
Li et al. Cancer Imaging          (2023) 23:105  
https://doi.org/10.1186/s40644-023-00615-1

RESEARCH ARTICLE Open Access

© The Author(s) 2023. Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which 
permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the 
original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or 
other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line 
to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory 
regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this 
licence, visit http://creativecommons.org/licenses/by/4.0/. The Creative Commons Public Domain Dedication waiver (http://creativecom-
mons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated in a credit line to the data.

Cancer Imaging

A transformer-based multi-task deep 
learning model for simultaneous infiltrated 
brain area identification and segmentation 
of gliomas
Yin Li1†, Kaiyi Zheng2,3†, Shuang Li4†, Yongju Yi1, Min Li5, Yufan Ren5, Congyue Guo5, Liming Zhong2,3, 
Wei Yang2,3, Xinming Li5* and Lin Yao4* 

Abstract 

Background The anatomical infiltrated brain area and the boundaries of gliomas have a significant impact on clinical 
decision making and available treatment options. Identifying glioma-infiltrated brain areas and delineating the tumor 
manually is a laborious and time-intensive process. Previous deep learning-based studies have mainly been focused 
on automatic tumor segmentation or predicting genetic/histological features. However, few studies have specifically 
addressed the identification of infiltrated brain areas. To bridge this gap, we aim to develop a model that can simulta-
neously identify infiltrated brain areas and perform accurate segmentation of gliomas.

Methods We have developed a transformer-based multi-task deep learning model that can perform two tasks 
simultaneously: identifying infiltrated brain areas segmentation of gliomas. The multi-task model leverages shaped 
location and boundary information to enhance the performance of both tasks. Our retrospective study involved 354 
glioma patients (grades II-IV) with single or multiple brain area infiltrations, which were divided into training (N = 270), 
validation (N = 30), and independent test (N = 54) sets. We evaluated the predictive performance using the area 
under the receiver operating characteristic curve (AUC) and Dice scores.

Results Our multi-task model achieved impressive results in the independent test set, with an AUC of 94.95% (95% 
CI, 91.78–97.58), a sensitivity of 87.67%, a specificity of 87.31%, and accuracy of 87.41%. Specifically, for grade II-IV 
glioma, the model achieved AUCs of 95.25% (95% CI, 91.09–98.23, 84.38% sensitivity, 89.04% specificity, 87.62% 
accuracy), 98.26% (95% CI, 95.22–100, 93.75% sensitivity, 98.15% specificity, 97.14% accuracy), and 93.83% (95%CI, 
86.57–99.12, 92.00% sensitivity, 85.71% specificity, 87.37% accuracy) respectively for the identification of infiltrated 
brain areas. Moreover, our model achieved a mean Dice score of 87.60% for the whole tumor segmentation.

Conclusions Experimental results show that our multi-task model achieved superior performance and outperformed 
the state-of-the-art methods. The impressive performance demonstrates the potential of our work as an innovative 
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solution for identifying tumor-infiltrated brain areas and suggests that it can be a practical tool for supporting clinical 
decision making.

Keywords Glioma, Deep learning, Tumor segmentation, Brain area Identification, Multi-task

Introduction
Gliomas are a type of malignant tumor that develops in 
the glial cells of the brain and spinal cord, and they are 
among the most lethal neurological malignancies [1, 2]. 
The World Health Organization (WHO) has classified 
glioma tumors into four grades according to their level 
of aggressiveness [3, 4]. Although advanced therapies 
have been developed for glioma treatment, neurological 
surgery remains the primary treatment modality to the 
survival rate of patients. The shape and size of gliomas 
can vary significantly based on their location in the brain 
and their growth rate. Besides, the definition of glioma 
boundaries is typically dependent on the on the expertise 
of the neuroradiologists. Manual segmentation and iden-
tification of glioma-infiltrated brain areas are extremely 
tedious and time-consuming. Therefore, there is a sig-
nificant clinical need for automatic segmentation and 
identification of gliomas-infiltrated brain areas to aid in 
clinical decision-making, treatment planning, and ongo-
ing tumor monitoring.

Magnetic resonance imaging (MRI) is a highly prom-
ising imaging technique due to its non-invasive nature. 
T2-fluid-attenuated inversion recovery (T2-FLAIR) 
abnormality is a reliable indicator of tumor progression, 
which has been found to correlate with impoved sur-
vival rate [5, 6]. Numerous innovative studies have pro-
posed automatic segmentation the whole tumor using 

T2- FLAIR for volumetric measurement, radiomics, or 
radiogenomics [7, 8]. Furthermore, multi-task convo-
lutional neural networks (CNNs) have been extensively 
proposed for tumor segmentation, while simultaneously 
addressing tasks such as IDH genotyping [9, 10], grad-
ing [11], molecular subtyping [11, 12], and detection of 
enhancing tumors [13]. For example, van der Voort et al. 
[11] developed a multi-task CNN (referred to as COM- 
Net for convenience) to predict the IDH mutation status, 
the 1p/19q co-deletion status, and the grade of a tumor, 
while simultaneously segmenting the tumor. Cheng et al. 
[10] proposed a transformer-based multi-task model 
(MTTU-Net) for glioma segmentation and IDH genotyp-
ing. Similar to our purposed method, the hybrid CNN-
Transformer encoder is designed to extract shared local 
and global information for both glioma segmentation and 
IDH genotyping.

However, most studies have focused on glioma seg-
mentation for clinical applications, with relatively little 
attention given to automatic identification of the precise 
anatomical location of glioma within the brain. It should 
be noted that the anatomical location of a glioma plays 
a crucial role in determining treatment options, clinical 
courses, and prognosis [14, 15].

A glioma tumor typically manifest in one or multi-
ple brain areas (as shown in Figure (Fig.  1)), which can 
be consistently identified in the frontal lobe (F), parietal 

Fig. 1 Examples of glioma patients with varying degrees of brain infiltration, including (a) infiltration of a single brain area; (b) infiltration of two 
brain areas, and (c) infiltration of three brain areas
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lobe (P), occipital lobe (O), temporal lobe (T), and insula 
lobe (I). Specifically, glioma in the insular area is par-
ticularly challenging in neurosurgical oncology [16]. Dif-
ferent tumor locations within these areas can have 
varying effects on tumor growth, symptoms, and treat-
ment strategies, as previous studies have shown correla-
tions between specific types and locations of tumors and 
clinical outcomes [15, 17]. The accurate identification of 
infiltrated brain areas holds important value in address-
ing challenges related to lesion anatomical localization, 
partial selection of surgical approaches (such as the use 
of the transcortical approach for frontal lobe lesions), 
and defining postoperative radiation therapy targets. 
However, identifying the glioma-infiltrated brain areas 
remains a challenging task due to the wide variation of 
tumor appearance. Unlike most multi-class classification 
tasks, identifying the glioma-infiltrated brain areas is a 
multi-label classification task, meaning that one subject 
can have one or more labels. For instance, as shown in 
Fig.  1, the glioma tumor can be found in a single brain 
area (Fig. 1(a)) or more than one brain areas (Fig. 1(b) and 
(c)). Although existing CNN models such as VGG16 [18], 
ResNet [19], EfficientNet [20], and Inception [21] have 
achieved significant performance in multi-class classifi-
cation, accurately identifying the glioma-infiltrated brain 
areas without knowing the precise boundaries of the glio-
mas may be challenging for these models.

To address the aforementioned issues, we propose 
a transformer-based multi-task deep learning model 
that achieves simultaneous glioma segmentation and 

identification of infiltrated brain areas in an end-to-end 
framework. The main contribution of our study is the 
ability to accomplish these tasks simultaneously by shar-
ing local and global features extracted from a hybrid 
CNN and Transformer network. Specifically, our multi- 
task deep learning framework leverages the boundary 
information from segmentation to enhance the perfor-
mance of identifying glioma-infiltrated brain areas.

Materials and methods
Patients population
With the approval of institutional ethics committee, 
patients who received brain tumor resection and were 
diagnosed with glioma according to the 2016 WHO cri-
teria [3] were retrospectively enrolled, following specific 
inclusion and exclusion criteria. The patient selection 
procedure in this study is shown in Fig.  2, and a total 
of 354 patients were included. The inclusion criteria 
included patients with glioma confirmed by pathologi-
cal examination and preoperative MRI data. The exclu-
sion criteria were as follows: (1) incomplete preoperative 
T2-FLAIR and post-contrast T1-weighted (T1c) MRI, 
(2) a history of other malignant tumors, and (3) images 
with severe noise and/or artifacts. Two MRI sequences, 
including T1c and T2-FLAIR, were acquired on three dif-
ferent types of scanners with two different field strengths, 
including Siemens 1.5  T, Siemens 3  T, Philips 1.5  T, 
Philips 3 T and GE 3 T. The in-plane pixel spacings of the 
T2FLAIR MR images range from 0.34  mm to 0.78  mm 
with an average of 0.60  mm and slice thicknesses range 

Fig. 2 A Flowchart of patient selection



Page 4 of 13Li et al. Cancer Imaging          (2023) 23:105 

from 4.0  mm to 6.0  mm with an average of 5.05  mm. 
The in-plane pixel spacings of the enhanced T1 MR 
images range from 0.45 mm to 0.94 mm with an average 
of 0.65 mm and slice thicknesses range from 0.90 mm to 
6 mm with an average of 4.85 mm. The images obtained 
by different scanners are randomly distributed in the 
training, validation and testing set.

The details of the demographic and clinical character-
istics of patients, as well as the whole tumor cohort, are 
shown in Table 1.

Data pre‑processing
To reduce the effects of variability in acquisition and 
sequence parameters, image pre-processing was applied 
before analysis, which included MRI offset correction, 
image registration, skull stripping, and gray-level nor-
malization. The N4ITK algorithm [22] was adopted to 
correct the low-frequency intensity non-uniformity of 
the magnetic field in the MR images. Rigid registration 
in FSL [23] and non-rigid registration in ANTs [24] were 
used to register the T1c and T2-FLAIR images for each 
patient. Image skull stripping was performed using BET 
in FSL. Gray-level normalization [25] was applied to 

adjust the gray values of MR images to compensate the 
MR scanner variability in intensity. The tumor masks 
were manually delineated around the tumor outline 
on 3D T2-FLAIR slices by radiologists with more than 
10  years of experience with MRI. These tumor masks 
were used for training the tumor segmentation model. 
The glioma- infiltrated brain areas were labeled with 1 ~ 5 
for the frontal lobe, parietal lobe, occipital lobe, temporal 
lobe, and insula lobe, respectively.

Network details
The architecture of our proposed transformer-based 
multi-task model for simultaneous infiltrated brain area 
identification and segmentation of gliomas is presented 
in Fig.  3. The network includes an encoder for learning 
the task relevant features, and two decoders for extract-
ing task specific information. Besides, to capture the 
long- range dependencies and global information, a Swin 
Transformer module with convolutional layers in each 
head is embedded in the bottleneck of the encoder, which 
deeply fuses local and global features. The input, which 
concatenates T1c and T2-FLAIR images, is first fed 
into an initial convolution with a 3 × 3 × 3 kernel in the 
encoder. Then the task relevant features extracted from 
the encoder are separately processed by two decoders; 
one for performing voxel-level tumor segmentation and 
the other for identifying glioma-infiltrated brain areas 
using a classification head.

Data partitioning and network implementation
The performance of the models was evaluated on an inde-
pendent test set, which was not included in the model 
training. The remaining data were randomly divided into 
training and validation sets for parameter selection. After 
obtaining the optimal model parameters using the train-
ing and validation sets, the optimal model parameters 
were used to train the final model using the training data 
and validated on the independent test set.

The models were trained using PyTorch v1.7, with a 
data batch size of 4 and input image dimensions of 416 
(height) × 352 (width) × 20 (depth). Gray-level normali-
zation [25] was applied to adjust the gray values of MR 
images to compensate the MR scanner variability in 
intensity. Then they were linearly transformed to the 
range of [-1, 1]. Data augmentation techniques, includ-
ing random rotation in the range of [-30, 30] and ran-
dom scaling in the scale of [0.95, 1.05], were applied for 
model training. For optimization, we used the SGD opti-
mizer with an initial learning rate of 0.0001 and trained 
the model for 200 epochs. To control the learning rate, 
we applied the step-decay learning rate control method, 
reducing the learning rate by 10 at the 100th and 160th 
epochs, respectively. We trained our models using 

Table 1 Demographic and clinical characteristics of patient 
cohort

a glioma-infiltrated brain areas, including frontal, parietal, occipital, temporal 
and insula lobe

Training and 
validation sets

Independent test set

N % N %

No. of patients 300 54 100

Age
 Range 16–82 11–71

 Average 47.38 ± 12.75 48.89 ± 14.28

Gender
 Male 168 56 27 50

 Female 132 44 27 50

Grade range II-IV II-IV

 II 149 49.67 21 37.04

 III 59 19.67 14 22.22

 IV 92 30.67 19 40.47

Infiltrated brain areasa

 frontal lobe (F) 172 57.33 29 53.7

 parietal lobe (P) 65 21.67 11 20.37

 occipital lobe (O) 36 12 4 7.41

 temporal lobe (T) 115 38.33 27 50

 insula lobe (I) 25 8.33 2 3.7

Area counts
  >  = 1 300 100 54 100

  >  = 2 98 32.67 17 31.48

  >  = 3 15 5 2 3.7
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cross-entropy loss for classification and a combination 
of cross-entropy loss and dice loss for segmentation. The 
weight ratios for segmentation were set to 0.6 and 0.4. 
To ensure a fair comparison, the compared models were 
trained with the same image size, learning rate, and num-
ber of iterations.

In addition, the two demographic characteristics (age 
and sex) and two clinical data variables (glioma grade and 
Karnofsky performance score) used in the comparison 
experiment were also pre-treated. Except sex was labeled 
with 0 and 1, the other three characteristics was stand-
ardized with z-score. Unlike image information, which is 
encoded using convolution, the binarized gender infor-
mation is first transformed into one-dimensional features 
through Word Embedding. Prior to the fully connected 
layer, the three standardized clinical features (age, grade, 
and kps), the gender features represented in the embed-
ding space, and the image features are concatenated 
together and collectively fed into the fully connected 
layer for the final prediction.

Statistical analysis
All well-trained models were evaluated on both a valida-
tion set and an independent test set. The performance 
of multi-label classification model was assessed using 
various metrics, including the area under the receiver 
operating characteristic curve (AUC), accuracy (ACC), 

sensitivity (SEN), and specificity (SPE). Micro-averaging 
is used to describe all indexes of multi-label classification. 
The optimal threshold for the AUC value was determined 
by maximizing the sum of the sensitivity and specificity 
values. The 95% confidence intervals (CIs) were obtained 
using bootstrapping to assess variability. Besides, we 
used the Dice score (DSC), accuracy, sensitivity, specific-
ity, Intersection over Union (IOU), Average Symmetric 
Surface Distance (ASSD), and 95th Percentile Hausdorff 
Distance  (HD95) to evaluate the segmentation perfor-
mance of the segmentation model. The DSC measures 
the degree of overlap between the ground truth and the 
predicted segmentation, with 100% indicate complete 
overlap.

Results
Patient characteristics
By applying specific inclusion and exclusion crite-
ria, a total of 354 patients (195 males and 159 females) 
with an average age of 47.61 ± 12.99  years (range from 
11 ~ 82  years) were included in our study. Of these, 270 
were allocated to the training set, 30 to the validation set, 
and 54 to the independent test set. As shown in Table 1, 
243 patients (68.64%) were diagnosed with low-grade gli-
omas (grade II and III), while 111 patients (31.36%) were 
diagnosed with high-grade gliomas (grade IV). Besides, 
a total of 239 gliomas (67.51%) were located within a 

Fig. 3 Overview of the proposed transformer-based multi-task deep learning model for infiltrated brain area identification and segmentation 
of gliomas
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single anatomic area, while 115 gliomas (32.49%) infil-
trated across two or more areas. Specifically, the gliomas 
in the frontal lobe accounted for 56.78%, those in the 
parietal lobe accounted for 21.47%, those in the occipi-
tal lobe accounted for 11.30%, those in the temporal 
lobe accounted for 40.11%, and those in the insula lobe 
accounted for 7.62% of all patients.

Model performance of glioma‑infiltrated brain area 
identification
Tables 2 and 3 and Fig. 4 show the performance of identi-
fying the glioma-infiltrated brain areas. Specially, Table 3 
is adopted to show the performance of models for gliomas 
that infiltrated in single and multiple regions. Our pro-
posed method achieves better performance than VGG16, 
ResNet50, EfficientNetb0 and COM-Net, MTTU-Net, 
with AUC of 94.95% (95% CI, 91.78–97.58) on the inde-
pendent test set. Figure  4 illustrates the Receiver Oper-
ating Characteristic (ROC) curves for six distinct deep 

learning-based classification models, along with an 
enhanced iteration of our model that incorporates four 
additional clinical characteristics. These models were 
evaluated on an independent test set, yielding AUC val-
ues of 78.90% (95% CI, 73.07–84.28), 87.10% (95% CI, 
81.73–92.04), 85.23% (95% CI, 78.75–90.74), 90.22% (95% 
CI, 85.12–94.61), 93.51% (95% CI, 90.22–96.37), 94.95% 
(95% CI, 91.78–97.58), and 95.07% (95% CI, 92.28–
97.48) for VGG16, ResNet50, EfficientNetb0, COM-Net, 
MTTU-Net, our method, and our method with added 
clinical characteristics, respectively. Tables  2 and 3 also 
present the results of clinically related subgroups of 
patients. Our method outperforms the aforementioned 
state-of-the-art classification methods in terms of AUC, 
with an AUC of 95.25% (95% CI, 91.09–98.23) in grade 
II, an AUC of 98.26% (95% CI, 95.22–100.00) in grade III, 
an AUC of 93.83% (95% CI, 86.57–99.12) in grade IV, an 
AUC of 98.90% (95% CI, 97.46–99.94) in single infiltra-
tion (infiltrating brain area count), an AUC of 91.48% 

Table 2 Classification performance of the various models on both the validation and independent test set

Validation set Independent test set
Data Model AUC (95% CI) ACC SEN SPE AUC (95% CI) ACC SEN SPE

VGG16 76.81(68.82–84.59) 72.41 71.43 72.82 78.90(73.07–84.28) 74.44 76.71 73.6

Resnet50 89.20(82.50–95.03) 85.52 83.33 86.41 87.10(81.73–92.04) 83.33 76.71 85.79

Efficientb0 88.58(82.34–93.55) 81.38 80.95 81.55 85.23(78.75–90.74) 79.63 76.71 80.71

All COM-Net 88.65(81.84–93.77) 83.45 85.71 82.52 90.22(85.12–94.61) 85.93 82.19 87.31

MTTU-Net 90.15(84.70–94.82) 85.52 78.57 88.35 93.51(90.22–96.37) 87.41 80.82 89.85

Ours 91.42(86.19–95.63) 82.07 83.33 81.55 94.95(91.78–97.58) 87.41 87.67 87.31

 + clinical characteristics 94.15(90.22–97.35) 88.28 88.10 88.35 95.07(92.28–97.48) 87.78 90.41 86.80

VGG16 84.00(73.92–92.42) 80.00 84.00 78.33 78.10(68.76–87.02) 71.43 68.75 72.60

Resnet50 91.33(84.54–97.06) 85.88 84.00 86.67 80.01(69.81–89.83) 75.24 68.75 78.08

Efficientb0 91.80(84.90–97.13) 85.88 88.00 85.00 78.00(67.07–88.49) 73.33 78.12 71.23

Grade COM-Net 91.73(85.28–97.20) 85.88 92.00 83.33 86.22(76.29–94.43) 80.95 75.00 83.56

II MTTU-Net 91.13(84.36–96.74) 85.88 80.00 88.33 92.81(86.47–97.42) 84.76 78.12 87.67

Ours 93.50(87.64–98.05) 85.88 80.00 88.33 95.25(91.09–98.23) 87.62 84.38 89.04

 + clinical characteristics 98.07(95.39–99.82) 94.12 96.00 93.33 94.91(90.10–98.77) 91.43 90.62 91.78

VGG16 63.89(40.26–85.58) 64.00 55.56 68.75 85.07(73.64–93.75) 80.00 93.75 75.93

Resnet50 84.72(61.90–100) 88.00 88.89 87.50 94.21(88.00–98.72) 88.57 93.75 87.04

Efficientb0 87.50(71.43–99.12) 84.00 77.78 87.50 94.56(87.21–99.23) 91.43 87.5 92.59

Grade COM-Net 76.39(53.00–94.81) 76.00 77.78 75.00 97.34(93.06–100.00) 91.43 87.5 92.59

III MTTU-Net 88.19(70.13–100) 84.00 77.78 87.50 96.18(90.06–100.00) 94.29 87.5 96.3

Ours 90.28(73.81–100) 84.00 77.78 87.50 98.26(95.22–100.00) 97.14 93.75 98.15

 + clinical characteristics 90.28(75.00–100) 84.00 66.67 93.75 97.22(92.45–100.00) 94.29 87.5 96.3

VGG16 69.44(50.00–87.93) 60.00 50.00 62.96 76.43(66.57–85.84) 73.68 76.00 72.86

Resnet50 89.35(76.67–98.67) 85.71 87.50 85.19 92.00(84.51–97.81) 86.32 84.00 87.14

Efficientb0 82.41(63.33–97.06) 68.57 75.00 66.67 86.69(76.01–95.70) 81.05 80.00 81.43

Grade COM-Net 89.35(76.53–98.67) 80.00 87.50 77.78 90.23(81.32–97.73) 89.47 88.00 90.00

IV MTTU-Net 90.74(76.61–100) 82.86 87.50 81.48 92.86(86.76–97.63) 86.32 80.00 88.57

Ours 91.44(80.10–98.98) 82.86 87.50 81.48 93.83(86.57–99.12) 87.37 92.00 85.71

 + clinical characteristics 87.96(75.29–98.15) 88.57 87.50 88.89 93.94(88.17–98.19) 86.32 92.00 84.29



Page 7 of 13Li et al. Cancer Imaging          (2023) 23:105  

(95% CI, 84.27–97.08) in double infiltration and an AUC 
of 100% (95% CI, 100–100) in triple infiltration.

We also integrated clinical features into our model, 
specifically two demographic characteristics (age and 
sex) and two clinical data variables (glioma grade and 
Karnofsky performance score). The results presented in 
the table demonstrate an improvement of 2.73% in AUC, 
6.21% in accuracy, 4.77% in sensitivity, and 6.8% in speci-
ficity compared to our original MR-only model for all 
grades on validation set.

Model performance of tumor segmentation
The performance of five different tumor segmentation 
methods, including U-net, nnUnet, COM-Net, MTTU- 
Net and our method was evaluated on the validation and 
independent test sets. The related results are presented 
Table 4 and Fig. 5, and the findings indicate that the pro-
posed method outperforms the other four methods in 
terms of DSC for all grades of tumors on both the valida-
tion and independent test sets. Specifically, Fig. 5 shows 
that the proposed method achieved the highest overlap 
between the ground truth and the predicted segmenta-
tion, as indicated by the green curve. As shown in Fig. 5, 

our method achieves the highest overlap between the 
ground truth (red curve) and the predicted segmentation 
(green curve). Table 4 provides the numerical results of 
the evaluation, and it shows that the proposed method 
achieved the optimal DSC for all grades of tumors, 
including grade II, III, and IV. The DSC for the proposed 
method were 87.60% for all grades, which were higher 
than the corresponding scores for single-task methods 
(U-Net and nnUnet) and multi-task methods (COM-Net 
and MTTU-Net). Specifically, it achieved a DSC o 88.50% 
for grade II, 85.44% for grade III, and 88.20% for grade IV 
on the independent test set.

Model performance of glioma‑infiltrated brain area 
identification vs. experts
To compare the accuracy of infiltrating tumor lobe clas-
sification by human and the model, we conducted a 
comparison experiment with a random sample of 50% 
in independent test set. Two experts dedicated to anno-
tate glioma-infiltrated brain lobes based on enhanced T1 
and T2-FLAIR MRI data (X.M.L and M.L with 10 years 
and 4  years of experience, respectively). They consecu-
tively and independently evaluated the MR data from 

Table 3 Classification performance of the various models in single and multiple regions on both the validation and independent test 
set

Validation set Independent test set

Number Model AUC (95% CI) ACC SEN SPE AUC (95% CI) ACC SEN SPE

VGG16 80.56 (68.09–90.84) 71.11 77.78 69.44 84.08 (78.08–89.24) 75.68 89.19 72.30

Resnet50 88.73 (76.55–97.10) 87.78 88.89 87.50 93.22 (88.37–96.90) 89.19 89.19 89.19

Efficientb0 90.74 (81.94–97.80) 84.44 83.33 84.72 91.36 (84.77–96.67) 84.86 86.49 84.46

One COM-Net 92.21 (85.64–97.21) 83.33 88.89 81.94 97.55 (95.14–99.30) 91.89 91.89 91.89

MTTU-Net 92.75 (86.13–97.84) 86.67 88.89 86.11 98.50 (96.49–99.85) 93.51 94.59 93.24

Ours 94.02 (88.58–98.00) 86.67 88.89 86.11 98.90 (97.46–99.94) 96.76 94.59 97.30

 + clinical
characteristics

96.26 (91.93–99.47) 91.11 94.44 90.28 97.24 (94.83–99.21) 95.68 89.19 97.30

VGG16 81.25 (66.35–93.81) 80.00 75.00 83.33 77.33 (66.20–86.97) 70.67 63.33 75.56

Resnet50 91.15 (80.53–98.47) 85.00 87.50 83.33 81.26 (70.36–91.34) 76.00 73.33 77.78

Efficientb0 91.41 (80.91–97.95) 85.00 87.50 83.33 78.89 (67.36–89.08) 73.33 76.67 71.11

Two COM-Net 89.06 (76.69–97.99) 85.00 87.50 83.33 82.30 (70.99–91.90) 78.67 76.67 80.00

MTTU-Net 92.45 (82.34–98.93) 80.00 81.25 79.17 87.56 (78.95–94.48) 78.67 73.33 82.22

Ours 91.93 (81.45–98.96) 80.00 75.00 83.33 91.48 (84.27–97.08) 85.33 80.00 88.89

 + clinical
characteristics

95.18 (86.89–100) 92.50 87.50 95.83 94.44 (89.02–98.25) 89.33 86.67 91.11

VGG16 58.33 (14.29–95.83) 60.00 50.00 75.00 66.67 (25.00–100) 80.00 66.67 100.00

Resnet50 100 (100–100) 100 100 100 100 (100–100) 100 100 100

Efficientb0 91.67 (66.67–100) 80.00 83.33 75.00 87.50 (55.56–100) 80.00 83.33 75.00

Three COM-Net 70.83 (22.22–100) 70.00 66.67 75.00 79.17 (41.67–100) 70.00 66.67 75.00

MTTU-Net 83.33 (47.62–100) 70.00 66.67 75.00 100 (100–100) 80.00 66.67 100

Ours 95.83 (77.78–100) 80.00 66.67 100 100 (100–100) 100 100 100

 + clinical
characteristics

100 (100–100) 80.00 66.67 100 100 (100–100) 90.00 83.33 100
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independent test set. The results of our model have been 
binarized for fair comparison. Table  5 shows perfor-
mance of identifying glioma-infiltrated brain areas with 
AUCs of 61.58% (95% CI, 52.38–70.33), 57.21% (95% CI, 
48.10–66.49) and 85.30% (95% CI, 77.71–91.70) for two 
experts and our model. The time spent in each case was 
50 s and 2 min, respectively, which was much higher than 
the 0.4  s of the model. As shown in Fig.  6, the experts’ 
results show largely individual differences. The two 
experts had a high sensitivity to the frontal lobe, while 
they could not discriminate well in the parietal, occipi-
tal, and temporal lobes. In contrast, although our model 
cannot achieve optimal performance in every category, 

it was able to achieve a higher level of discrimination in 
each brain lobe, with a better overall ability.

Visualization of local and global information of our model
To validate the extraction of specific global and local 
features, we compare the performance of the hybrid 
CNN and Transformer network with a pure CNN 
network using guided backpropagation [26] for vis-
ual interpretation. The results of this comparison 
were shown in Fig.  7. Given an input image, we per-
form the forward pass to the last convolutional layer 
we are interested in, then set to zero all activation 
except one and propagate back to the image to get a 

Fig. 4 ROC curves of six distinct deep learning-based classification models, including VGG16, ResNet50, EfficientNetb0, COM-Net, MTTU-Net 
and the proposed method, for identifying the glioma-infiltrated brain areas. The seventh subplot evaluates our method enhanced with additional 
clinical characteristics
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reconstruction. As shown in Fig.  7, the Guided Back-
propagation map (Guided Backprop) reflects the pixels 
where the network is focused, with white indicating 
high attention and black low attention.

The pure CNN network shows attention to local tumor 
information, as evidenced by the high intensity in the 
tumor region (Fig.  7(c)). In contrast, the hybrid model, 
as shown in the Fig. 7(b), exhibits high attention regions 
associated with tumors and brain edges. This indicates 
that the hybrid model effectively learns global features, 
specifically the relative position relationship between 
tumors and brain edges. The corresponding class acti-
vation maps of the hybrid model provide insights into 
the decision regions when predicting infiltrating brain 
regions. By combining information from both global and 
local features, the hybrid model maximizes the advan-
tages of each. The global features provide important 
information about the relative positions of tumors and 
brain edges, while the local features focus on specific 
tumor regions. This combination allows the hybrid model 

to achieve more accurate predictions of infiltrating brain 
regions.

Discussion
In this study, we have developed a method that can pre-
dict the glioma-infiltrated brain areas while simultane-
ously achieving the tumor segmentation. Our approach 
incorporated the CNN and transformer network to lev-
erage both local and global features, thus enhancing the 
performance of classification and segmentation.

Our method can automatically identify the tumor-
infiltrated brain areas and provide a whole tumor seg-
mentation, which can aid in determining the appropriate 
surgical approach and predict the prognosis [14, 15]. 
When the tumor infiltrates critical brain areas, the prog-
nosis may worsen due to the increased risk of neuro-
logical deficits and complications. Our method provides 
an alternative for marking the specific tumor loca-
tion. Besides, the predicted whole tumor segmentation 
can facilitate tumor volumetric measurement [5, 27], 

Table 4 Segmentation performance of the compared methods on both the validation and independent test set

Validation set Independent test set

Data Model DSC ACC SEN SPE IOU ASSD HD95 DSC ACC SEN SPE IOU ASSD HD95

U-Net 86.15 99.41 88.86 99.66 78.15 1.74 6.89 87.49 99.40 89.19 99.68 78.36 1.08 3.66

nnUNet 86.49 99.42 86.95 99.73 78.63 1.15 4.81 87.58 99.40 87.10 99.77 78.37 0.59 2.95

COM-Net 83.78 99.35 86.61 99.66 78.27 1.85 6.80 86.69 99.39 89.79 99.67 77.27 1.59 5.05

All MTTU-Net 85.91 99.41 87.69 99.68 78.02 1.21 4.85 86.88 99.40 89.27 99.69 77.64 1.40 4.20

Ours 86.22 99.41 87.93 99.69 78.86 0.65 2.55 87.60 99.40 89.10 99.71 78.40 0.70 2.63

 + clinical
characteristics

85.22 99.4 86.59 99.71 74.91 0.91 3.59 86.62 99.36 86.54 99.72 76.92 0.60 2.82

U-Net 86.03 99.57 88.57 99.75 79.49 1.49 6.13 88.09 99.50 89.75 99.71 79.10 1.49 4.58

nnUNet 87.48 99.63 87.79 99.83 80.54 0.49 2.19 88.43 99.54 87.55 99.80 79.53 0.58 2.29

COM-Net 82.40 99.48 85.69 99.74 80.29 2.20 8.58 86.01 99.48 90.19 99.68 76.52 2.66 7.87

Grade MTTU-Net 85.54 99.55 86.97 99.74 80.22 0.86 3.05 85.84 99.49 89.21 99.72 76.60 2.47 6.70

II Ours 86.58 99.59 88.32 99.77 80.91 0.62 2.21 88.50 99.53 89.16 99.75 79.68 0.67 2.52

 + clinical
characteristics

85.12 99.57 87.2 99.78 74.88 1.06 4.12 87.70 99.51 87.52 99.74 78.52 0.62 3.01

U-Net 85.99 99.22 87.94 99.60 78.35 1.36 3.15 85.09 99.42 87.82 99.68 75.26 1.01 4.23

nnUNet 85.18 99.17 84.06 99.65 78.57 0.66 2.69 85.87 99.41 87.87 99.77 76.09 0.72 3.28

COM-Net 84.09 99.12 86.08 99.55 78.63 1.62 5.66 85.38 99.38 90.84 99.64 75.42 1.30 4.84

Grade MTTU-Net 86.02 99.20 87.62 99.64 78.73 0.70 3.00 86.16 99.41 89.32 99.69 76.36 0.88 3.12

III Ours 86.64 99.25 88.65 99.60 78.89 0.69 2.61 85.44 99.37 90.19 99.66 75.4 0.90 3.45

 + clinical
characteristics

85.25 99.14 85.07 99.63 74.89 0.65 2.74 85.11 99.34 86.7 99.68 74.73 0.60 2.55

U-Net 86.57 99.17 90.22 99.51 76.81 2.62 11.42 88.59 99.28 89.58 99.65 79.82 0.67 2.23

nnUNet 85.04 99.09 86.99 99.55 76.94 3.09 12.68 87.90 99.24 86.04 99.75 78.75 0.51 3.43

COM-Net 86.90 99.19 89.23 99.56 76.24 1.15 3.29 88.41 99.29 88.57 99.69 79.46 0.61 2.07

Grade MTTU-Net 86.72 99.21 89.47 99.55 75.62 2.41 10.54 88.55 99.29 89.31 99.66 79.73 0.59 2.24

IV Ours 85.02 99.10 86.47 99.58 76.98 0.71 3.36 88.20 99.28 88.22 99.70 79.20 0.59 2.15

 + clinical
characteristics

85.43 99.15 86.21 99.59 74.99 0.74 2.91 86.55 99.20 85.34 99.72 76.77 0.57 2.81
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radiomics [28], or radiogenomics [29]. With short run-
ning time and reliable information about the areas of gli-
oma infiltration and segmentation, our model can reduce 
the burden of clinicians and improve the efficiency of 
making more informed decisions about treatment strat-
egies. In addition, the model’s ability to perform these 
tasks based solely on MR images streamlines workflow 
and reduces reliance on other procedures. This makes the 
model readily applicable to a variety of clinical settings 
where MRI is routinely performed. The proposed model 

Fig. 5 Visual segmentation results obtained from different segmentation methods. The red curve represents the ground truth, while the green 
curve shows the predicted segmentation

Table 5 Model performance of glioma-infiltrated brain area 
identification vs. experts

Expert 1 Expert 2 Our Model

Time 50 s 2 min 0.4 s

AUC 61.58% 57.21% 85.30%

(95% CI) (52.38–70.33) (48.10–66.49) (77.71–91.70)

ACC 65.93 62.96 86.67

SEN 51.28 43.59 82.05

SPE 71.88 70.83 88.54

Fig. 6 ROC curves of two experts and proposed model
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has the potential to improve patient outcomes, optimize 
treatment strategies, and contribute to the overall man-
agement of glioma patients.

The precise characterization of glioma is critical for 
clinical treatment plans [11]. Previous studies [5, 7, 8, 
10, 11, 27] have developed deep learning methods for 
predicting the genetic or histological features of glioma, 
or for automatically delineating the tumor. Addition-
ally, providing accurate information about the location 
of tumor-infiltrated brain areas is crucial for clinical 
decision making. Studies have shown the incidence 
of gliomas is related to anatomic locations [14, 30]. To 
the best of our knowledge, few studies have focused on 
achieving the identification of tumor-infiltrated brain 
areas and segmentation of the tumor at the same time. 
We develop a multi-task network to learn the relevant 
information between different tasks, enabling us to 
achieve both goals.

In contrast to molecular subtyping or grading of gli-
oma, where each patient has a single label for a task, our 
infiltrated brain area identification task may have one or 
more labels per patient. Directly adapting the commonly 
used deep learning-based multi-class classification mod-
els, such as ResNet50 and VGG16, to the multi-label task 
may not be effective due to the irregular shape of glio-
mas. While adding multi-sequences of MRI images can 
help improve the performance of infiltrated brain area 
identification, the improvement is limited without the 

prior information about the glioma boundary. There are 
several factors that may explain our proposed method 
achieved higher performance of identifying glioma- infil-
trated brain areas compared with other methods. First, 
unlike the aforementioned methods that perform clas-
sification and segmentation separately, our method uses 
a single encoder to extract the task-relevant features. 
Learning shared representations across different tasks 
can help prevent overfitting on each task and improve 
overall performance on all tasks. Second, our method 
co-optimizes the loss functions of brain area identifica-
tion and tumor segmentation, improving the model’s 
generalization ability and potentially solving label imbal-
ance problems via shared label information. Third, trans-
former blocks were embedded into CNN-based network 
to address the intrinsic locality limitation of convolution 
operations.

Despite the superior performance of the validation and 
independent test sets, our study has several limitations. 
The main drawback is its retrospective nature, which 
makes it vulnerable to selection and recall bias, thereby 
potentially impacting the reliability and generalizability 
of the study findings. Our future direction encompasses 
the implementation of prospective studies, enabling 
the longitudinal follow-up of patients from the onset 
and facilitating the collection of real-time data for pre-
cise and comprehensive analysis. This approach aims to 
enhance the validity and robustness of our model while 

Fig. 7 Guided backprop maps of (b) hybrid CNN and Transformer network and (c) pure CNN models. Illustrate the model’s attention to both global 
and local information
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augmenting its applicability in clinical settings. Besides, 
advanced MRI sequences, such as diffusion or perfusion 
weighted imaging MRI, were not included in this study. 
While these sequences are not the clinical imaging rou-
tine for structural scans. Our results in Tables  2 and 3 
indicate that superior performance can be achieved by 
using the T2-FLARI and T1c MRI. This method makes 
it easier to collect and obtain data and makes the model 
simpler but it may still limit the performance of the 
model. Given the increasing use of these advanced MRI 
sequences in clinical practice, we believe that integrating 
them into our future research will further improve the 
model’s accuracy. It is essential to note that our study is 
limited to brain area identification and tumor segmenta-
tion by developing a single model. However, we acknowl-
edge the potential of our model in other glioma-related 
prediction. In our future work, we aim to integrate the 
prediction of 1p/19q co-deletions, IDH mutations, and 
molecular subtyping to provide a more comprehensive 
analysis. By integrating these additional factors, we can 
deepen our understanding of gliomas at the molecular 
level and contribute to personalized treatment strategies 
and rognostications, enhancing the overall management 
of patients with gliomas.

In addition, we acknowledge the significance of detailed 
structural labeling, including deeper brain structures 
like the internal capsule. Future research will focus on 
enhancing the capabilities of our model to enable more 
accurate and detailed labeling of brain structure and 
function. We will incorporate advanced techniques and 
expand the scope of our model to encompass a broader 
range of anatomical and functional regions.

Conclusion
In conclusion, we have developed a transformer-based 
multi-task deep learning model that can perform two 
critical tasks: identifying tumor-infiltrated areas of the 
brain and segmenting the tumor based on preoperative 
MR scans. Our model has demonstrated superior per-
formance compared to state-of-the-art classification and 
segmentation models on both validation and independ-
ent test sets. It is believed that our model holds signifi-
cant potential as a practical tool to assist clinicians in 
accurately identifying glioma-infiltrated areas and sup-
porting treatment decisions.
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