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Abstract 

Objectives This study aims to develop a model based on intratumoral and peritumoral radiomics from fat-sup-
pressed T2-weighted(FS-T2WI) images to predict the histopathological grade of soft tissue sarcoma (STS).

Methods This retrospective study included 160 patients with STS from two centers, of which 82 were low-grade 
and 78were high-grade. Radiomics features were extracted and selected from the region of tumor mass volume 
(TMV) and peritumoral tumor volume (PTV) respectively. The TMV, PTV, and combined(TM-PTV) radiomics models 
were established in the training cohort (n = 111)for the prediction of histopathological grade. Finally, a radiomics 
nomogram was constructed by combining the TM-PTV radiomics signature (Rad-score) and the selected clinical-MRI 
predictor. The ROC and calibration curves were used to determine the performance of the TMV, PTV, and TM-PTV 
models in the training and validation cohort (n = 49). The decision curve analysis (DCA) and calibration curves were 
used to investigate the clinical usefulness and calibration of the nomogram, respectively.

Results The TMV model, PTV model, and TM-PTV model had AUCs of 0.835, 0.879, and 0.917 in the training cohort 
and 0.811, 0.756, 0.896 in the validation cohort. The nomogram, including the TM-PTV signatures and peritumoral 
hyperintensity, achieved good calibration and discrimination with a C-index of 0.948 (95% CI, 0.906 to 0.990) 
in the training cohort and 0.921 (95% CI, 0.840 to 0.995) in the validation cohort. Decision curve analysis demon-
strated the clinical usefulness of the nomogram.

Conclusion The proposed model based on intratumoral and peritumoral radiomics showed good performance 
in distinguishing low-grade from high-grade STSs.

Key points 

• Peritumoral and intratumoral radiomics models based on FS-T2WI images had a good predictive ability for the histo-
pathological grading of STSs.

• Peritumoral hyperintensity and radiomic scores were independently associated with histopathological grading 
of STSs.
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• The nomogram integrating clinic features and radiomics scores demonstrated good performance for predicting 
the histopathological grading of STSs.

Keywords Magnetic resonance imaging, Radiomics analysis, Sarcomas

Soft tissue sarcomas (STSs) are highly heterogeneous 
malignant tumors originating from mesenchymal tis-
sue. According to the histological grading method used 
by the French Federation of Cancer Centers Sarcoma 
Group(FNCLCC) [1], STSs are divided into classes I–
III based on how aggressively malignant cells manifest 
themselves, where grade I is a low grade and grade II, 
III, is a high grade. Different histopathological grades of 
treatment strategies and prognoses have variances [2]. 
Preoperative adjuvant chemoradiotherapy is recom-
mended for high-grade STSs, which can help improve the 
survival rate of patients. Correspondingly, the side effects 
of preoperative chemoradiotherapy can be avoided if 
patients with low-grade STS are identified before surgery. 
At present, the preoperative histopathological grading 
diagnosis of STSs mainly relies on the core needle biopsy 
[3]. However, the results are easily influenced by the sam-
pling site, the size, and the makeup of the lesion, making 
it impossible to do an overall assessment of the lesion [4].

The most common non-invasive technique for STS 
preoperative diagnosis and evaluation is magnetic reso-
nance imaging (MRI). Although experienced radiologists 
can easily identify tumors from MRI, tumor heterogene-
ity makes grading STSs challenging [5]. Recently, there 
has been promising progress in the grading of STSs based 
on radiomic features of MRI. Zhang et  al. [6] employed 
radiomics-based features to establish different diagnos-
tic models to identify the grading of STSs and found the 
model using the support vector machine (SVM) classi-
fier method performed best. Peeken et al. [7] established 
independent and combined radiomics models based 
on FS-T2WI and T1WI-enhanced sequences to predict 
STSs histopathological grades and found that the radi-
omics model based on FS-T2WI had the highest predic-
tive performance for high-grade STSs. Yan et  al. [6, 8] 
constructed a radiomics nomogram method to predict 
high-grade STSs, conducted model development and 
validation with 180 cases of STSs in two centers, and 
found that the nomogram based on radiomics features, 
T staging, and MR boundaries was superior to a single 
radiomics model or a clinical feature model. Although 
previous studies have achieved great success in differ-
entiating pathological grades, extracting more valuable 
radiomics features to boost prediction accuracy remains 
a challenge.

However, the existing radiomics-based approaches 
focus on the intratumoral area and ignore the role of the 

peritumoral environment in STSs grading. Endothelial 
cells, fibroblasts, immune cells, and other cell types as 
well as extracellular components make up the peritu-
moral area, also known as the tumor microenvironment 
[9, 10]. The microenvironment determines many aspects 
of tumor behavior, including tumor progression, treat-
ment response, and metastasis [11]. White et  al. have 
shown that satellite-like single or clustered tumor cells 
that are not visible on imaging can be found beyond 
the tumor margins in a population of patients under-
going surgery [12]. Clinical evidence suggested the het-
erogeneity of STSs is not limited to tumor margins but 
also involves peritumoral regions [13]. As a result, the 
tumor’s peritumoral environment is also promising and 
may offer important data for the clinical evaluation of 
tumor invasive biological behavior. Recently, there have 
been some studies combining intratumoral and peritu-
moral radiomic features to determine the histopatho-
logical classification of clear cell renal cell carcinoma 
[14, 15], identify benign and malignant nodules in the 
lung [16, 17], predict lymph node metastasis and dis-
tant metastasis in lung cancer [18], and predict the risk 
of breast cancer response to chemotherapy [19], which 
achieved good performance.

The purpose of this study was to investigate, using a 
two-center dataset, the capacity of intratumoral and peri-
tumoral radiomics signatures based on MRI to noninva-
sively predict STS histopathological grade.

Materials and methods
Patients and MRI morphologic characteristics
This two-center retrospective study’s ethical approval was 
provided by the two institutional review boards, and the 
requirement for informed consent was waived. Between 
June 2016 and July 2022, 160 patients with STS con-
firmed by pathology and met the inclusion criteria were 
retrospectively collected. Inclusion criteria:(1) Patients 
underwent surgical resection; (2)STS was diagnosed 
by histopathology; (3) Axial FS-T2WI MRI scans ≤ 2 
weeks before surgery; Exclusion criteria: (1) Incomplete 
clinical or imaging data; (2) MRI image quality is poor, 
signal-to-noise ratio ≤ 1.0; (3) Development of other sub-
sequent tumors; (4) The patient has received prior treat-
ment, such as chemotherapy, radiation therapy, or needle 
biopsy.

In total, 160 STS patients were analyzed. Clinical-MRI 
characteristics included age, gender, location, and MRI 
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morphological features. All images were independently 
reviewed by two radiologists with more than 5 years of 
skeletal muscle MRI experience while remaining blind to 
the clinical and histopathological data. Decisions on MRI 
findings were made through team negotiation. According 
to Zhao et al. [20], the following MRI morphological fea-
tures were selected for comparison: (1) size (maximum 
diameter of tumor, < 5 cm or ≥ 5 cm); (2) margin (well- 
or poorly-defined); (3) signal intensity (homogeneous or 
heterogeneous, > 30% of the whole volume was consid-
ered heterogeneous); (4) peritumoral hyperintensity. All 
these MRI features were labeled as dichotomous vari-
ables and recorded using Yes or No.

The final histopathological results of the 160 STS 
patients were shown in Table  1. The FNCLCC system 
assigns a score to the tumor based on its mitotic index, 
differentiation, and amount of necrosis, and the tumor 
grade was calculated by adding these three scores. 
According to their FNCLCC tumor grade, the patients 
were divided into two groups: low-grade (N = 82) and 
high-grade (N = 78). The workflow was shown in Fig. 1.

MRI Acquisition
All 160 patients underwent FS-T2WI with Siemens 
Verio3.0 T, Siemens Aera 1.5T (Siemens Medi-
cal AG, Erlangen, Germany), or Philips Achia1.5t, 
Philips Achieva3.0T (Philips Medical Systems, Best, 
The Netherlands), with adapted position and coils 
depending on tumor size and location. The scan 
parameters listed below were used: TR: 2640–5000 
ms; TE:30-102ms; slice gap:1 mm; slice thickness:3-4 

mm; matrix:320 × 320; The field of view ranges from 
200 ×  200mm2 to 400 ×  400mm2.

Image segmentation and extraction
For image segmentation, all FS  T2WI sequence images 
from patients were uploaded into 3D slicer (version 
4.10.2, https:// www. slicer. org/, Accessed 8 June 2023). 
In FS-T2WI images, tumor mass volume (TMV) VOIs 
were delineated within the margins of tumor masses, 
encompassing necrotic, cystic change, and hemor-
rhagic areas but omitting peritumoral edema. The 
TMV VOIs were then used as a template to construct 
the corresponding peritumoral tumor volume (PTV) 
VOIs. The PTV VOIs were generated automatically 
by uniformly dilating the tumor’s boundary by 10 mm 
in three dimensions, and adjacent air and bone were 
manually removed (Fig.  2). The segmentation process 
was independently performed by two readers (Reader1 
and Reader 2) with more than five years of experience, 
blinded to clinical information and histopathological 
results. Reader 1 segmented 40 random cases to assess 
intra-observer reliability two weeks later. Addition-
ally, Reader 2 completed the same 40 random cases to 
assess inter-observer reliability. Intra- and inter-class 
Dice coefficients were calculated to assess the stability 
of delineated VOIs. Features extracted from VOIs with 
ICCs greater than 0.75 were retained for subsequent 
investigation.

Preprocessing procedures were used to reduce the 
bias of the features and to counteract the intensity 
inhomogeneity caused by different imaging protocols 

Table 1 The pathologic data of the 160 STS patients

Low-grade cohort (n = 82) High-grade cohort (n = 78)

Histological diagnosis Acinar rhabdomyosarcoma (n = 4) Acinar rhabdomyosarcoma (n = 2)

Angiosarcoma (n = 4) Angiosarcoma (n = 3)

Clear cell sarcoma (n = 6) Clear cell sarcoma (n = 4)

Epithelioid sarcoma (n = 5) Epithelioid fibrosarcoma (n = 3)

Fibrosarcoma (n = 13) Epithelioid sarcoma (n = 4)

Leiomyosarcoma (n = 4) Fibrosarcoma (n = 13)

Liposarcoma (n = 7) Leiomyosarcoma (n = 4)

Myofibroblastic sarcomas (n = 4) Liposarcoma (n = 5)

Myxofibrosarcoma (n = 9) Myofibroblastic sarcomas (n = 6)

Myxoid liposarcoma (n = 8) Myxofibrosarcoma (n = 8)

Pleomorphic sarcoma (n = 5) Myxoid liposarcoma (n = 6)

Rhabdomyosarcoma (n = 3) Pleomorphic sarcoma (n = 3)

Synovial sarcoma (n = 4) Rhabdomyosarcoma (n = 2)

Unconfirmed (n = 6) Synovial sarcoma (n = 8)

Undifferentiated pleomorphic sarcoma (n = 4)

Unconfirmed (n = 3)

https://www.slicer.org/
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before radiomics feature extraction. All VOIs were 
normalized and resampled to the same resolution (1 
mm×1 mm×1 mm) to eliminate data heterogeneity. The 
limitation of dynamics to µ ± 3σ (µ gray level mean, σ 

standard deviation) was used to minimize the influence 
of contrast and brightness variation [21].

Radiomics features were extracted via the Slicer-
Radiomics extension in 3D Slicer which enables processing 

Fig. 1 (Top) Flow chart of patient enrollment. (Bottom) Work flow of the radiomics implementation
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and extraction of radiomic features from medical image 
data using a large panel of engineered hard-coded feature  
algorithms by accessing PyRadiomics (https:// github. com/ 
AIM- Harva rd/ pyrad iomics, Accessed 8 June 2023) [22]. The 
detailed operation of extracting features is shown in the 
Supplementary material  (M1-2) 0.1037 radiomics features 
were extracted from each VOI of TMV and PTV, including 
first-order statistics(first-order), shape-based(3D) features, 
shape-based (2D) features, grey-level cooccurrence matrix 
(GLCM), grey-level run length matrix (GLRLM), grey-level 
size zone matrix (GLSZM), neighboring grey tone differ-
ence matrix (NGTDM), grey-level dependence matrix 
(GLDM), and wavelet decomposition features. Before fur-
ther analysis, all the extracted radiomics features of TMV, 
and PTV were normalized by Z score transformation [23] 
and ComBat compensation [24] to eliminate the differences 
in the value scales of the data and remove the batch effects 
derived from multiple sources of variability caused by dif-
ferent scanners and protocols.

Feature selection
Feature selection was conducted using python software 
(version 3.8.8, https:// www. python. org/, Accessed 8 June 
2023), which is mainly implemented by calling the scikit-
learn library, a widely used Python library for machine 
learning and data science [25]. In this step “levene,” 
“ttest” and “LassoCV” function will be used to select 
features. A two-step feature selection methodology was 
performed for the training - validation cohort. Firstly, 
A t-test was used to filter out the features that were 
significantly different between the low-grade and high-
grade groups. Secondly, the least absolute shrinkage 

and selection operator (LASSO) method was applied to 
select the most powerful features in the training - valida-
tion cohort and selected non-zero coefficients based on 
10 cross-validation. All codes and additional details can 
be found online (https:// github. com/ mysti c1602/ radio 
mics, Accessed 8 June 2023).

Model construction, rad-score building
To assess the feasibility and promise of the FS-T2WI-
based peritumoral radiomics signature for detecting 
low- and high-grade STSs, the following 3 types of 
radiomic signatures were extracted: (1) radiomics sig-
natures from TMV features; (2) radiomics signatures 
from PTV features; (3) radiomics signatures from the 
merged features of TMV and PTV (TM-PTV).TMV 
and PTV radiomics signatures were created utilizing 
the same approach described in the “Radiomics fea-
tures extraction” and “Feature selection” subsections. 
TM-PTV features were created by combining TVM 
and PTV features, and the statistically significant fea-
tures were chosen using the approach described in the 
“Feature selection” part.

Prediction models of 3 types of radiomics signatures 
were created using logistic regression, and three types 
of radiomics signatures were fed into the the Grid-
SearchCV to establish an ideal parameter configuration 
[26]. In the external test cohort, their predictive perfor-
mance was assessed utilizing the area under the curve 
(AUC) of receiver operating characteristic (ROC) curve 
analysis. The AUC of each model was evaluated first, 
and the best model was picked for further investiga-
tion. The Rad-score was then calculated using a LASSO 

Fig. 2 Example of delineated ROI on FS-T2WI mapping. A 43-years-old woman with pleomorphic sarcoma. A The TMV region is marked in green. 
B The PTV region is marked in red, and the air region beyond the human tissue has been removed. 1037 feature values were extracted from each 
of the two disjoint regions through the Slicer-radiomics extension package of 3Dslicer (Feature types, and extraction methods are included 
in Supplementary Material 1–2)

https://github.com/AIM-Harvard/pyradiomics
https://github.com/AIM-Harvard/pyradiomics
https://www.python.org/
https://github.com/mystic1602/radiomics
https://github.com/mystic1602/radiomics
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logistic regression model based on the best type of 
radiomics signature.

Development and validation of Nomogram
Univariate and multivariate logistic regression analy-
ses were used to select clinical features and the Rad-
score, and a nomogram was constructed based on the 
independent risk factors in the multivariate study. The 
model’s discriminative capacity was evaluated using Har-
rell’s concordance (C-index) with confidence intervals of 
95% for both cohorts. The calibration curve was plotted 
to investigate the model’s predictive accuracy. To assess 
clinical usefulness, decision curve analysis (DCA) was 
used to calculate the net benefit of the nomogram model 
in training and validation groups.

Statistical analysis
Statistical analyses were performed by GraphPad Prism 
(version 9.4, https:// www. graph pad. com/, Accessed 8 June 
2023), and R software (version 3.6.2, http:// www. Rproj ect. 
org, Accessed 8 June2023). When comparing clinical data, 
The t-test or Mann-Whitney U test was used for continu-
ous variables and Fisher’s exact test for categorical vari-
ables. The plot nomograms and calibration curves using 

the “RMS” software package and the DCA curve were 
drawn using the “RMDA” software package. Two-sided 
P < 0.05 was considered statistically significant for all tests.

Results
Clinical data: patient and MRI morphological 
characteristics
One hundred sixty patients were recruited for this study. 
In the training cohort, there were 51 high-grade (grade 
II-III) patients and 60 low-grade (grade I) patients. In 
the validation cohort, there were 27 high-grade (grade 
II-III) patients and 22 low-grade (grade I) patients. The 
detailed clinical and MRI morphologic characteristics of 
the study population were listed in Table 2. There was no 
significant difference in age, sex, tumor location, peritu-
moral hyperintensity, size, and margin between the two 
cohorts. There were significant differences in signal uni-
formity between the two cohorts (p < 0.05).

Feature selection
The intra-class Dice coefficient of TMV was 0.908 ± 0.032, 
and the inter- was 0.876 ± 0.057; the intra-class Dice 
coefficient of PTV was 0.842 ± 0.060, and the inter- was 
0.816 ± 0.050 (Supplementary material F1). Features for 

Table 2 Demographic data of patients in the training and validation cohorts

* P-value < 0.05
a Mann-Whitney U test
b Fisher’s exact test

Variable Training cohort (n = 111) Validation cohort (n = 49) P

Low-grade group High-grade group P Low-grade group High-grade group p

Age (Years, Mean ± SD) 51.57 ± 14.09 47.65 ± 14.90 0.178a 56.27 ± 20.46 48.15 ± 14.68 0.165a 0.660a

Sex, n (%) 0.7053b* 0.246b 0.392b

 Male 32(0.53) 25(0.49) 7(0.32) 14(0.52)

 Female 28(0.47) 26(0.51) 15(0.68) 13(0.48)

Tumor Location 0.570b 0.567b 0.864b

 Limb 28(0.47) 27(0.53) 9(0.41) 14(0.52)

 Body 32(0.53) 24(0.47) 13(0.59) 13(0.48)

Peritumoral Hyperintensity < 0.0001b* 0.001b* > 0.999b

 No 38(0.63) 9(0.18) 15(0.68) 5(0.19)

 yes 22(0.37) 42(0.82) 7(0.32) 22(0.81)

Size 0.306b* 0.388b 0.111b

 < 5 cm 44(0.73) 32(0.82) 14(0.64) 13(0.48)

 ≥ 5 cm 16(0.27) 19(0.18) 8(0.36) 14(0.52)

Margin 0.329b 0.3931b 0.224b

 Well-defined 20(0.33) 22(0.43) 9(0.41) 15(0.56)

 Poorly-defined 40(0.67) 29(0.57) 13(0.59) 12(0.44)

Signal Intensity > 0.999b 0.260b 0.0009b

 Homogeneous 42(0.70) 35(0.69) 11(0.50) 9(0.33)

 Heterogeneous 18(0.30) 16(0.31) 11(0.50) 18(0.67)

https://www.graphpad.com/
http://www.Rproject.org
http://www.Rproject.org
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TMV and PTV were reduced to 845 and 688 respectively 
after excluding features with ICC less than 0.75. The 
reserved features were analyzed using a t-test (p < 0.05) 
to identify features with significant between-group dif-
ferences between low- and high-grade STSs. Following 
statistical analysis-based feature selection, three radiom-
ics feature subsets were obtained: (1) 72 significant TMV 
features, (2) 322 significant PTV features, and (3) 394 
significant TMV and PTV features (TM-PTV). Finally, 
LASSO was used to pick all of the significant features 
in each feature subset, 8, 14, and 18 discriminative fea-
tures were chosen, respectively, to create a peritumoral 

radiomics signature for malignancy grading from TMV, 
PTV, and TM-PTV. The details of these features were 
shown in Supplementary material M3-4 and F2.

Performance of radiomics signatures
The AUC of the TM-PTV model was higher than that 
of the TMV model or PTV model in both the training 
and validation cohorts. All of the models in the training 
group had similar performance. However, in the vali-
dation cohort, the sensitive, specificity, accuracy, PPV 
and NPV of the TMV-PTV model is higher than other 
models (Fig. 3; Table 3).

Fig. 3 The ROCs and radar chart performance of Model_TMV, Model_PTV, and Model_TM-PTV in training (A, C) and validation (B, D) cohorts, 
respectively. AUC: area under the ROC curve. NPV: negative predictive value; PPV: positive predictive value
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Rad-score building, identification of Independent risk 
factors
The TM-PTV model displayed better performance 
than the other two models. As a result, a LASSO logis-
tic regression model was used to calculate the radiom-
ics score (Rad-score) based on TM-PTV. Supplementary 
material M4 and F3 illustrate the details of the Rad-score 
computation formula. A logistic regression analysis with 
backward stepwise selection identified the Rad-score and 
peritumoral hyperintensity as independent predictors 
(Table 4), which were then used to create a personalized 
prediction nomogram.

Development and validation of nomogram
A model containing the above independent predictors 
was shown in a nomogram (Fig.  4). The model showed 
a favorable C-index of 0.948 (95% CI, 0.906 to 0.990) in 

Table 3 Performance of LASSO models in train and validation 
cohort

PPV positive predictive value, NPV negative predictive value

Model Sensitive Specificity Accuracy PPV NPV

Train cohort
 Model_TMV 0.79 0.72 0.76 0.75 0.76

 Model_PTV 0.80 0.73 0.77 0.77 0.76

 Model_TM-PTV 0.89 0.81 0.86 0.84 0.88

Validation cohort
 Model_TMV 0.64 0.81 0.71 0.82 0.63

 Model_PTV 0.68 0.86 0.76 0.86 0.67

 Model_TM-PTV 0.72 0.95 0.82 0.95 0.70

Table 4 Result of Univariate Logistic Regression and Multivariable Logistic Regression

OR odd ratio, CI confidence interval
* P-value < 0.05

Variable Univariate Logistic Analysis Multivariable Logistic Analysis

OR 95%CI P Coefficient OR 95%CI P

Age 0.980 [0.954;1.006] 0.139

Sex 1.189 [0.563;2.520] 0.650

Tumor Location 0.778 [0.366;1.642] 0.510

Peritumoral Hyperintensity 8.061 [3.424;20.61] < 0.0001* 2.856 17.38 [4.751;81.16] < 0.0001

Size 1.633 [0.731;2.692] 0.2331

Margin 0.611 [0.2787;1.325] 0.214

Signal Intensity 1.067 [0.472;2.400] 0.876

Rad-Score 2.279 [1.729;3.266] < 0.0001* 0.876 2.401 [1.781;3.550] < 0.0001*

Fig. 4 Nomogram used to distinguish between low- and high-grade levels in soft tissue sarcomas. Development of the radiomics-clinical 
nomogram, which includes the Rad-score within the second row, and “Peritumoral hyperintensity” within the third row are summed to give 
the “total points,” which are marked on the “Total points” row. The probability of high grad is read off from the scale in the last row by vertically 
drawing a line from the total points
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the training cohort and0.921 (95% CI, 0.840 to 0.995) in 
the validation cohort. Calibration curves of radiomics 
nomograms used to predict the histopathological grade 
of STSs showed good agreement between predicted and 
observed outcomes for both cohorts (Fig.  5). The Hos-
mer-Lemeshow test showed no statistically significant 
difference between the calibration curve and the ideal 

curve (training cohort: χ2 = 8.275, p = 0.407, validation 
cohort: χ2 = 9.790, p = 0.280), indicating no deviation 
from a perfect fit.

The DCA of the TM-PTV model (based on Rad-score) 
and nomogram model is shown in Fig. 6. In the training 
cohort, using the nomogram to predict histopathologi-
cal grade added more benefits than using the TM-PTV 

Fig. 5 Calibration curve of the nomogram in the training cohort (A) and validation cohort (B). The blue line represents the perfect prediction 
of the ideal model, and the red line represents the performance of the model. The Grey line represents corrected predictive performance. The 
closer the red line and the blue line are, it means that the predicted results are in good agreement with the actual results, and the prediction ability 
is better

Fig. 6 Decision curve analysis (DCA). The y axis represents the net benefit, which was determined by calculating the difference 
between the expected benefit and the expected harm associated with each proposed model [net benefit = true-positive rate (TPR) – (false-positive 
rate (FPR)× weighting factor), where the weighting factor = threshold probability/ (1-threshold probability)]. The gray line represents the assumption 
that all tumors were histopathological high-grade (the treat-all scheme). The black line represents the assumption that all tumors were 
histopathological low-grade expression (the treat-none scheme). A DCA in the training cohort. For threshold probabilities from 4 to 90%, using 
the nomogram to predict the histopathological grade added more benefit than using the radiomics model. B DCA in the validation cohort. 
for threshold probabilities ranging from 8–64% and greater than 75%, using the nomogram to predict the histopathological grade added more 
benefit than using the TM-PTV model
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model for threshold probabilities from 4  to 90%. In the 
validation cohort, using the nomogram to predict his-
topathological grade added more benefit than using the 
TM-PTV model for threshold probabilities ranging from 
8 to 64% and greater than 75%.

The DCA revealed that the net benefit of the nomo-
gram was higher than that of the TM-PTV model, 
suggesting that the predicting strategy based on nomo-
gram has better clinical utility.

Discussion
A radiomics nomogram was developed based on the 
combination of intra-peritumoral radiomic features 
and peritumoral hyperintensity, which successfully 
differentiated low-grade and high-grade STSs, and its 
recognition performance was higher than the TM-PTV 
model, and showed good calibration in both groups, 
suggesting that it may be a promising tool for clinical 
strategy. To the best of our knowledge, this is the first 
study to develop a model based on intratumoral and 
peritumoral radiomics to predict the histopathological 
grade of STSs. The present study found peritumoral 
hyperintensity and Rad-score were independent risk 
factors for predicting histopathological grade. Peritu-
moral hyperintensity on FS-T2WI may be caused by 
surrounding tissue edema, inflammatory cell infiltra-
tion, angiogenesis, and other changes [27]. It has been 
widely recognized as a significantly poor prognostic 
factor for STS [28].

Previous studies have reported on an MRI-based radi-
omics model for predicting STS histopathological grade 
[6, 8]. Zhang et  al. [6] developed an MRI-based radio-
logical model with an AUC of 0.92 in predicting histo-
pathological grade. Yan et al. [8] developed an MRI-based 
radiomics nomogram for predicting the grade and dem-
onstrated good calibration and good clinical utility. These 
two available studies were all based on TMV models. 
However, Significant clinical evidence suggests the het-
erogeneity of STSs is not limited to tumor margins but 
also involves peritumoral regions [13]. White et al. have 
demonstrated in a population of patients undergoing sur-
gery, satellite-like single or clustered tumor cells that are 
not visible on imaging can be found beyond the tumor 
margins [12].In our study, the TMV, PTV, and TM-PTV 
models demonstrated outstanding discrimination in both 
the training and validation cohorts. Compared with the 
TMV model, the combination of the TMV and PTV(PT-
TMV) model significantly improved the AUC, accuracy, 
sensitivity, specificity, PPV, and NPV of the predictive 
model. This result indicated that the combination of peri-
tumoral features provides more information about the 
tumor microenvironment, which can reflect the biologi-
cal behavior of the tumor better.

Our study used a 10 mm extension from the lesion, 
which is based on the current standard for STSs sur-
gical margins. To protect critical neurovascular 
structures or bones, a margin aiming at 10 mm is the 
minimum appropriate width to be considered accept-
able according to National Comprehensive Cancer Net-
work (NCCN) guidelines [29]. Previous peritumoral 
radiomics studies of lung cancer [30] and glioma [14] 
have shown that the closer the peritumoral region is 
to the intratumoral region, the more information it 
contains. As the expansion distance increases, more 
normal soft tissue is incorporated into the region 
of interest (ROI), resulting in a smaller difference in 
peritumoral tissue heterogeneity. Radiomics features 
extracted from a 10 mm peritumoral ROI were most 
likely to provide important information for predict-
ing histopathological grade for STS. In this study, the 
radiomics model was constructed based on a single FS-
T2WI sequence, which was currently the most widely 
used sequence for STS radiomics. Peeken’s study found 
the FS-T2WI-based model showed better reproducibil-
ity compared with the T1WI model and the combined 
T1 and T2WI models [7]. Importantly, the present 
study focused on the efficacy of radiomics models of 
the tumor itself and the tumor microenvironment. 
However, most lesions have unclear borders on T1WI, 
and image segmentation is difficult, which may affect 
the division of intratumoral and peritumoral ROIs. In 
addition, extracting a large number of features from 
many sequences tends to increase the risk of model 
overfitting [31].

Radiomics features are sensitive to all the acquisition 
conditions including MR protocols, scanners, and MR 
adjustments. To lower bias and variance, We performed 
several preprocessing methods, In particular, the Com-
Bat compensation,which is easy to apply and is suitable 
for retrospective information analysis [24], eliminates 
batch effects due to multi-source variation caused by dif-
ferent scanners and protocols in multi-center radiation 
analysis while preserving the excellent properties of its 
texture patterns and has been used in previous reports to 
improve reproducibility between different centers [32]. 
Therefore, the key to addressing the heterogeneity of 
acquisition conditions may lie in adequate preprocessing 
and consistent scanning parameters.

When dealing with radiomics, the segmentation 
method has a large impact on the reproducibility and 
reliability of the radiomics signature [33]. The current 
image segmentation methods include manual, semiau-
tomatic, and fully automatic. Manual segmentation is 
prone to interobserver variability, which may hinder 
the reproducibility of radiomics analyses. Automatic 
segmentation techniques based on deep learning are 
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the mainstream of the current research field and are 
currently being considered for clinical trials, show-
ing improvements in image classification prediction 
and recognition tasks [34]. While results from auto-
matic image segmentation are promising, errors due to 
contrast blur and biased fields are common and often 
require manual correction to ensure accuracy [35]. We 
tried to use U-net neural network for fully automatic 
segmentation of lesions, but because STS comes from 
various types of tissues, shapes, and positions are not 
fixed, the automatic segmentation of lesions was not 
effective. Therefore, this study still used the tradi-
tional manual segmentation method. Although both 
the intra-observer and inter-observer ICC coefficients 
were high, this was a hugely time-consuming process, 
which was a limitation of this study. In the future, in-
depth research was expected to break through the lim-
itations of image segmentation. This study has several 
limitations that need to be addressed. First, our study 
was retrospective, so despite our strict criteria, there 
is a potential selection bias. Second, our data came 
from two institutions using similar but different scan-
ners and protocols. Therefore, the resampling meth-
odology and the combat compensation method were 
adopted to reduce the difference in image specifica-
tions to improve the stability of features and different 
models. Third, multimodal MR radiomics may have 
better potential, such as DWI. Finally,this study did 
not include all histopathological types of STS because 
our study was retrospective and limited by the number 
of patients. Therefore, the sample needs to be enlarged 
in future research to improve the generalization ability 
of the model.

In conclusion, peritumoral radiomics features can 
provide complementary information to intratumoral 
regions to predict the histopathological grade of STS. 
Such quantitative radiomics prognostic models of STS 
may potentially be useful for precision medicine.
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