 Patient 32 Patient 33 Patient 34 Patient 38 Patient 42 Patient 47 Patient 48 Patient 49 Fig. 2 Nine representative patients with HCC underwent ¹⁸F-FDG & ¹⁸F-FAPI PET/CT imaging. ¹⁸F-FAPI PET/CT outperformed. ¹⁸F-FDG PET/CT in detecting primary tumors (Patient No. 32, 33, 34, 49), intrahepatic subfoci (Patient No. 13, 38, 42, 47, 48), supraclavicular lymph node metastases (Patient No. 13, 48), retroperitoneum lymph node metastases (Patient No. 48), and comparable in detecting distant metastases (Patient No. 48)

There was no statistically significance in the sensitivity of detecting macrovascular invasion between ¹⁸F-FAPI PET and ¹⁸F-FDG PET [88.9% (16/18) vs. 100% (18/18), P=0.486], and the SUV_{max} and TBR of 18

paired macrovascular invading lesions on ¹⁸F-FAPI PET/ CT images were significantly lower than on ¹⁸F-FDG PET/CT images (P=0.007 and P=0.043, respectively) (Table 2).

Fig. 3 A 41-year-old male patient (Patient No. 51) with HCC (moderately differentiated) was confirmed by biopsy.¹⁸F-FDG PET/CT displayed moderate uptake in the section II of the liver; However, the corresponding CT scan showed more nodules in other lobes of the liver.¹⁸F-FAPI PET/CT detects greater radiotracer in primary lesions and other intrahepatic subfoci on both MIP (large arrow) and axial images (small arrow)

Fig. 4 A 57-year-old male patient (Patient No. 50) with recurrent HCC (moderately differentiated) was confirmed by postoperative pathology. ¹⁸F-FDG PET/CT displayed no uptake in this lesion, although the corresponding CT scan showed lamellar low-density shadow in right lobe of the liver. ¹⁸F-FAPI PET/CT revealed intense uptake (SUV_{max} 9.0; TBR 6.0) in the recurrent lesion on both maximum intensity projection (MIP) (large arrow) and axial images (small arrow)

¹⁸F-FDG PET and ¹⁸F-FAPI PET for assessment of lymph node metastasis

According to the diagnostic criteria for lymph node metastases, 129 lymph nodes lesions in 7 patients were evaluated. The sensitivity of ¹⁸F-FAPI PET in detecting lymph node metastases was 97.9% (126/129), which was higher than ¹⁸F-FDG PET [89.1% (115/129), P=0.01]. The TBR of ¹⁸F-FAPI PET in lymph node metastasis was significantly higher than that in ¹⁸F-FDG PET (6.3 vs

4.5, P < 0.0001), while there was no significant difference in SUV_{max} (7.3 vs 7.6, P = 0.7475) (Table 3 and Fig. 2). Sixty-four of 129 (48.8%) lymph node metastasis were greater than 1.0 cm in short diameter, and the detecting rate of ¹⁸F-FAPI PET and ¹⁸F-FDG PET for these lymph nodes both were 100%. For lymph node in short diameter (\leq 1.0 cm), the sensitivities of ¹⁸F-FAPI PET is significantly higher than ¹⁸F-FDG PET (Fig. 5) [95.4% (62/65) vs. 78.5% (51/65), P < 0.0001]. The TBR of ¹⁸F-FAPI PET

Description of lesions	escription No. of ¹⁸ F-FDG PET/CT ¹⁸ F-FAPI PET/CT f lesions patients (No.			<i>P</i> value (FDG vs. FAPI)					
	of lesions)	Positive detection of lesions(%)	Median SUV _{max} (range)	Median TBR (range)	Positive detection of lesions(%)	Median SUV _{max} (range)	Median TBR (range)	SUV _{max}	TBR
Lymph node metastasis	7(129)	115(89.1%)	7.6(1.2–20.7)	4.5(0.5–17.3)	126(97.9%)	7.3(2.0–21.8)	6.3(1.4–26.5)	0.7475	< 0.0001
Head and neck regions	3(16)	13(81.3%)	4.8(1.2–14.7)	2.1(0.5–9.2)	16(100%)	7.7(3.0–13.9)	5.2(1.5–17.4)	0.0148	< 0.0001
Thoracic regions	2(15)	15(100%)	11.5(3.1–16.4)	7.2(1.3–10.3)	15(100%)	13.1(8.5–21.2)	16.4(4.7–26.5)	0.0267	< 0.0001
Abdominal regions	7(86)	81(94.2%)	7.95(1.8–20.7)	4.9(0.8–17.3)	83(96.5%)	6.9(2.0–21.8)	5.3(1.4–16.9)	0.0772	0.2818
Pelvic regions	2(12)	6(50%)	2.8(1.7–10.6)	1.3(0.8–6.6)	12(100%)	7.1(3.0–13.8)	7.4(2.3–10.6)	0.1763	0.0005
Lymph node siz	ze(cm)								
≤1	NA(65)	51(78.5%)	5.2(1.2–16.7)	3.3(0.5–13.9)	62(95.4%)	6.2(2.0-21.8)	5.0(1.4-23.1)	0.1253	0.0016
> 1	NA(64)	64(100%)	10.55(3.1– 20.7)	6.75(1.3–17.3)	64(100%)	9.35(3.1–21.2)	10.15(2.0– 26.5)	0.3771	0.0004
Distant lesions	9(66)	46(69.7%)	5.0(0.7–25.4)	6.5(0.6-84.7)	42(63.6%)	2.75(0.5-20.4)	7.45(1.7–30.0)	0.0139	0.582
Lung	6(24)	7(29.1%)	1.4(0.7–10.2)	6.5(3.5-51.0)	8(37.5%)	1.65(0.5–10.5)	13.0(1.7–28.0)	0.7196	0.0639
Bone	3(24)	24(100%)	11.1(5.2–25.4)	24.15(2.9– 84.7)	16(66.7%)	3.0(1.1–20.4)	6.3(2.8–30.0)	0.0007	0.0014
Peritoneal	1(17)	14(82.4%)	3.9(1.3–7.7)	1.7(0.6–3.3)	17(100%)	4.8(2.3-7.0)	5.3(2.6–7.8)	0.0731	< 0.0001
Adrenal gland	1(1)	1(100%)	5.6(NA)	1.9(NA)	1(100%)	4.8(NA)	4.8(NA)	-	-
Total	13(195)	161(82.6%)	6.3(0.7–25.4)	5.1(0.5-84.7)	168(86.2%)	6.4(0.5–21.8)	6.6(1.4-30.0)	0.2538	0.0007

Table 3 Co	nparison of	¹⁸ F-FDG PET/CT and	¹⁸ F-FAPI PET/CT	for the extrahepatic lesions
------------	-------------	--------------------------------	-----------------------------	------------------------------

Bold fonts indicate significant difference between FDG and FAPI (P < 0.05)

¹⁸ F Fluorine 18, FDG fluorodeoxyglucose, FAPI fibroblast activation protein inhibitor, PET/CT positron emission tomography/computed tomography, HCC

 $he patocellular \ carcinoma, \ SUV_{max} \ maximum \ standardized \ up take \ value, \ TBR \ Tumor-to-background \ ratio, \ NA \ Not \ applicable$

in metastasis lymph node (≤ 1.0 cm) were significantly higher than ¹⁸F-FDG PET (5.0 vs. 3.3, P=0.0016), but there was no significance in SUV_{max} between two agents (Supplementary Fig. 1e & f).

¹⁸F-FDG PET and ¹⁸F-FAPI PET in evaluation of distant metastasis

A total of 66 distant metastatic lesions in 9 patients were confirmed based on the reference standards. There was no statistically significant difference in sensitivity between ¹⁸F-FAPI PET/CT and ¹⁸F-FDG PET/CT in detecting distant metastatic lesions [42 (63.6%) vs 46 (69.7%), P=0.58)] (Supplementary Fig. 1g).

Regarding the 3 patients with bone metastasis, ¹⁸F-FAPI PET had a significant lower sensitivity than ¹⁸F-FDG PET [66.7% (16/24) vs. 100% (24/24), P=0.004], and ¹⁸F-FDG PET/CT showed higher SUV_{max} and TBR than ¹⁸F-FAPI PET/CT in bone metastasis evaluation (median SUV_{max}: 11.0 vs 3.0, P=0.0007; median TBR: 24.15 vs 6.3, P=0.0014) (Table 3). Only one patients was diagnosed with peritoneal metastasis (17 lesions, Patient 22 Supplementary Table S1). In contrast to the SUV_{max}, the differences between ¹⁸F-FAPI and ¹⁸F-FDG imaging were significant quantified by the TBR (median SUV_{max}: 4.8 vs 3.9, P=0.0731; median TBR: 5.3 vs 1.7, P<0.0001) (Table 3).

Changes in staging and therapeutic management

In the initial assessment of 59 patients, ¹⁸F-FAPI imaging detected primary HCC tumors in 16 patients with ¹⁸F-FDG-negative. These patients received the available treatment as early as possible since ¹⁸F-FAPI detected the primary lesion [11 patients were treated with surgery or ablation; 4 patients with transcatheter arterial chemoembolization (TACE) plus systemic therapy; and 1 patients with TACE plus systemic therapy plus radiotherapy]. With more intrahepatic subfoci revealed by ¹⁸F-FAPI PET than ¹⁸F-FDG PET/CT, the TNM staging was upgraded in 12 patients (12/59, 20.3%) (four from IB to II, eight from II to IIIA). As a result, instead of the previously planned surgical treatment, four patient received TACE and systemic chemotherapy, while eight patients

Fig. 5 A 62-year-old male patient (Patient No. 13) with HCC (moderately differentiated) was confirmed by biopsy. Compared with ¹⁸F-FDG PET/ CT, ¹⁸F-FAPI PET/CT revealed more intrahepatic subfoci (white arrow in axial images) and more lymph node metastases (red arrow in axial, coronal images). There was a lymph node in right upper mediastinum, showing low-uptake in ¹⁸F-FAPI but intense uptake in ¹⁸F-FDG, final pathological findings confirmed inflammatory

received palliative systemic treatment and radiation (Table 4 and Fig. 6).

Among the other 8 patients with recurrence, ¹⁸F-FAPI PET identified ¹⁸F-FDG-negative locally recurrent tumors in 4 patients (50%) (Table 5), resulting in cancellation of dynamic review and administration of surgery or ablation treatment (Fig. 6).

Discussion

Our study have demonstrated ¹⁸F-FAPI PET/CT plays a complementary role for ¹⁸F-FDG PET/CT examination in HCC. The results showed ¹⁸F-FAPI PET/CT is superior to ¹⁸F-FDG PET/CT in detecting intrahepatic lesions, lymph node metastasis and peritoneal metastasis. In visual analysis, ¹⁸F-FAPI PET/CT had higher detection rate than ¹⁸F-FDG PET/CT in intrahepatic lesions (92.2% vs 41.1%, P<0.0001), lymph node metastases (97.9% vs 89.1%, P=0.01). In semiquantitative analysis, the SUV_{max} and TBR of intrahepatic lesions on ¹⁸F-FAPI PET/CT were both higher than those on ¹⁸F-FDG PET/ CT (all p<0.01). Although in lymph node and peritoneal metastasis, the SUV_{max} on ¹⁸F-FAPI PET/CT was not significantly higher than those on ¹⁸F-FDG PET/CT (all p > 0.05), the TBR on ¹⁸F-FAPI PET/CT was higher than those on 18 F-FDG PET/CT (all p<0.01).

In our study, we demonstrated that ¹⁸F-FDG is less effective than ¹⁸F-FAPI in displaying intrahepatic lesions, which was consistent with previous research results [3, 12–14, 18]. The uptake of ¹⁸F-FDG in malignant tumors largely depends on the presence of facilitated glucose transporters, including type 1 (Glut 1), while Glut 1 is rarely expressed in HCC [7, 21]. Therefore, ¹⁸F-FDG PET/CT was not recommended for detecting HCC. FAP is overexpressed in CAFs of 90% epithelial carcinomas [10], including HCC, and liver background uptake is low on ¹⁸F-FAPI PET/CT [18]. Therefore, ¹⁸F-FAPI PET/CT is superior to ¹⁸F-FDG PET/CT in detecting intrahepatic lesions. Futhermore, our study compared ¹⁸F-FDG and ¹⁸F-FAPI for HCC patients with different T stages, the ability of ¹⁸F-FAPI PET/CT to display intrahepatic lesions was better than that of ¹⁸F-FDG PET/CT among patients with T2-T4 stages, and ¹⁸F-FAPI PET/CT showed significantly higher TBR and similar $\mathrm{SUV}_{\mathrm{max}}$ in patients with T1 stage. The above results suggest that ¹⁸F-FAPI PET/ CT can improve the ability to detect HCC lesions. In the LI-RADS classification, the diagnosis of HCC lesion with diameter ≤ 2 cm was difficult, and at least two typical imaging manifestations of HCC on ce-CT/ce-MRI/US were required to grade LR-4 [22]. Our results also demonstrated that in addition to LI-RADS, ¹⁸F-FAPI PET/CT can provide more information by detecting more HCC lesions ≤ 2 cm than ¹⁸F-FDG PET/CT (88.1% (97/110) vs. 25.5% (28/110), *P* < 0.0001).

Although lymph node metastasis is not common in HCC, it represents the aggressive biological behavior of HCC with poor prognosis [23, 24]. It has been reported that FDG PET/CT is superior to conventional evaluations in detecting occult metastases in patients with invasive HCC. The accuracy of conventional imaging in the diagnosis of lymph node metastasis (short diameter of lymph node ≥ 1 cm] was less than 50% [25]. In visual analysis, our study showed that ¹⁸F-FAPI PET/CT detected a little more lymph node metastasis than ¹⁸F-FDG PET/CT. In semi-quantitative analysis, the

Patient No	TNM staging (FDG PFT based)	jing TNM staging Additional finding based) (FAPI PFT based) (¹⁸ F-FAPI PET)		Staging change	Primary lesion detected	
1	T2 N0M0	T3 N0M0	Multifocal int <u>rahepatic foci</u>	Up	-	
2	T2N0M1	T3 N0M1	Multifocal int <u>rahepatic foci</u>	Up	-	
4	T2N0M0	T2N0M0	-	None	Yes	
6	T1N0M0	T1N0M0	-	None	Yes	
7	T2 N0M0	T3N0M0	Multifocal intrahepatic foci	Up	-	
10	T1N0M0	T1N0M0	-	None	Yes	
15	T3N0M0	T2 N0M0	Multifocal int <u>rahepatic foci</u>	Up	-	
16	T1N0M0	T1N0M0	-	None	Yes	
18	T1N0M0	T1N0M0	-	None	Yes	
19	T2 N0M0	T3N0M0	Multifocal int <u>rahepatic foci</u>	Up	-	
21	T2 N0M0	T3N0M0	Multifocal int <u>rahepatic foci</u>	Up	-	
23	T1N0M0	T1N0M0	-	None	Yes	
25	T1N0M0	T1N0M0	-	None	Yes	
26	T1N0M0	T1N0M0	-	None	Yes	
27	T2N0M0	T2N0M0	-	None	Yes	
28	T3 N0M1	T2 N0M1	Multifocal intrahepatic foci	Up	-	
29	T2N0M0	T2N0M0	-	None	Yes	
30	T3N0M0	T3N0M0	-	None	Yes	
31	T1N0M0	T1N0M0	-	None	Yes	
36	T2N0M1	T2N0M1	-	None	Yes	
44	T2 N0M1	T1 N0M1	Multifocal intrahepatic foci	Up	-	
51	T2 N0M0	T1N0M0	Multifocal intrahepatic foci	Up	-	
55	T2 N0M0	T1N0M0	Multifocal int <u>rahepatic foci</u>	Up	-	
56	T1N0M0	T1N0M0	-	None	Yes	
60	T2 N0M0	T1N0M0	Multifocal intrahepatic foci	Up	-	
63	T1N0M0	T1N0M0	-	None	Yes	
65	T3N0M0	T2 N0M0	Multifocal int <u>rahepatic foci</u>	Up	-	
66	T1N0M0	T1N0M0	-	None	Yes	

 Table 4
 Comparison of ¹⁸F-FDG PET based and ¹⁸F-FAPI PET based TNM restaging

Bold fonts indicate the changing segment in TNM stanging after ¹⁸F-FAPI PET/CT imaging

¹⁸ F Fluorine 18, FDG fluorodeoxyglucose, FAPI fibroblast activation protein inhibitor, PET positron emission tomography, TNM Tumor Node Metastasis

SUV_{max} of lymph node metastasis on ¹⁸F-FAPI PET/ CT was not significantly higher than that on ¹⁸F-FDG PET/CT, which could be attributed to HCC that metastasizes to lymph nodes is more aggressive and usually requires more FDG. However, the TBR on ¹⁸F-FAPI PET/CT was higher than that of ¹⁸F-FDG PET/CT, which can increase our diagnosis confidence of lymph node metastasis. In additionally, two histology-confirmed inflammatory lymph nodes in paratracheal show ¹⁸F-FDG false-positive uptake but ¹⁸F-FAPI negative uptake, intended that ¹⁸F-FAPI showed the potential ability to differentiate metastatic and nonmetastatic lymph nodes, which was consistent with previous research results [26, 27].

Lung is the most common extrahepatic metastasis site of HCC [28]. Once Lung metastasis occurred in HCC, the patient would be classified into advanced stage and require systemic treatment [1]. In visual analysis and semi-quantitative analysis, ¹⁸F-FAPI PET/CT and ¹⁸F-FDG PET/CT showed similar performance on lung metastasis. The background of lung on ¹⁸F-FAPI PET/CT is as low as that of ¹⁸F-FDG PET/CT. Besides, in our study, the diameter of more than half of lung metastasis were less than 1 cm, which may lead to less radiopharmaceuticals uptake.

With regard to macrovascular invasion and bone metastasis, the number of lesions detected by ¹⁸F-FDG PET/CT was higher than that of ¹⁸F-FAPI PET/CT, and the SUV_{max} and TBR on ¹⁸F-FDG PET/CT were higher than those on ¹⁸F-FAPI PET/CT. Several studies have proved that HCC with higher FDG uptake usually displays more aggressive biological behavior [29–31]. The exist of macro and microvascular invasion provide the route for tumor cells to access the portal or systemic

Fig. 6 Overview of impact of ¹⁸F-FAPI PET/CT on staging and therapeutic management in HCC, therapeutic management was altered in 31 of 67 individuals

Table 5 Comparison of "F-FDG PET and "F-FAPI PET in post treatment patient	Table 5 Comparison of ¹⁸ F-FDG PET and ¹⁸ F-FAPI PET in post treatment p	atients
--	--	---------

Patient No	Primary treatment	Local recurrence detection		Distant metast	Additional finding	
		¹⁸ F-FDG PET	¹⁸ F-FAPI PET	¹⁸ F-FDG PET	¹⁸ F-FAPI PET	('°F-FAPI PET)
3	surgery	-	+	-	-	Local recurrence
32	systemic therapy	+	+	-	-	-
33	TACE	+	+	-	-	-
45	TACE and RFA	-	+	-	-	Local recurrence
48	surgery and systemic therapy	+	+	+	+	-
49	TACE	-	+	+	+	Local recurrence
50	surgery and systemic therapy	-	+	-	-	Local recurrence
58	RFA and systemic therapy	+	+	-	-	-

¹⁸ F Fluorine 18, FDG fluorodeoxyglucose, FAPI fibroblast activation protein inhibitor, PET positron emission tomography, TNM Tumor Node Metastasis, TACE transcatheter arterial chemoembolization, RFA radiofrequency ablation

circulation, have correlation with the presences of distant metastases [32]. And both macrovascular invasion and distant metastases were the indicator of the aggressiveness of the primary HCC [33, 34]. Although ¹⁸F-FDG PET/CT is less sensitive in detecting intrahepatic lesions of HCC, it is valuable in detecting macrovascular invasion and bone metastasis. In addition, our study only found one adrenal metastasis lesion which detected both on ¹⁸F-FAPI PET/CT and ¹⁸F-FDG PET/ CT with equivalent uptake.

In this study, ¹⁸F-FAPI PET/CT identified more intrahepatic lesions, lymph node metastases and peritoneal metastases than ¹⁸F-FDG PET/CT in HCC, especially in intrahepatic lesions, and upgraded the T staging in 12 patients. Although ¹⁸F-FDG PET/CT had advantage in detecting macrovascular invasion and bone metastasis, there was no change in the staging of patients. Therefore, compared with ¹⁸F-FDG PET/CT, ¹⁸F-FAPI PET/CT has a greater impact on the initial staging of HCC patients. In addition, in this study, half of the HCC patients (4/8) for restaging found recurrent lesions on ¹⁸F-FAPI PET/ CT, which were negative on ¹⁸F-FDG PET/CT. Therefore, ¹⁸F-FAPI PET/CT may demonstrated great value for HCC patients staging and restaging. Our research also has some limitations. First of all, lymph node metastasis and distant metastasis were followed up by imaging, without pathological results. Secondly, the sample size of distant metastatic lesions is small, the diagnostic value of ¹⁸F-FAPI PET/CT and ¹⁸F-FDG PET/CT for HCC in distant metastatic lesions needs to be further explored with a larger sample size. Thirdly, ¹⁸F-FAPI is not as widely used as ⁶⁸ Ga-FAPI, and more research is needed to confirm its reliability.

Conclusion

In summary, This prospective study confirmed that ¹⁸F-FAPI PET/CT is a promising technique in staging of HCC and is complementary to ¹⁸F-FDG PET/CT. ¹⁸F-FAPI PET/CT had advantages in detecting intrahepatic lesions, lymph node metastasis and peritoneal metastasis compared to ¹⁸F-FDG PET/CT, which is help-ful to improve the clinical management of HCC patients.

Abbreviations

CAFs	Cancer-associated fibroblasts
FAPI	Fibroblast activation protein inhibitor
FDG	Fluorodeoxyglucose
HCC	Hepatocellular carcinoma
TBR	Tumor-to-background ratio
PET/CT	Positron emission tomography/computed tomography
SUV _{max}	Maximum standardized uptake value

Supplementary Information

The online version contains supplementary material available at https://doi. org/10.1186/s40644-023-00626-y.

Additional file 1: Supplementary Fig. 1. (a & b) Comparison of SUV_{max} and TBR values in different primary tumor staging groups between ¹⁸F-FDG and ¹⁸F-FAPI PET. (c & d) Comparison of SUV_{max} and TBR values in different sizes of intrahepatic lesions between ¹⁸F-FDG and ¹⁸F-FAPI PET. (e & f) Comparison of SUV_{max} and TBR values in metastatic lymph node with different short diameters (≤ 1 cm or > 1 cm) between ¹⁸F-FAPI PET. (g) Compare the performance of ¹⁸F-FDG and ¹⁸F-FAPI PET in detecting extrahepatic lesions, involved lymph nodes, lung, bone peritoneal and adrenal gland metastases. ns = no significant; **P* < 0.05; ***P* < 0.001; ****P* < 0.0001; Table S1. Patient characteristics and ¹⁸F-FAPI PET/CT imaging findings for the 67 patients

Acknowledgements

Not applicable.

Authors' contributions

LQZ contributed to the conception and design of the study, and study supervision; JZ, SQJ and MSL contributed to data-collection, analysis and interpretation of data, writing, and revising the manuscript; HBX, XZ, SYL, HP, JCL, ZDL, SQR, HPC and ZWC contributed to data-collection; YFG and GSC contributed to revising the manuscript; RSZ contributed to study supervision; all authors read and approved the final manuscript.

Funding

This work was supported by National Natural Science Foundation of China (Grant No.82101994) and Affiliated Cancer Hospital & Institute of Guangzhou Medical University Clinical Research 5555 Program [No. IIT-2022–015(HYX)].

Availability of data and materials

All the data generated and analyzed during this study are included in our manuscript. The data that support the findings of this study are available from the corresponding author upon reasonable request.

Declarations

Ethics approval and consent to participate

This study was performed in line with the principles of the Declaration of Helsinki, Approval was granted by the Ethics Committee of Affiliated Cancer Hospital & Institute of Guangzhou Medical University.

Consent for publication

Not applicable.

Competing interests

The authors declare no conflict of interest.

Author details

¹Department of Nuclear Medicine, Affiliated Cancer Hospital & Institute of Guangzhou Medical University, 78 Hengzhigang Road, Guangzhou 510095, People's Republic of China. ²Department of Nuclear Medicine, the First Affiliated Hospital of Guangzhou Medical University, No.28 Qiaozhong Road, Guangzhou, Guangdong 510163, P. R. China. ³Department of Radiology, the Third Affiliated Hospital of Sun Yat-Sen University, No.600, Tianhe Road, Guangzhou, Guangdong 510630, P. R. China. ⁴Department of Radiology, Affiliated Cancer Hospital & Institute of Guangzhou Medical University, 78 Hengzhigang Road, Guangzhou, Guangdong 510095, P. R. China. ⁵Department of Hepatobiliary Surgery, Affiliated Cancer Hospital & Institute of Guangzhou Medical University, 78 Hengzhigang Road, Guangzhou, Guangdong 510095, P. R. China. ⁶Department of Interventional Medicine, Affiliated Cancer Hospital & Institute of Guangzhou Medical University, 78 Hengzhigang Road, Guangzhou, Guangdong 510095, P. R. China.

Received: 12 August 2023 Accepted: 19 October 2023 Published online: 30 October 2023

References

- 1. Villanueva A. Hepatocellular carcinoma. N Engl J Med. 2019;380:1450-62.
- Kesler M, Levine C, Hershkovitz D, et al. (68)Ga-PSMA is a novel PET-CT tracer for imaging of hepatocellular carcinoma: A prospective pilot study. J Nucl Med. 2019;60:185–91.
- Shi X, Xing H, Yang X, et al. Comparison of PET imaging of activated fibroblasts and (18)F-FDG for diagnosis of primary hepatic tumours: a prospective pilot study. Eur J Nucl Med Mol Imaging. 2021;48:1593–603.
- Hirmas N, Leyh C, Sraieb M, et al. (68)Ga-PSMA-11 PET/CT improves tumor detection and impacts management in patients with hepatocellular carcinoma. J Nucl Med. 2021;62:1235–41.
- Park JW, Kim JH, Kim SK, et al. A prospective evaluation of ¹⁸F-FDG and ¹¹C-acetate PET/CT for detection of primary and metastatic hepatocellular carcinoma. J Nucl Med. 2008;49:1912–21.
- Kunikowska J, Cieslak B, Gierej B, et al. [(68) Ga]Ga-Prostate-Specific Membrane Antigen PET/CT: a novel method for imaging patients with hepatocellular carcinoma. Eur J Nucl Med Mol Imaging. 2021;48:883–92.
- Lee JD, Yang WI, Park YN, et al. Different glucose uptake and glycolytic mechanisms between hepatocellular carcinoma and intrahepatic massforming cholangiocarcinoma with increased ¹⁸F-FDG Uptake. J Nucl Med. 2005;46:1753–9.
- Asman Y, Evenson AR, Even-Sapir E, Shibolet O. ¹⁸F-fludeoxyglucose positron emission tomography and computed tomography as a prognostic tool before liver transplantation, resection, and loco-ablative therapies for hepatocellular carcinoma. Liver Transpl. 2015;21:572–80.
- 9. Rettig WJ, Chesa PG, Beresford HR, et al. Differential expression of cell surface antigens and glial fibrillary acidic protein in human astrocytoma subsets. Cancer Res. 1986;46:6406–12.

- Boulter L, Bullock E, Mabruk Z, Brunton VG. The fibrotic and immune microenvironments as targetable drivers of metastasis. Br J Cancer. 2021;124:27–36.
- 11. Kratochwil C, Flechsig P, Lindner T, et al. (68)Ga-FAPI PET/CT: Tracer Uptake in 28 Different Kinds of Cancer. J Nucl Med. 2019;60:801–5.
- Guo W, Pang Y, Yao L, et al. Imaging fibroblast activation protein in liver cancer: a single-center post hoc retrospective analysis to compare [(68) Ga]Ga-FAPI-04 PET/CT versus MRI and [(18)F]-FDG PET/CT. Eur J Nucl Med Mol Imaging. 2021;48:1604–17.
- Siripongsatian D, Promteangtrong C, Kunawudhi A, et al. Comparisons of quantitative parameters of ga-68-labelled fibroblast activating protein inhibitor (FAPI) PET/CT and [(18)F]F-FDG PET/CT in patients with liver malignancies. Mol Imaging Biol. 2022;24:818–29.
- Wang H, Zhu W, Ren S, et al. (68)Ga-FAPI-04 Versus (18)F-FDG PET/CT in the detection of hepatocellular carcinoma. Front Oncol. 2021;11:693640.
- Li Y, Lin X, Li Y, et al. Clinical Utility of F-18 Labeled Fibroblast Activation Protein Inhibitor (FAPI) for primary staging in lung adenocarcinoma: a prospective study. Mol Imaging Biol. 2022;24:309–20.
- Fu L, Huang S, Wu H, et al. Superiority of [(68)Ga]Ga-FAPI-04/[(18)F]FAPI-42 PET/CT to [(18)F]FDG PET/CT in delineating the primary tumor and peritoneal metastasis in initial gastric cancer. Eur Radiol. 2022;32:6281–90.
- Hu K, Wang L, Wu H, et al. [(18)^FJFAPI-42 PET imaging in cancer patients: optimal acquisition time, biodistribution, and comparison with [(68)Ga] Ga-FAPI-04. Eur J Nucl Med Mol Imaging. 2022;49:2833–43.
- Zhang J, He Q, Jiang S, et al. [¹⁸F]FAPI PET/CT in the evaluation of focal liver lesions with [¹⁸F]FDG non-avidity. Eur J Nucl Med Mol Imaging. 2023;50:937–50.
- Scialpi M, Palumbo I, Gravante S, et al. FDG PET and split-bolus multidetector row CT fusion imaging in oncologic patients: preliminary results. Radiology. 2016;278:873–80.
- Amin MB, Edge SB, Greene FL, et al. eds. AJCC Cancer staging manual, 8th ed. New York: Springer International Publishing: American Joint Commission on Cancer. 2017; 287–294.
- Paudyal B, Oriuchi N, Paudyal P, et al. Clinicopathological presentation of varying ¹⁸F-FDG uptake and expression of glucose transporter 1 and hexokinase II in cases of hepatocellular carcinoma and cholangiocellular carcinoma. Ann Nucl Med. 2008;22:83–6.
- Chernyak V, Fowler KJ, Kamaya A, et al. Liver imaging reporting and data system (LI-RADS) version 2018: imaging of hepatocellular carcinoma in at-risk patients. Radiology. 2018;289:816–30.
- Ma J, Chen XQ, Xiang ZL. Identification of a prognostic transcriptome signature for hepatocellular carcinoma with lymph node metastasis. Oxid Med Cell Longev. 2022;2022:7291406.
- 24. Chen X, Lu Y, Shi X, et al. Development and validation of a novel model to predict regional lymph node metastasis in patients with hepatocellular carcinoma. Front Oncol. 2022;12:835957.
- 25. Ercolani G, Grazi GL, Ravaioli M, et al. The role of lymphadenectomy for liver tumors: further considerations on the appropriateness of treatment strategy. Ann Surg. 2004;239:202–9.
- Zhou X, Wang S, Xu X, Meng X, Zhang H, Zhang A, et al. Higher accuracy of [⁶⁸ Ga]Ga-DOTA-FAPI-04 PET/CT comparing with 2-[¹⁸F]FDG PET/CT in clinical staging of NSCLC. Eur J Nucl Med Mol Imaging. 2022;49:2983–93 Springer Berlin Heidelberg.
- Wang L, Tang G, Hu K, et al. Comparison of ⁶⁸Ga-FAPI and ¹⁸F-FDG PET/CT in the evaluation of advanced lung cancer. Radiology. 2022;303:191–9.
- Uka K, Aikata H, Takaki S, et al. Clinical features and prognosis of patients with extrahepatic metastases from hepatocellular carcinoma. World J Gastroenterol. 2007;13:414–20.
- Lee JW, Paeng JC, Kang KW, et al. Prediction of tumor recurrence by ¹⁸F-FDG PET in liver transplantation for hepatocellular carcinoma. J Nucl Med. 2009;50:682–7.
- Sabate-Llobera A, Mestres-Marti J, Reynes-Llompart G, et al. 2-[(18)F]FDG PET/CT as a Predictor of Microvascular Invasion and High Histological Grade in Patients with Hepatocellular Carcinoma. Cancers (Basel). 2021;13:2554.
- Hyun SH, Eo JS, Song B, et al. Preoperative prediction of microvascular invasion of hepatocellular carcinoma using (18)F-FDG PET/CT: a multicenter retrospective cohort study. Eur J Nucl Med Mol Imaging. 2018;45:720–6.

- Yoneda N, Matsui O, Kobayashi S, et al. Current status of imaging biomarkers predicting the biological nature of hepatocellular carcinoma. Jpn J Radiol. 2019;37:191–208 Springer Japan.
- Lee JW, Hwang SH, Kim HJ, Kim D, Cho A, Yun M. Volumetric parameters on FDG PET can predict early intrahepatic recurrence-free survival in patients with hepatocellular carcinoma after curative surgical resection. Eur J Nucl Med Mol Imaging. 2017;44:1984–94.
- Uchino K, Tateishi R, Shiina S, et al. Hepatocellular carcinoma with extrahepatic metastasis: clinical features and prognostic factors. Cancer. 2011;117:4475–83.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Ready to submit your research? Choose BMC and benefit from:

- fast, convenient online submission
- thorough peer review by experienced researchers in your field
- rapid publication on acceptance
- support for research data, including large and complex data types
- gold Open Access which fosters wider collaboration and increased citations
- maximum visibility for your research: over 100M website views per year

At BMC, research is always in progress.

Learn more biomedcentral.com/submissions

