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Abstract
Objectives The goal of this study is to demonstrate the performance of radiomics and CNN-based classifiers in 
determining the primary origin of gastrointestinal liver metastases for visually indistinguishable lesions.

Methods In this retrospective, IRB-approved study, 31 pancreatic cancer patients with 861 lesions (median age 
[IQR]: 65.39 [56.87, 75.08], 48.4% male) and 47 colorectal cancer patients with 435 lesions (median age [IQR]: 65.79 
[56.99, 74.62], 63.8% male) were enrolled. A pretrained nnU-Net performed automated segmentation of 1296 liver 
lesions. Radiomics features for each lesion were extracted using pyradiomics. The performance of several radiomics-
based machine-learning classifiers was investigated for the lesions and compared to an image-based deep-learning 
approach using a DenseNet-121. The performance was evaluated by AUC/ROC analysis.

Results The radiomics-based K-nearest neighbor classifier showed the best performance on an independent test set 
with AUC values of 0.87 and an accuracy of 0.67. In comparison, the image-based DenseNet-121-classifier reached an 
AUC of 0.80 and an accuracy of 0.83.

Conclusions CT-based radiomics and deep learning can distinguish the etiology of liver metastases from 
gastrointestinal primary tumors. Compared to deep learning, radiomics based models showed a varying 
generalizability in distinguishing liver metastases from colorectal cancer and pancreatic adenocarcinoma.
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Introduction
Cancer is one of the leading causes of death worldwide, 
with metastatic disease being one of the main reasons for 
mortality. The liver is one of the most common sites for 
metastatic spread [1]. Due to the strong portal venous 
influx into the liver and their high prevalence, colorec-
tal and pancreatic cancer are frequent origins of hema-
togenous liver metastases [2]. For colorectal cancer, 22% 
of the patients show distant metastases at the time of 
diagnosis. For pancreatic cancer, the number of patients 
showing metastases at the time of diagnosis is even 
higher with 52%. Despite modern targeted therapies, 
5-year survival of patients with metastatic colorectal can-
cer (mCRC) (14.7%) and metastatic pancreatic adenocar-
cinoma (mPA) (3.0%) is limited in the advanced stages of 
the disease [3, 4].

Clinically, the differential diagnosis of liver metastases 
in patients with multiple primary tumors can be a chal-
lenging task. In the case of solitary primary tumors, the 
underlying tumoral entity is regularly determined from 
clinical information of a known primary tumor. How-
ever, biopsies of (multiple) liver metastases in a patient 
are rarely acquired in clinical practice due to the dispro-
portional invasiveness. As a result, differentiating tumor 
primary by quantitative analysis of non-invasive imaging 
methods would provide a clinical advantage.

Machine learning (ML) can be applied to molecular 
genetic data to identify the primary tumor [5]. In the 
case of multiple primary tumors, imaging-based “virtual 

biopsy” could provide similar clinical benefits, cost and 
time reduction for confirmation of the diagnosis, and 
support as a first signpost in planning further interven-
tions [6, 7].

Earlier studies have shown that radiomics features and 
deep learning features can help to assess interlesional 
variability, underlying entities [8–10], and response 
[11–13]. However, the potential methodology ranges 
from radiomics features [14], often combined with ML-
classifiers [15], and applications of convolutional neural 
networks (CNN) [16]. First approaches to classify liver 
lesions have been performed using radiomics [17] and 
CNN [18]. However, their comparative performance in 
determining liver metastases primary has not been ana-
lyzed head-to-head.

Therefore, this benchmark study aims to assess the per-
formance of radiomics- and CNN-based classifiers on a 
test dataset to determine the primary cancer origin of 
gastrointestinal tumors by characterizing liver metasta-
ses of colorectal and pancreatic adenocarcinoma.

Materials and methods
Patient collective and imaging protocols
Patients with hypoattenuating liver metastases in mCRC 
and mPA that were examined in a 16-slice CT-scanner 
(Siemens Somatom Emotion, Siemens Healthcare GmbH, 
Erlangen, Germany) in our institution between 2011 and 
2020 were identified retrospectively by the search terms 
“rectal cancer” and “pancreatic cancer.“ Only scans that 
were reconstructed in B30s Kernel with 1.5  mm slice 
thickness in axial orientation and acquired in portal 
venous contrast enhancement phase (60  s delay, 90 ml 
intravenous Imeron® (Bracco Imaging, Milan, Italy), 2.5 
ml/s flow) were included. Based on our inclusion criteria, 
47 mCRC patients and 31 mPA patients were included. 
In the mCRC population, 36.2% of the patients were 
female and had a median age of 64. Compared to that in 
the mPA collective, 51.6% of the patients were female and 
had a median age of 65.39. The patient characteristics for 
both groups are summarized in Table 1. The study proto-
col is summarized as a CONSORT diagram in Fig. 1.

Liver and lesion segmentation
To minimize the effect of inter-rater variability and cre-
ate comparable results, a manual approach was chosen 
[19, 20]. Liver and liver lesions were segmented fully 
automated using the Applied Computer Vision Lab 
(ACVL) nnUNet pretrained liver segmentation model 
[21]. The created segmentations were corrected, if neces-
sary, by a medical student (H.T., two years of experience 
in radiological image segmentation). Afterward, they 
were reviewed by a clinical radiologist (M.F.F. with more 
than four years of experience in oncologic imaging). 
The metastases segmentation mask was split into single 

Table 1 Patient characteristics. Median and IQR
Colorectal can-
cer cohort

Pancre-
atic cancer 
cohort

n 47 31
Age (median [IQR]) 65.79 [56.99, 

74.62]
65.39 [56.87, 
75.08]

Sex (%) F 17 (36.2%) 16 (51.6%)
M 30 (63.8%) 15 (48.4%)

T-Stage (%) T1 2 (4.3%) 1 (3.2%)
T2 4 (8.5%) 3 (9.7%)
T3 24 (51.1%) 6 (19.4%)
T4 15 (31.9%) 19 (61.3%)
Tx 2 (4.3%) 2 (6.5%)

N-Stage (%) N0 8 (17.0%) 6 (19.4%)
N1 18 (38.3%) 11 (35.5%)
N2 20 (42.6%) 14 (45.2%)
Nx 1 (2.1%)

M-Stage (%) M1 47 (100.0%) 31 (100%)
Liver lesions Number 435 861

Per patient 9.25 27.77
Mean HU 45.89 44.93

Liver parenchyma Liver tumor 
burden

9.8% 6.7%

Mean HU 91.13 86.35
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Fig. 1 Consort flow diagram showing the search terms, cohort selection criteria and structure of following analysis
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lesion masks using 3DSlicer (version 4.11.20210226) [22]. 
Lesions smaller than 0.5  cm were considered too small 
to characterize and excluded. The liver tumor burden, 
defined as the ratio of metastasis to total liver voxel vol-
ume, was estimated by the automated segmentation.

Split into train, (validation), and test dataset
To evaluate the model’s performance, for both 
approaches eight patients with four from each group 
(mPA and mCRC) were randomly selected without strati-
fication as an independent test set. The metastases image 
slices and radiomics signatures of these patients were not 
used during the training process. For the DenseNet-121 
the dataset of cropped metastases CTs was randomly 
split into train, validation, and test sets in a ratio of 
68/5/8 patients. If a patient had multiple liver metastases, 
all were only included in one set.

Radiomics-based classifiers
Radiomics features were extracted from the original 
images without filtering for patients with mPA and 
mCRC for each liver lesion using pyradiomics (version 
3.0.1) [23]. Corresponding settings can be found in the 
supplementary material S1. First-order, 2D, and 3D shape 
features, neighboring gray tone difference (NGTDM), 
gray level co-occurrence matrix (GLCM), gray level run 
length matrix (GLRLM), gray level size zone (GLSZM), 
and gray level dependence matrix (GLDM) features were 
extracted. Following, the features were selected by apply-
ing a Pearson Correlation Coefficient (PCC) threshold of 
0.6 for redundancy reduction. To identify the important 
features for the differentiation of metastases by primary, 
permutation-based feature importance was calculated 
using a Random Forest (RF) classifier. To account for 
imbalances in the input dataset, the synthetic minor-
ity over-sampling technique (SMOTE) using the python 
package imblearn (version 0.9.0) was performed on the 
training set. Random undersampling was used to inves-
tigate possible distortion of the input data by SMOTE. 
Standardization was applied to both the train and test set 
before analysis.

Several classification algorithms were implemented for 
the radiomics dataset: XG Boost (XGB), Random Forest 
(RF), Support Vector Machine (SVM), K-SVM, K-nearest 
neighbor, Logistic Regression, Naive Bayes, and Decision 
Tree. Hyperparameter tuning was performed if appli-
cable to achieve maximum performance. Results from 
the test dataset were generated to compare lesion-wise 
performance.

Image-based CNN classifiers
Preprocessing
The clinically diagnosed primary tumor for each patient 
was assumed as the ground truth for the corresponding 

liver lesions. To achieve a high degree of confidence, 
patients with multiple primary tumors were not enrolled. 
Automatically created segmentation masks were used 
to blacken the area surrounding the metastases, to only 
focus on the lesions. Following, the lesions were win-
dowed in an abdominal window (window width of 330/
window level of 10), cropped, and exported as images 
with a size of 224 × 224. Input images were augmented 
by zooming, shearing, rotation, and width shift and con-
tained the entire lesion along with its borders.

Model definition and training
The model was trained from scratch using a 
DenseNet-121 for analysis, and single metastasis slices 
were used as an input. DenseNet-121 is a dense convo-
lutional neural network algorithm with a depth of 121 
layers [24]. The network for supervised learning was 
implemented in Pytorch. The analysis workflow is sum-
marized in Fig. 2. Example lesions for colorectal and pan-
creatic liver metastases are displayed in Fig. 3. A detailed 
description of the model and training settings can be 
found in supplementary material S2.

Lesion-wise comparison
To evaluate the performance on individual lesions, the 
slice-wise results were cumulated lesion-wise. The cumu-
lated model outputs were classified as pancreatic or 
colorectal based on a cutoff value of 0.5.

Results
Comparison of tumoral distribution patterns
The following segmentation correction and lesion separa-
tion resulted in a total of 861 lesions in the mPA group 
compared to 435 lesions in the mCRC group. For mCRC, 
patients showed fewer but larger metastases (a mean 
tumor burden of 9.8% and 9.25 metastases per patient). 
Patients with mPA had more but smaller metastases 
(mean tumor burden of 6.7% and an average of 27.77 
metastases per patient).

Radiomics-based classifiers
The PCC threshold of 0.6 resulted in a reduction of 78.1% 
from 105 to 23 features. The resulting features were 
ranked by permutation-based importance and listed in 
Table 2 (all results in S3). Predominantly first order and 
grayscale texture features were identified as the most 
important. On the test set from all classifiers (XGB, RF, 
SVM, K-SVM, K-nearest neighbor, Logistic Regression, 
Naive Bayes, and Decision Tree), the K-nearest neighbour 
classifier showed the best performance with an AUC of 
0.87 and an accuracy of 0.67 (Table  3) for the differen-
tiation between colorectal and pancreatic liver metasta-
ses. Differing number of lesions (n = 435 colorectal liver 
metastases versus n = 861 pancreatic liver metastases) has 
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led to a large class imbalance. In comparison to SMOTE, 
undersampling has shown a different but overall compa-
rable performance in terms of accuracy and AUC.

Imaging-based classifiers
After training with the training and validation cohort, 
the model generalized well on the independent test set 

and achieved similar results with an AUC of 0.80 and 
an accuracy of 0.83. Radiomics classifiers outperformed 
the imaging-based DenseNet-121. Results for the perfor-
mance of both classifiers can be found in Table 3.

Lesion-wise comparison on the test set
The lesion-wise comparison on the test set shows a dif-
ference in performance of the models based on classes. 
Both ML- and DL- based classifiers, especially Gauss-
ian Naive Bayes, XGBoost, and Random Forest in aver-
age tended to classify lesions rather as pancreatic than 
colorectal, which led to a better performance in classi-
fying pancreatic cases (Fig.  4). SVM-classifiers showed 
the best results in detecting colorectal lesions. However, 
XG Boost and Gaussian NB classifiers could not iden-
tify colorectal metastases sufficiently (accuracy: 0%). 
The model’s performance in terms of classification on an 
individual lesion level is varying. E.g. in colorectal cancer 
patient no. 20 KNN-classifier identifies 4/10 lesions as 
pancreatic and 6/10 as colorectal. This leads to a limited 
practical value and may be caused by overfitting and/or 

Table 2 10 most important extracted radiomics features, 
ordered by importance

Feature Permuta-
tion im-
portance

1 original_firstorder_90Percentile 0.053969
2 original_firstorder_Mean 0.048406
3 original_glszm_GrayLevelNonUniformityNormalized 0.040987
4 original_glcm_Correlation 0.038470
5 original_ngtdm_Complexity 0.037156
6 original_glszm_GrayLevelVariance 0.036443
7 original_glcm_Imc1 0.036336
8 original_firstorder_10Percentile 0.035691
9 original_shape_Flatness 0.035509
10 original_gldm_HighGrayLevelEmphasis 0.034498

Fig. 3 Three example slices of visually indistinguishable liver metastases from each colorectal cancer and pancreatic cancer cohort

 

Fig. 2 Technical pipeline for radiomics- and Densenet-121-based image slice analysis displaying used models and structure
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caused by class imbalances. To address this, larger train-
ing datasets could be a possible solution.

Discussion
This study shows the clinical potential of radiomics-based 
and deep learning-based approaches to implement AI in 
the differential diagnosis of visually similar liver lesions 
by processing information not perceivable to the human 
eye. It demonstrates the capability of DL/ML-based 
imaging and radiomics features to identify the underly-
ing tumor entity and may help to establish an automated 
approach as a “virtual biopsy” of suspicious liver lesions 
demonstrated for gastrointestinal cancers. In the inde-
pendent test cohort, radiomics showed a solid perfor-
mance:  Besides first-order features, gray level features, 
known as imaging biomarkers for tissue texture and het-
erogeneity, were ranked as important. In comparison, the 
DenseNet-121 without pre-defined features could also 
classify the primary tumor based on liver lesion charac-
teristics and showed a comparable performance.

The models showed a high level of variability in predic-
tions within patients of the test set. This could be caused 
by multiple factors. For instance, prior works have shown 
an interlesional variability within single patients and one 
tumoral entity which leads to different radiomics sig-
natures [25]. Such differences exist naturally or can be 
induced by therapy and may result in the model identify-
ing some lesion types better than others.

The results presented are in line with previous studies, 
which demonstrated how machine-learning approaches 
and deep convolutional neural networks could support 

Table 3 ML-classifiers and DenseNet-121 performance on the 
independent test set

Random 
undersampling

SMOTE

Approach Classifier AUC Accuracy AUC Accuracy
ML-classifier XG Boost 0.71 0.84 0.71 0.82

Random 
Forest

0.60 0.84 0.62 0.79

K-means clus-
tering SVM

0.79 0.72 0.79 0.71

K-nearest 
neighbour

0.77 0.59 0.87 0.67

SVM 0.79 0.72 0.79 0.71
Logistic 
Regression

0.66 0.53 0.65 0.60

Gaussian 
Naive Bayes

0.51 0.52 0.52 0.50

Decision Tree 0.43 0.36 0.43 0.29
CNN-clas-
sifier

DenseNet-121 0.80 0.83 0.80 0.83

Fig. 4 Per-lesion comparison of the model’s performances on test set. 
Red boxes indicate lesions predicted as colorectal, while blue boxes repre-
sent predictions as pancreatic lesions
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inexperienced radiologists to differentiate lesions that 
an experienced radiologist can differ visibly [18]. Our 
study translates this approach to a topic, where even a 
high degree of experience may not be associated with a 
relevant accuracy. The comparison of methods to handle 
class imbalance have shown that there is an effect of such 
methods on model performance. Class imbalance in gen-
eral can be addressed using different methodologies [26]. 
A possible solution to that is the accurate reporting of 
used methods.

This work complements and extends previous results as 
we were able to show how radiomics- and deep learning-
based methods can support clinical decision-making as a 
signpost for visually indistinguishable liver lesions. DL/
ML-generated insights may be used in a diagnostic or 
therapeutic setting to acquire information about prog-
nosis or the targetability of lesions. In this challenging 
setting, deep learning and ML-radiomics achieved excep-
tional accuracy. Given the visual indistinguishability of 
metastatic liver lesions for both assessed gastrointestinal 
cancer types, this study’s results indicate the substantial 
potential of quantitative imaging biomarkers to provide 
information about the tumor biology and cancer origin. 
Yet, the classifiers cannot give a wholly accurate distinc-
tion in every case.

Moreover, tumor tissue arising from a singular pri-
mary can show a high degree of heterogeneity, proven 
by autopsy studies [27], which is a challenge for success-
ful targeted therapies [28]. Therefore, biopsies of soli-
tary lesions may be misleading regarding molecular and 
histological properties, especially in patients with mul-
tiple disseminated liver metastases, and may not reveal 
mutations as potential targets. As it is known from post-
mortem analyses, liver metastases show a notable inter-
lesional molecular variability [29]. Yet, the reliability may 
be further increased by relying decision-making on quan-
titative image features and supplementing our approach 
with clinical features and laboratory biomarkers such as 
cfDNA and liquid profiling, which have been shown to 
increase diagnostic accuracy further [9].

This work must be considered in the context of its limi-
tations. Only grayscale images of metastatic liver lesions 
were used in this retrospective study. The surrounding 
area of the metastases was not considered to only focus 
on the features of the lesion. In addition to the tumor 
tissue itself, quantitative parameters from the tissue sur-
rounding the tumor may provide additional information 
about the tumor entity [30] and may be investigated in 
further studies. Due to the inclusion criteria, the results 
are limited to a relatively homogeneous and small patient 
collective of comparable scan parameters; other slice 
thicknesses and kernels need to be assessed to improve 
the evaluation of performance under these conditions 
and compare radiomics features’ generalizability on 

larger datasets. Only portal venous contrast phase CT-
scans were used as this is a standard phase in abdomi-
nal CT. This study could also be extended to different 
contrast phases. Furthermore, liver metastases with 
histologic criteria of adenocarcinoma (of the colon and 
pancreas) were included in this analysis, while no further 
histopathological stratification was included. It would be 
interesting to investigate if radiomics or CNN features 
may even help differentiate other cancer subtypes (or ori-
gins) non-invasively. A combination of both methodolo-
gies into one model and training on a larger dataset may 
boost the power of the model and should be studied in 
further analyses.

In addition, there are limitations concerning the valida-
tion cohort, as no external dataset was used for valida-
tion. However, the study has a single-center retrospective 
design, which may be the foundation for a prospective 
multi-center study. Yet, this study can be regarded as a 
proof-of-concept study for the unraveling of textures 
indistinguishable for the human eye.

Conclusion
In summary, this study demonstrates the ability of 
radiomics and image-based deep learning models to dis-
tinguish liver metastases based on their primary cancer 
showing the potential for a non-invasive virtual biopsy 
and extraction of quantitative imaging biomarkers. In 
this cohort, radiomics features showed comparable per-
formance to the CNN model in classifying visually indis-
tinguishable liver metastases. This study may be a proof 
of concept for the often-quoted idea of personalized AI-
driven quantitative image diagnostics.
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